
The Review of Symbolic Logic, Page 1 of 14

FAILURE OF BETH’S THEOREM IN RELEVANCE LOGICS

ALASDAIR URQUHART

Department of Philosophy
University of Toronto

Abstract. Beth’s theorem equating explicit and implicit definability fails in all logics between
Meyer’s basic logic B and the logic R of Anderson and Belnap. This result has a simple proof
that depends on the fact that these logics do not contain classical negation; it does not extend
to logics such as KR that contain classical negation. Jacob Garber, however, showed that Beth’s
theorem fails for KR by adapting Ralph Freese’s result showing that epimorphisms may not be
surjective in the category of modular lattices. We extend Garber’s result to show that the Beth
theorem fails in all logics between B and KR.

§1. Introduction. In a paper dedicated to the memory of Helena Rasiowa, the
present author showed [24] that Beth’s theorem equating implicit and explicit
definability fails in all of the logics between B + 22 and R, where B is the basic relevant
logic defined by Meyer [2, sec. 48.7] and 22 is the transitivity axiom

[(A→ B) ∧ (B → C )] → (A→ C ).

Blok and Hoogland [5] later improved this result by replacing B + 22 with the basic
logic B.

The results described in the previous paragraph have simple proofs that depend on
the fact that the logics in question do not contain classical negation, and so we can
exploit the fact that relative complements in distributive lattices are implicitly but not
explicitly definable. These proofs do not work in logics containing classical negation,
such as the logic KR that results by adding the axiom ex falso quodlibet, (A ∧ ¬A) → B ,
to R.

The paper [24] by the present author suggested a way in which to extend the results
to logics containing classical negation, such as KR. It is known that Beth’s theorem in
a logic L is closely linked to the question of whether epimorphisms are surjective in
the category of algebras corresponding to L. (Blok and Hoogland [5] give an excellent
exposition of the connection.) In the case that L is KR, the corresponding category
is that of Boolean monoids. It follows that if we can show that epimorphisms are not
necessarily surjective in the category of Boolean monoids, then we have shown that
Beth’s theorem fails in KR.

A technique for solving this last problem was provided by a construction of Roger
Maddux [16]. Maddux showed how to represent any modular lattice as a lattice of
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2 ALASDAIR URQUHART

commuting equivalence elements of some relation algebra, answering a query [13] of
Bjarni Jónsson. Maddux’s construction was rediscovered by the present author in [25].

Ralph Freese showed [8] that epimorphisms are not necessarily surjective in the
category of modular lattices; this leads to the conjecture in [24, 25] that his result
could be adapted to show the corresponding result for Boolean monoids. This plan
was carried out successfully by Jacob Garber in a recent excellent contribution [9]. In
the present paper, we give our version of Garber’s proof as part of a demonstration
showing that the failure of Beth’s property can be proved for any logic intermediate
between R and KR. Combining this with the earlier result of Blok and Hoogland [5],
this demonstrates the failure of the Beth property for any logic between B and KR.

§2. De Morgan and Boolean monoids.

Definition 2.1. A De Morgan monoid is an algebra 〈S,+,∧,∨,¬, 0,�,⊥〉, where
we define a → b = ¬(a + ¬b), and a ≤ b ⇔ a ∨ b = b, and the algebra satisfies the
postulates:

1. 〈S,∧,∨,�,⊥〉 is a distributive lattice with largest element � and least element ⊥.
2. 〈S,+, 0〉 is a commutative monoid with 0, so that 0 + a = a, for all a ∈ S, and in

addition, a ≤ a + a, for all a ∈ S.
3. For all a, b ∈ S, ¬¬a = a and ¬(a ∨ b) = ¬a ∧ ¬b.
4. For a, b, c ∈ S, a + (b ∨ c) = (a + b) ∨ (a + c) and a + (a → b) ≤ b.

A Boolean monoid is a De Morgan monoid satisfying a ∨ ¬a = �, for all a ∈ S, so that
〈S,∧,∨,¬,�,⊥〉 forms a Boolean algebra.

A morphism in the category of Boolean monoids is a Boolean monoid homomor-
phism. The category of Boolean monoids is the category whose objects are Boolean
monoids, and the morphisms are Boolean monoid homomorphisms.

We say that a Boolean monoid 〈S,+,∧,∨,¬, 0,�,⊥〉 is complete and atomic if the
underlying Boolean algebra 〈S,∧,∨,¬,�,⊥〉 is complete and atomic. In a complete
and atomic Boolean monoid, we can define an infinitary analog of the linear sum
a + b: for F ⊆ S,

∑
F =

∨
{a + b : a, b ∈ F }.

We use the
∑

notation below for linear joins of subsets of complete lattices.
The category M has as objects the complete atomic Boolean monoids, and as

morphisms, the complete morphisms in the category of Boolean monoids. If K,L are
complete lattices, then K is a complete sublattice of L if

∧
X ∈ K and

∑
X ∈ K for

all X ⊆ K , where
∧
X and

∑
X are formed in L.

Boolean monoids are described under the name “KR-algebras” in [23]. In the
literature of relevance logic, the operation a + b is described as “fusion,” and written
as a ◦ b, whereas in the literature of relation algebras, a + b corresponds to relative
product a; b. Boolean monoids can also be described as dense symmetric relation
algebras.

The constant 0 corresponds to the constant t in the literature of relevance logic
[1, p. 342], where t is interpreted as the conjunction of all logical truths. In the context
of relation algebras, 0 corresponds to the constant 1′, interpretable as the identity
relation. In the literature of linear logic [10, p. 182] the corresponding constant is 1.
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FAILURE OF BETH’S THEOREM IN RELEVANCE LOGICS 3

We use the notation a + b to distinguish between the Boolean join ∨, and linear
join +. This notation is also used in the context of modular lattice theory [17], [8].
In addition, we employ juxtaposition ab as an alternative notation for a ∧ b, and a
for ¬a.

Definition 2.2. Let A be a formula of R, and D a De Morgan monoid. An interpretation
of A in D is a function ϕ mapping subformulas of A into D that satisfies the follow-
ing conditions: ϕ(A→ B) = ϕ(A) → ϕ(B), ϕ(A ∧ B) = ϕ(A) ∧ ϕ(B), ϕ(A ∨ B) =
ϕ(A) ∨ ϕ(B), ϕ(A+ B) = ϕ(A) + ϕ(B), ϕ(¬A) = ¬ϕ(A), ϕ(t) = 0, ϕ(�) = � and
ϕ(⊥) = ⊥.

Let M be a family of De Morgan monoids. A formula A is said to be valid in M if
ϕ(A) ≥ 0 for all interpretations ϕ(A) in a De Morgan monoid belonging to M. For
the notion of validity just defined, we have the following fundamental completeness
theorem, due to Dunn [7],[1, sec. 28.2].

Theorem 2.1. A formula is provable in R if and only if it is valid in the class of all De
Morgan monoids.

For Boolean monoids, a similar result holds the following theorem.

Theorem 2.2. A formula is provable in KR if and only if it is valid in the class of all
Boolean monoids.

Proof. This can be proved by an extension of Dunn’s completeness theorem in
Theorem 2.1, since the axiom (A ∧ ¬A) → B implies that the Lindenbaum algebra of
KR is a Boolean algebra.

A lattice is modular if it satisfies the implication

x ≥ z ⇒ x ∧ (y + z) = (x ∧ y) + z.

For background on modular lattice theory, the reader can consult the texts of Birkhoff
[4] or Grätzer [11].

Definition 2.3. Let A be a De Morgan monoid. The family L(A) is defined to be the
elements of A that are ≥ 0 and idempotent, that is to say, a ∈ L(A) if and only if
a + a = a and 0 ≤ a.

Theorem 2.3. If A is a De Morgan monoid, then L(A), ordered by containment, forms a
lattice, with least element 0, and the lattice operations of meet and join defined by a ∧ b
and a + b. If A is Boolean, then L(A) is modular.

Proof. The lattice properties of L(A) are easily proved from the assumptions 0 ≤ a
and a + a = a, for all a ∈ L(A). For the modular law, see the proof of Lemma 5.1
below.

The following lemma, due to Robert K. Meyer, provides a useful characterization
of the elements of L(A).

Lemma 2.1. Let A be a De Morgan monoid. Then the following conditions are
equivalent:

1. a ∈ L(A).
2. a = (a → a).
3. ∃b[a = (b → b)].
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Proof. (1 ⇒ 2 ⇒ 3): Since 0 ≤ a, we have 0 ≤ (a→ a) → a, 0 + (a→ a) ≤ a,
hence (a→ a) ≤ a. Sincea + a ≤ a,a ≤ (a→ a), soa = (a→ a), proving the second
and hence the third condition.

(3 ⇒ 1): First, we have 0 ≤ (b→ b) = a. Second, (b→ b) ≤ (b→ b) → (b→ b), so
(b→ b) + (b→ b) ≤ (b→ b), that is to say, a + a ≤ a, so a + a = a.

2.1. Duality for Boolean monoids.

Definition 2.4. A geometrical frame F = 〈S,C, 0〉 is a 3-place relation C on a set
containing a distinguished element 0, satisfying the postulates:

1. C0xy ⇔ x = y.
2. Cxxx.
3. Cxyz ⇒ (Cyxz & Cxzy) (total symmetry).
4. (Cxyz & Czuv) ⇒ ∃w(Cxuw & Cwyv) (Pasch’s postulate).

In a geometrical setting, Pasch’s postulate states that if a line intersects two sides of
a triangle, then it also intersects the third side, a postulate introduced by Moritz Pasch
in his rigorous axiomatization [18] of classical geometry. Geometrical frames were
called “KR model structures” in [25]. We have renamed them here to emphasize their
connection with geometry; these frames can be built from a projective space by adding
a zero element with some added postulates, a construction due to Roger Lyndon [15],
and employed in various papers [21–23] by the present author. The relation Cxyz can
be interpreted as “x, y, z are collinear.”

Given a geometrical frame F = 〈S,C, 0〉, we can define an algebra A(F) as follows.

Definition 2.5. The algebra A(F) = 〈P(S),∩,∪,¬,�,⊥, 0,+〉 is defined on the
Boolean algebra 〈P(S),∩,∪,¬,�,⊥〉 of all subsets of S, where 0 = {0}, and the operator
A+ B is defined by

A+ B = {c | ∃a ∈ A, b ∈ B(Cabc)}.

Lemma 2.2. If F is a geometrical frame, then A(F) is a complete atomic Boolean
monoid.

Proof. As mentioned above, the operator A+ B is the algebraic counterpart of the
fusion connective in relevance logics. Hence, the proof that A(F) is a Boolean monoid
can be adapted from the soundness proofs [19][2, sec. 48] for relevance logics relative
to the ternary relational semantics of Routley and Meyer, with some added details to
take account of the characteristic axiom of KR.

Definition 2.6. Let F1 = 〈S1, C1, 0〉 and F2 = 〈S2, C2, 0〉 be geometrical frames. A
mapping � from S1 to S2 is said to be a geometric morphism if the following conditions
are satisfied:

1. �(x) = 0 ⇔ x = 0.
2. C1xyz ⇒ C2�(x)�(y)�(z).
3. C2xy�(z) ⇒ ∃uv(C1uvz & �(u) = x & �(v) = y).

Lemma 2.3. Let F1 = 〈S1, C1, 0〉 and F2 = 〈S2, C2, 0〉 be geometrical frames, and �
a geometric morphism from F1 to F2. For A ⊆ S2, define ϕ(A) = �–1(A). Then

https://doi.org/10.1017/S1755020325100713 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020325100713


FAILURE OF BETH’S THEOREM IN RELEVANCE LOGICS 5

1. ϕ is a complete morphism from A(F2) to A(F1) in the category of complete atomic
Boolean monoids.

2. If � is surjective, then the mapping ϕ is a complete embedding of A(F2) in A(F1).

Proof. This is again a straightforward verification. We prove the equation
ϕ(A+ B) = ϕ(A) + ϕ(B), where A,B ⊆ S2.

If z ∈ ϕ(A) + ϕ(B), then there arex, y ∈ S1 so thatx ∈ ϕ(A),y ∈ ϕ(B) andC1xyz.
By condition 2, we have C2�(x)�(y)�(z). Since �(x) ∈ A and �(y) ∈ B , it follows
that �(z) ∈ A+ B , so that z ∈ ϕ(A+ B).

Conversely, assume that z ∈ ϕ(A+ B), so that �(z) ∈ A+ B , showing that there
are x, y ∈ S2 so that x ∈ A, y ∈ B and C2xy�(z). By condition 3, there are u, v ∈ S1

where C1uvz, �(u) = x, and �(v) = y. Hence, u ∈ ϕ(A), v ∈ ϕ(B), showing that
z ∈ ϕ(A) + ϕ(B).

§3. Modular lattices and geometric morphisms.

3.1. Geometric frames from modular lattices. We require a few basic lattice-
theoretic definitions here. A chain in a lattice L = 〈S,∧,+, 0〉 is a totally ordered
subset of L; the length of a finite chain C is |C | – 1. A chain C in a lattice L is maximal
if for any chain D in L, if C ⊆ D then C = D. If L is a lattice, a, b ∈ L and a ≤ b,
then the interval [a, b] is defined to be the sublattice {c : a ≤ c ≤ b}.

Let L be a lattice with least element 0. We define the height function: for a ∈ L, let
h(a) denote the length of a longest maximal chain in [0, a] if there is a finite longest
maximal chain; otherwise put h(a) = ∞. If L has a largest element 1, and h(1) <∞,
then L has finite height.

Let L be a modular lattice with 0 of finite height. Then for a ∈ L, h(a) is the length of
any maximal chain in [0, a]. In addition, the height function in L satisfies the condition

h(a) + h(b) = h(a ∧ b) + h(a + b),

for all a, b ∈ L. For a lattice of finite height, this condition is equivalent to modularity;
see Grätzer [11, chap. IV, sec. 2].

The next construction, due to Roger Maddux [16], was rediscovered by the present
author in [25].

Definition 3.1. Let L be a lattice with least element 0. Define a ternary relation CL on
the elements of L by:

CLabc ⇔ a + b = b + c = a + c,

and let F(L) be 〈L,CL, 0〉.

Theorem 3.1. F(L) is a geometric frame if and only if L is modular.

Proof. This is a straightforward verification, using the modularity of L to validate
the Pasch postulate. Theorem 2.7 of the paper [25] contains a detailed proof of the
equivalence.

Definition 3.2. If L is a lattice, then an ideal of L is a non-empty subset I of L such that

1. If a, b ∈ I then a + b ∈ I .
2. If b ∈ I and a ≤ b, then a ∈ I .
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The family of ideals of a lattice L, ordered by containment, forms a complete lattice
I (L). The original lattice L is embedded in I (L) by mapping an element a ∈ L into
the principal ideal containing a, (a]L = {b ∈ L | b ≤ a}. The mapping a �−→ (a]L is a
lattice isomorphism between L and a sublattice of I (L). Theorem 2.9 of [25] proves
the next result.

Theorem 3.2. Let L be a modular lattice with least element 0, and F(L) = 〈L,C, 0〉 the
geometric frame constructed from L. Then L(A(F(L))) is identical with the lattice of
ideals of L.

3.2. Geometric morphisms between modular lattices. Let K, L be complete modular
lattices with K a complete sublattice of L; K and L have a common least element 0.
This is because

0K =
∑

K

∅ =
∑

L

∅ = 0L.

Similarly, they have a common greatest element 1. We shall show that F(K) is the
image of a geometric morphism defined on F(L).

Definition 3.3. Let K, L be complete modular lattices with K a complete sublattice of
L. We define a projection function � from L to K: for x ∈ L,

�(x) =
∧
Sx =

∧
{b ∈ K : x ≤ b}.

Definition 3.3 is known in the context of Boolean algebras with operators.
Jónsson and Tarski [14] employ the corresponding operation in their characterization
(Definition 1.20) of closed elements in complete atomic Boolean algebras. If we
think of Sx as the family of elements approximating x in K, then �(x) is the closest
approximation to x in K.

The use of the term “projection function” can be justified as follows. For F a field,
let F I and F J , where J ⊆ I , be vector spaces over F, and K and L the lattices of
subspaces of F J and F I . For f ∈ F I , let �(f) = f� J be the restriction map from F I

to F J , so that K is embedded in L by the mapping ϕ(Z) = �–1(Z), for Z ∈ K . Then
if X ∈ L, �(X ) is the projection of X in the sublattice ϕ(X ).

Lemma 3.1. The projection function � from L to K satisfies the following conditions.
For x, y ∈ L:

1. x ≤ �(x).
2. �(x) = x if and only if x ∈ K .
3. If x ≤ y, then �(x) ≤ �(y).
4. If x ≤ y and y ∈ K , then �(x) ≤ y.
5. �(x + y) = �(x) + �(y).

Proof.
1: For x ∈ L, x is a lower bound for Sx , so x ≤

∧
Sx = �(x).

2: If �(x) = x, then x ∈ K ; conversely, if x ∈ K , then Sx = [x)K , so �(x) =∧
Sx = x.
3: If x ≤ y, then Sy ⊆ Sx , hence �(x) =

∧
Sx ≤

∧
Sy = �(y).

4: This follows from the second and third conditions.
5: Since x ≤ �(x) and y ≤ �(y), we have x + y ≤ �(x) + �(y), so by the third

condition, �(x + y) ≤ �(�(x) + �(y)) = �(x) + �(y), since �(x) + �(y) ∈ K . By the
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third condition, we have �(x) ≤ �(x + y) and �(y) ≤ �(x + y), so �(x) + �(y) ≤
�(x + y), showing that �(x + y) = �(x) + �(y).

Lemma 3.2. The projection map � from L to K is a geometric morphism from F(L) to
F(K).

Proof. For the first condition of Definition 2.6, we recall that K and L have a
common least element 0, so �(0) =

∧
S0 =

∧
K = 0.

For the second condition of Definition 2.6, we have by Lemma 3.1,

CL(x, y, z) ⇔ x + y = x + z = y + z

⇒ �(x + y) = �(x + z) = �(y + z)

⇒ �(x) + �(y) = �(x) + �(z) = �(y) + �(z)

⇔ CK (�(x), �(y), �(z)).

For the third condition, assume that CK (x, y, �(z)), for x, y ∈ K and z ∈ L, so that
x + y = x + �(z) = y + �(z). Define u := (y + z) ∧ x and v := (x + z) ∧ y. We need
to show that �(u) = x, �(v) = y and CL(u, v, z).

By Lemma 3.1(1), we have

u + y = [(y + z) ∧ x] + y

= (y + z) ∧ (x + y) Modularity

= (y + z) ∧ (y + �(z))

= (y + z).

Since u ≤ x, u ≤ x ∧ �(u), hence z ≤ y + z = u + y ≤ (x ∧ �(u)) + y, so that by
Lemma 3.1(4), �(z) ≤ (x ∧ �(u)) + y and �(z) + y ≤ (x ∧ �(u)) + y. Consequently,
x + y = y + �(z) ≤ (x ∧ �(u)) + y, so x + y = ((x ∧ �(u)) + y). Hence,

x = (x + y) ∧ x
= [(x ∧ �(u)) + y] ∧ x
= (x ∧ �(u)) + (y ∧ x) Modularity

= x ∧ �(u),

since y ∧ x ≤ u ≤ x ∧ �(u), so that x ≤ �(u). We have �(u) ≤ x by Lemma 3.1, part
4, hence �(u) = x. A symmetrical proof shows that �(v) = y.

To show that CL(u, v, z), we compute

u + z = [(y + z) ∧ x] + z

= (y + z) ∧ (x + z) Modularity

= [(x + z) ∧ y] + z Modularity

= v + z,

so that u + z = (x + z) ∧ (y + z) = v + z. Since u ≤ x and z ≤ �(z), we have u + z ≤
x + �(z) = x + y. Hence,

u + z = (x + y) ∧ (u + z)

= (x + y) ∧ (x + z) ∧ (y + z)

= [x + (y ∧ (x + z))] ∧ (y + z) Modularity
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= [x ∧ (y + z)] + [y ∧ (x + z)] Modularity

= u + v,

completing the proof of the third condition.

§4. Garber’s theorem. In this section, we give a proof of Garber’s theorem [9] that
epimorphisms are not necessarily surjective in the category of Boolean monoids. The
proof is based on the results from §3, also due to Garber; the starting point of the proof
is the following result of Freese [8, p. 297].

Theorem 4.1. Complete epimorphisms in the category of complete modular lattices and
complete homomorphisms are not necessarily surjective.

In proving this result, Freese constructs two modular lattices K and L, with K a
sublattice of L, where the inclusion map from K into L is an epimorphism, although it
is not surjective. The lattices are of finite length, and so are complete, and in addition,
K is a complete sublattice of L.

By Theorem 3.1, F(K) and F(L) are geometric frames, so that by Lemma 2.2,
A(K) = A(F(K)) and A(L) = A(F(L)) are complete atomic Boolean monoids, and
by Lemma 2.3, the map ϕ(X ) = �–1(X ), forX ⊆ K is a complete embedding of A(K)
in A(L).

Theorem 4.2 (Garber). Assume that:

1. L is a complete modular lattice, and K ⊆ L a complete sublattice.
2. (K ] and (L] are the images of K and L under the principal ideal map from L to

L(A(L)).
3. K is the subalgebra of A(L) generated by (K ], while L is the subalgebra of A(L)

generated by (L].

Then:

1. If K is an epic sublattice of L, then K is a epic subalgebra of L.
2. The embedding map from K to L, restricted to (K ], is a lattice embedding of (K ]

in (L].

Proof. (1): Assume that K is an epic sublattice of L. K is isomorphic to (K ] and
L to (L] under the principal ideal map, so that (K ] is an epic sublattice of (L]. We
shall show that any morphism defined on L is uniquely determined by its values on K,
showing that the inclusion map K �→ L is an epimorphism.

If f : L → M is a morphism from L to a Boolean monoid M, then it is determined
by its values on (L], since (L] generates L, so f� (L] is a lattice epimorphism from (L]
to L(M).

By assumption, the inclusion map is an epimorphism from (K ] to (L]. Sincef� (L] is
determined by its values on (K ], f : L → M is determined by its values on K, showing
that K is an epic subalgebra of L.

(2): We now show that K is a proper subalgebra of L, by proving that the embedding
ϕ = �–1 : K ↪→ L induces a corresponding embedding on the lattices (K ] and (L].
Suppose that for a ∈ L, (a] = ϕ(A), for some A ⊆ K . Then �(a) ∈ A, and a ≤ �(a)
by Lemma 3.1(1). Since �(a) ∈ K , we have �(�(a)) = �(a) by Lemma 3.1(2), so
�(a) ∈ ϕ(A) = (a]L, hence �(a) ≤ a. Consequently, a = �(a) ∈ K , by Lemma 3.1(2).
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If K is a proper sublattice of L, then for some a ∈ L \K , (a]L ∈ L. However, by the
preceding proof, (a]L �∈ K showing that K is a proper subalgebra of L.

Theorem 4.3. Epimorphisms are not necessarily surjective in the category of Boolean
monoids.

Proof. This follows from Theorems 4.1 and 4.2.

§5. Generalizing Garber’s theorem. In this section, we generalize Garber’s result to
the category of De Morgan monoids. This requires a somewhat more logic-oriented
approach to the problem.

5.1. Modular elements in De Morgan monoids. An element a in a De Morgan
monoid M is modular if M satisfies the universal implication:

∀b, c ∈ M [a ≥ c ⇒ a(b + c) = ab + c].

An essential tool in the generalization is the following lemma, closely related to a result
of Chin and Tarski [6, theorem 2.18], [20, p. 268]; see also [13, p. 463].

Lemma 5.1. Let a be an element of a De Morgan monoid, satisfying the equations
aa = ⊥ and a + a = a. Then a is modular.

Proof. If a ≥ c, then:

a(b + c) = a[(ab ∨ ab) + c]

= a[(ab + c) ∨ (ab + c)]

≤ a[(ab + c) ∨ (a + a)]

= a[(ab + c) ∨ a]

= a(ab + c) ∨ aa
≤ ab + c

Hence, since ab + c ≤ a(b + c), a(b + c) = ab + c.

5.2. Beth’s property for equational theories. Let T be an equational theory in a
language L. If Γ ∪ {� = �} is a set of equations in L, then a derivation of � = � is a
sequence of lattice identities, each of which is either in T ∪ Γ or is derived from earlier
steps by the rules of equational logic. We write Γ �T � = � if there is a derivation of
� = � in the theory T.

Definition 5.1. Let T be an equational theory in the language L, Γ a set of equations of
L containing a variable x, and Γ[y/x] the result of substituting y for x in the equations
in Γ.

1. Γ implicitly defines the variable x if Γ ∪ Γ[y/x] �T x = y, where y does not occur
in Γ.

2. Γ explicitly defines the variable x if Γ �T x = � for some term � in L containing
only variables in Γ other than x.

3. The theory T has the Beth property if whenever T implicitly defines a variable x,
then it explicitly defines x.

As an example, the theory of Boolean algebras has the Beth property – this is
a formulation of Beth’s theorem [3]. On the other hand, the theory of distributive
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lattices does not, since relative complements in distributive lattices are implicitly but
not explicitly definable. We make use of this latter example below in discussing Freese’s
results [8] in the theory of modular lattices. The main result of this section is that Beth’s
property fails for any variety of algebras between the variety of De Morgan monoids
and the variety of Boolean monoids.

Fix the language L1 to be the language of De Morgan monoids, that is to say, the
equational language with the basic functions {+,∧,∨,¬} and constants {0,�,⊥}, and
L2 to be the sublanguage ofL1 containing only∧,+ and 0. A term inL2 is a lattice term;
a lattice identity has the form � = �, where � and � are lattice terms. A theory is a family
of equational identities closed under logical deduction and uniform substitution. We
use the abbreviationML for the theory of modular lattices with 0, and DMM for the
theory of De Morgan monoids.

We can use Lemma 5.1 to show that derivations in the theory of modular lattices
ML can be simulated exactly in the theory DMM of De Morgan monoids.

Definition 5.2. Define Δ to be a family of equations in the language L1 containing the
following:

1. x + x = x and 0 ∧ x = 0 for x a variable.
2. � ∧ � = ⊥ and � + � = �, for � a lattice term.

Lemma 5.2. Let Γ ∪ {� = �} be a family of lattice equations. Then

Γ �ML � = � ⇔ Γ ∪ Δ �DMM � = �.

Proof. (⇒): Assume that Γ �ML � = �, so that there is a derivation of � = � from
Γ in the theory of modular lattices. Starting from the assumptions x + x = x and
0 ∧ x = 0 for x a variable, we can prove in the theoryDMM that the lattice terms form
a lattice with least element 0. If the derivation involves the application of a modular
identity from the theory ML, then we employ Lemma 5.1 to derive the appropriate
identity from � ∧ � = ⊥ and � + � = � in Δ, for some lattice term �.

(⇐): Assume that Γ ��ML � = �. We shall show that there is a Boolean monoid M so
that M |= Γ ∪ Δ and M �|= � = �. By assumption, there is a modular lattice L with 0 so
that L |= Γ and L �|= � = �. Let A(L) = A(F(L)) be the Boolean monoid constructed
from L using Theorem 3.1 and Lemma 2.2. By Theorem 3.2, the lattice L is embedded
in the lattice L(A(L)). The identity a ∧ a = ⊥ holds in any Boolean monoid, and for
a ∈ L(A(L)), we have a + a = a by Lemma 2.1. Consequently, A(L) |= Γ ∪ Δ, and
A(L) �|= � = �.

5.3. Freese’s lattices. In §4, we made use of Freese’s result [8, theorem 3.3] that
epimorphisms in the category of modular lattice and lattice homomorphisms are not
necessarily surjective. Using the general framework of §5.2, we examine Freese’s proof
in more detail; it is based on Lemma 5.3.

In a lattice L, we denote by a/b a pair of elements a, b ∈ L, with a ≥ b; a/b is called
a quotient of L [11, p. 129]; the interval [b, a] is a quotient lattice of L. If a/b and c/d
are quotients of L, then we write a/b ↗ c/d if b = a ∧ d and c = a + d ; we say a/b
is perspective to c/d (in the up direction). For the definition of an n-frame, the reader
can consult von Neumann [17, p. 118] or Freese [8, pp. 278–279].

Lemma 5.3. Let M be a modular lattice, satisfying the conditions:

1. M contains 4-frames {ai , c1j} and {a′i , c′1j} of characteristic p and q respectively,
for distinct primes p and q.
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2. a1 + a2/a1a2 ↗ a′1 + a′2/a
′
1a

′
2.

3. a′1 = a1 + a′1a
′
2, a′2 = a2 + a′1a

′
2, and c′12 = c12 + a′1a

′
2.

Then a1/a1a2 is a distributive sublattice of M.

Proof. This lemma is Freese’s Corollary 3.2 [8, p. 297].

The next theorem is essentially equivalent to Theorem 4.1, but we provide a more
detailed account of the proof in terms of equational derivations.

Theorem 5.1. The Beth property fails in the variety of modular lattices.

Proof. In accordance with Definition 5.1, we show that there is a set of lattice
equations Γ containing a variable x so that Γ implicitly defines x, but does not explicitly
define x. We construct Γ using the lattices K and L already described in §4.

Freese begins the proof of his main result [8, sec. 2] by constructing a modular
lattice of finite length. Let F and G be countably infinite fields with char F = p and
char G = q for distinct primes p and q. Let Lp be the lattice of subspaces of the
F-vector space F 4, and similarly for Lq . Lp contains a 4-frame of characteristic p
and Lq a 4-frame of characteristic q. (The notion of characteristic for n-frames uses
Von Neumann’s definition of addition in an n-frame [17, p. 142], for n ≥ 4.) Freese
constructs a lattice M by using the Hall–Dilworth construction [12] to glue Lp to Lq ,
where the gluing takes place on two-dimensional quotient lattices determined by the
frames. The lattice M is Freese’s central tool in proving the main result of [8].

Define K as {(x, y) ∈M ×M : x ≤ y} and L as the sublattice ofM ×M generated
by K and (a1, 0), where 0 is a1a2 (not necessarily the zero element of M). The lattice
M is embedded into K, and hence into L by the diagonal embedding x �−→ (x, x).
It follows that L contains elements (a1, a1), (c1j , c1j), ... that satisfy the conditions of
Lemma 5.3, so that the quotient lattice (a1, a1)/(0, 0) in L is distributive.

Now define the set of equations Γ to consist of the following:

1. The equations stating that K satisfies the conditions of Lemma 5.3.
2. (0, a1) ∧ x = (0, 0) and (0, a1) + x = (a1, a1).

Since the quotient lattice (a1, a1)/(0, 0) is distributive, the value of x = (a1, 0) in L is
uniquely determined by Γ, that is to say, Γ implicitly defines x.

However, Γ does not define x explicitly. The element (a1, 0) is not in K, so that there
is no lattice term t containing only variables in Γ other than x so that Γ �ML x = t.

Theorem 5.2. The Beth property fails in all the varieties between the varieties of De
Morgan monoids and Boolean monoids.

Proof. Let V be a variety intermediate between the variety DMM of De Morgan
monoids and the variety BM of Boolean monoids, and T (V ) the theory of V (the set
of equations valid in V).

Let Γ be the set of lattice equations defined in Theorem 5.1. Then

Γ ∪ Γ[y/x] �ML x = y.

The lattice-theoretic computations forming the derivation can be found in Freese’s
proof [8, pp. 295–297] of his Theorem 3.1. Hence

Γ ∪ Γ[y/x] ∪ Δ �DMM x = y

by Lemma 5.2, so there is a finite subset Δ∗ of Δ so that Γ ∪ Δ∗ implicitly defines x.
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To show that Γ ∪ Δ∗ does not explicitly define x, we consider the Boolean monoids
A(K) = A(F(K)) and A(L) = A(F(L)) constructed from the modular lattices K and
L by Theorem 3.1 and Lemma 2.2. The principal ideal map x �−→ (x] is an embedding
of K and L in L(A(K)) and L(A(L)). The principal ideal ((a1, 0)], where (a1, 0) ∈ L,
is the unique solution to the equations

((0, a1)] ∧ x = ((0, 0)] and ((0, a1)] + x = ((a1, a1)].

However, by Theorem 4.2, ((a1.0)] �∈ A(K) so Γ does not explicitly define x.

§6. Logical consequences. The earlier sections have expounded the results in lattice-
theoretic and algebraic terms. However, it is easy to translate them into a logical form;
here, we adopt the terminology of Anderson and Belnap [1].

Definition 6.1. If � is a De Morgan term, then the translation T (�) into the language
of relevance logic is defined inductively as follows:

1. If xi is a variable, then T (xi) = pi .
2. T (� ∧ �) = T (�) & T (�).
3. T (� ∨ �) = T (�) ∨ T (�).
4. T (� + �) = T (�) ◦ T (�).
5. T (¬�) = T (�).
6. T (0) = t, T (�) = T and T (⊥) = F .

If F is a family of De Morgan monoids, then a formula A is valid in F if M |= 0 ≤
ϕ(A) for all interpretations in any algebra M belonging to F .

Lemma 6.1. For �, � De Morgan terms, and V a variety of De Morgan monoids,
T (�) ↔ T (�) is valid in V if and only if � = � holds in all algebras in V.

Proof. For M a De Morgan monoid, �, � De Morgan terms, and ϕ an interpretation
of � and � in M, M |= 0 ≤ ϕ[T (�) ↔ T (�)] if and only if ϕ(�) = ϕ(�). The Lemma
follows immediately from this equivalence.

Using Lemma 6.1, we can translate Definition 5.1 into logical terms (see [24] for a
detailed version).

Theorem 6.1. The Beth property fails for all logics between B and KR.

Proof. For logics L intermediate between B and R, the theorem follows from the
results of Blok and Hoogland [5]. For logics intermediate between R and KR, the
logical version of Theorem 5.2 demonstrates the failure of the Beth property.

The proof of Theorem 6.1 divides into two parts, of which the second is much more
complicated. Both parts ultimately rely on the fact that the Beth property fails in
the theory of distributive lattices, but the first exploits this property directly, whereas
the second part relies on the much more sophisticated result of Freese showing the
existence of large distributive intervals in certain modular lattices.

I would like to express my thanks to Jacob Garber for his fine solution to the problem
that I posed in [24] and [25], and to Roger Maddux for interesting and informative
correspondence on the proof of Garber’s theorem and its relation to the literature of
Boolean algebras with operators.
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