
J. Fluid Mech. (2025), vol. 1007, A31, doi:10.1017/jfm.2025.61

Influence of irregular three-dimensional rough
surfaces on the roughness function

Pietro Scandura

Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95123
Catania, Italy
Corresponding author: Pietro Scandura, pietro.scandura@unict.it

(Received 17 May 2024; revised 5 December 2024; accepted 7 January 2025)

The influence of irregular three-dimensional rough surfaces on the displacement of the
logarithmic velocity profile relative to that of a smooth wall in turbulent flow, known
as the roughness function, is studied using direct numerical simulations. Five different
surface power spectral density (PSD) shapes were considered, and for each, several rough
Gaussian surfaces were generated by varying the root mean square (krms) of the surface
heights. It is shown that the roughness function (�U+) depends on both the PSD and
krms . For a given krms , �U+ increases as the wavenumbers of the PSD expand to large
values, but at a rate that decreases with the magnitude of the wavenumbers. Although
�U+ generally does not scale with either krms or the effective slope E S when these
variables are considered singularly, for PSDs with low wavenumbers, �U+ tends to scale
with E S, whereas as wavenumbers increase, �U+ tends to scale with krms . An equivalent
Nikuradse sand roughness of about eight times krms is found, which is similar to that
observed in previous studies for a regular three-dimensional roughness. Finally, it is shown
that krms and the effective slope are sufficient to describe the roughness function in the
transitional rough regime.

Key words: turbulence simulation

1. Introduction
Flow near rigid boundaries is often affected by surface roughness and this has stimulated
numerous studies aimed at quantifying the effect of roughness geometry on flow. However,
these studies are still inconclusive as the multiple scales involved make it difficult to
identify the most important geometric roughness parameters. The influence of rough
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surfaces on the friction exerted by fluids is of interest in a wide variety of fields, including
turbomachinery, river flows, meteorological applications and many others. The reader is
referred to Jiménez (2004) and Chung et al. (2021) for thorough reviews of the subject.
The first systematic experimental study in this field was carried out by Nikuradse (1933),
who, in order to use an easily measurable roughness, glued sand of constant diameter to
the inside wall of smooth pipes, so that a single length (the grain diameter) was suitable
for describing the roughness size. Sand roughness size is now widely used as a measure
of surface roughness. For ordinary pipes, roughness has a complex shape that cannot be
described by a single length. Nevertheless, for these cases an equivalent sand roughness
height (ks) is used, which is defined as the diameter of the Nikuradse pipe sand grain
that produces the same friction factor as the pipe under consideration in the fully rough
turbulent regime. A weakness of this approach is that there is no guarantee that the
matching of friction factors in the fully rough regime also provides a good match in the
transitional rough regime.

The approach of Nikuradse (1933) to describe surface roughness belongs to the discrete
approach (Stewart et al. 2019), where surface roughness is described by a set of linear
scales, and although it has proven useful in several engineering applications, it is not
entirely satisfactory for a detailed description of the complexity of a rough surface, as
a large number of parameters should be considered, such as particle shape, orientation
and degree of exposure. However, this is the approach generally used to describe river bed
roughness. For example, van Rijn (1982) reported that the equivalent sand grain roughness
ks is related to D90 (90 % of the sample volume is made up of all particles with a diameter
smaller than D90), whereas Whiting & Dietrich (1990) assumed that ks is proportional
to D84.

Another way of describing surface roughness is based on the continuous approach,
where the roughness is considered as a random field of surface elevations (Nikora, Goring
& Biggs 1998; Stewart et al. 2019) described by the moments of the frequency distribution
and by the power spectral density (PSD). The choice between discrete and continuous
approaches mainly concerns rough surfaces formed by granular elements, as in the case of
river beds, whereas in industrial applications the continuous approach is usually the only
way to describe a rough surface. In line with the continuous approach, Flack & Schultz
(2010) analysed data from several surface roughnesses and reported that the equivalent
sand roughness is given by ks = 4.43krms(1 + sk)1.37, where krms and sk are the root
mean square and the skewness of the surface heights, respectively. Nikora et al. (1998)
reported that the heights of the surface roughness of a gravel bed are nearly Gaussian
with an isotropic second-order structure function D(�) proportional to �2H for sufficiently
small spatial separation �, where H is the Hurst exponent, which those authors determined
to be 0.79 for a water-worked gravel bed. This behaviour indicates that, at sufficiently
small spatial scales, the surface roughness has the properties of a self-affine fractal surface
(Turcotte 1997; Meakin 1998). Other examples of surface roughness showing self-affinity
are the surface of the planet Mars (Orosei et al. 2003) and fracture surfaces (Ponson et al.
2006).

The effect of roughness on the flow can be assessed by the downward shift �U+ it
produces in the logarithmic velocity profile with respect to the logarithmic law of turbulent
flow on a smooth wall, known as the roughness function, which is related to the friction
factor. Hereinafter, the superscript + denotes a quantity which is made dimensionless by
the friction velocity uτ or by the viscous length ν/uτ , where ν is the kinematic viscosity.
Over the past few decades, several studies have investigated the effect of roughness
on �U+. Napoli, Armenio & De Marchis (2008) considered irregular two-dimensional
roughness and showed that �U+ scales with the effective slope E S given by the spatial
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average of the absolute value of the streamwise surface slope. It can be shown that E S
is twice the solidity Λ (Schlichting 1936) defined as the ratio between the sum of the
area of all roughness elements projected in the plane perpendicular to the flow direction
and the horizontal area. Leonardi et al. (2003) used direct numerical simulation (DNS)
to study turbulent flow on two-dimensional square bars placed orthogonally to the flow
and found results from which it can be deduced that the maximum of �U+ is obtained for
Λ = 0.125. According to MacDonald et al. (2016), the value Λ = 0.15 separates the sparse
regime, where �U+ increases with Λ, from the dense regime, where �U+ decreases with
Λ. This value of Λ is not very different from 0.125, which maximises �U+ according to
the results of Leonardi et al. (2003). In a numerical study of flow in pipes characterised by
a three-dimensional sinusoidal corrugation, Chan et al. (2015) found that �U+ depends
on a combination of both the roughness height and the effective slope.

Forooghi et al. (2017) numerically studied the flow over a rough surface created by
distributing roughness elements over a flat surface and found that the flow resistance
depends on several parameters, including the skewness and the distribution of the
roughness elements, with the staggered distribution giving results closer to a random
distribution. The importance of the skewness of the roughness height has also been pointed
out by Busse, Thakkar & Sandham (2017) who studied the hydrodynamic properties of a
graphite surface and a grit-blasted surface and found that positive skewness provides the
greatest resistance to flow. Barros, Schultz & Flack (2018) tested surfaces characterised
by power spectral slope proportional to k p finding that the surface with the lowest slope
(p =−0.5) has the largest drag, although this case has the smallest krms . This was
attributed to the presence of low-wavelength features contributing to krms but not to the
drag. Forooghi et al. (2018) improved the parametric forcing model of Busse & Sandham
(2012) to be able to reproduce the effect of several rough surface characteristics, including
skewness. Stewart et al. (2019) studied experimentally the hydrodynamic properties
of a self-affine surface roughness characterised by three different PSDs with scaling
exponents −1, −5/3 and −3. They reported that the friction factor increases as the scaling
exponent increases. Guo-Zhen et al. (2020) studied the flow on a regular three-dimensional
sinusoidal wall and showed that �U+ scales with the product between the amplitude of the
roughness and E S. The case of irregular three-dimensional roughness was also considered
by Ma, Alamé & Mahesh (2021), who carried out DNS on the surface corresponding to
the experiments of Flack, Schultz & Barros (2020).

The importance of roughness distribution, in addition to roughness height, as a factor
affecting the roughness function has been highlighted by Thakkar, Busse & Sandham
(2017) in their DNS studies of flow on surface roughness. A method for determining
which roughness parameter has the greater influence on the roughness function was also
presented. Excellent agreement with the results of Nikuradse (1933) was obtained by
Thakkar, Busse & Sandham (2018) in a study of turbulent flow over an industrial grit-
blasted surface. Busse & Jelly (2020) studied the effect of surface anisotropy, defined as the
ratio between the streamwise and spanwise correlation lengths, and found that as this ratio
decreases, �U+ increases. De Marchis et al. (2020) considered three-dimensional rough
surfaces created by superimposing random amplitude sinusoids and determined the flow
characteristics using large-eddy simulation. The study showed that no single parameter of
the roughness geometry is sufficient to describe the roughness function, but the results
showed that �U+ can be adequately described by a suitable combination of E S and k+

rms .
Portela, Busse & Sandham (2021) used Fourier filtering to create different rough surfaces
from a baseline surface. They found that existing correlations mostly predict the roughness
function, but also emphasised that these correlations should include information about the
spectral distribution to improve accuracy. Recently, the influence of the effective spanwise
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slope on �U+ was analysed by Jelly et al. (2022), who reported that �U+ decreases with
the effective spanwise slope when all other geometric parameters are held constant. This
is probably related to the increasing two-dimensionality of the roughness as the spanwise
slope decreases, which creates more obstacles to the flow.

Yang et al. (2022) studied the flow in a minimal channel and reported that, for an
irregular roughness, sufficiently accurate predictions can be obtained if the channel size
is large enough to contain more than 90 % of the original roughness height spectral
energy. Recently, methods based on artificial neural networks are increasingly being used
to predict relevant hydrodynamic features of surface roughness, as in Yang et al. (2023a),
who constructed a model to predict equivalent sand roughness based on the probability
density function and power spectrum of the rough surface. Yang et al. (2023b) analysed
different rough-wall models and concluded that empirical correlations are effective when
calibrated and applied to the same type of roughness. Machine learning and physics-based
models were also analysed: the former improve as the amount of data increases; the latter
are more adaptable, but require all physical aspects to be identified. In a recent study, Busse
& Jelly (2023) analysed rough surfaces with very high skewness and observed a saturation
of roughness effects at the limits of very high skewness. Ramani et al. (2024) critically
examined the dependence of the friction factor on the effective slope and showed from
experimental measurements that scale roughness less than three times the viscous length
has a weak effect on drag, despite its large contribution to E S. The larger contribution to
drag comes from the slope due to large scale features.

Previous studies have shed much light on flows on rough surfaces, but the results are still
inconclusive, so there is still room for further knowledge in this area. In this context, the
present work aims to better understand how three-dimensional irregular roughness affects
the roughness function. The analysis is carried out by DNS and focuses on the effect of
the PSD and the root mean square of the surface roughness heights on the flow. In § 2 the
geometry of the surface roughness is defined and the numerical approach is described. In
§ 3 the results of the study are illustrated and in § 4 some conclusions are drawn.

2. The rough surface and the numerical approach
The turbulent flow in a channel with a rough bottom wall is analysed in this study. All
lengths that appear from here on have been made dimensionless using the depth h of the
channel, except where a plus symbol appears in superscript for variables expressed in wall
units. A Cartesian coordinate system (x, y, z) is introduced as a reference, with the x–z
plane located at the mid-level of the rough bottom wall and the x axis pointing in the
direction of the flow. The sizes of the fluid domain are denoted as Lx , L y = 1 and Lz
in the x , y and z directions, respectively. The bottom wall is characterised by periodic
displacements with respect to y = 0 with periods equal to Lx and Lz along the x and
z directions, respectively. Therefore, the surface heights η can be expressed in Fourier
series:

η(x, z) =
M∑

m=−M

N∑
n=−N

f (m, n) exp[i(mκx x + nκzz)], (2.1)

where m and n are integers, i is the imaginary unit, f (m, n) is a complex number, κx =
2π/Lx and κz = 2π/Lz . Assuming that the spatial average of η in the x and z directions
is zero, it follows that f (0, n) = f (m, 0) = 0 regardless of the values of m and n. The
spatial autocorrelation function of the surface roughness R(�x , �z), where �x and �z are
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Figure 1. Power spectral density of rough surfaces versus wavenumber magnitude (H = 0.8) for krms = 1.

the spatial separations along the x and z directions, respectively, is given by

R(�x , �z) = 1
Lx Lz

∫ Lx

0

∫ Lz

0
y(x, z)y(x + �x , z + �z) dx dz

=
M∑

m=−M

N∑
n=−N

| f (m, n)|2 exp[i(mkx�x + nkz�z)]. (2.2)

Using equation (2.2), the root mean square of the surface height η is given by krms =√
R(0, 0). The PSD, given by the Fourier transform of the spatial autocorrelation function,

can be written as follows:

PSD(mκx , nκz) = 1
4π2 Lx Lz| f (m, n)|2. (2.3)

It is assumed that the PSD depends on the magnitude of the wavenumber |κ | =√
(m2κ2

x + n2κ2
y ). This choice is made because several natural and artificial roughnesses

have a PSD that follows the power law |κ |(−2H−d) over a range of wavenumbers, typical
of a self-affine surface characterised by the Hurst exponent H (0 < H ≤ 1), where d is the
Euclidean dimension, which in this case is equal to 2 (Meakin 1998). Note that since the
PSD depends only on the magnitude of the wavenumber, all surface roughness quantities,
including the effective slope, are independent of spatial direction. Five different PSDs
were used to generate the surface roughness, the shape of which is shown in figure 1 for
krms = 1.

It is observed that at low wavenumbers the PSD is constant, as observed for different
types of roughness (Stewart et al. 2019). It then follows a power-law decay that ends with
an abrupt cut-off. The power density spectra are distinguished by the wavenumbers k1c
and κ2c whose modules are shown in table 1 along with the corresponding wavelengths
λ1c and λ2c, while the Hurst exponent H has been set to 0.8, which is close to the 0.79
reported by Nikora et al. (1998) for natural water-worked beds.

For each spectrum, several surfaces have been generated by varying krms , assuming that
the surface heights η follow a Gaussian distribution so that the skewness of the rough
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Case |k1c| |k2c| λ1c λ+1c λ2c λ+2c

A 4.18 16.75 1.50 751 0.375 187
B 8.37 20.94 0.75 375 0.30 150
C 12.56 52.36 0.50 250 0.12 60
D 20.94 52.36 0.30 150 0.12 60
E 29.32 73.30 0.21 107 0.09 43

Table 1. Characteristic wavenumbers and wavelengths of the PSD of the rough surfaces.
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Figure 2. Example of a rough surface belonging to case C for krms = 0.04.

surface approximately vanishes. As an example, figure 2 shows the surface roughness for
the case C (see table 1) with krms = 0.04.

The study was carried out by numerically solving the continuity and momentum
equations. Using the friction velocity uτ as the velocity scale and 
u2

τ as the pressure
scale, where 
 is the fluid density, these equations take the following dimensionless form:

∂u j

∂x j
= 0, (2.4)

∂ui

∂t
+ ∂ui u j

∂x j
= − ∂p

∂xi
+ 1

Rτ

∂2ui

∂x j∂x j
+ δ1,i , (2.5)

where ui (i = 1, 2, 3) are the velocity components (also referred to as u, v, w respectively),
p is the pressure, Rτ = uτ h/ν is the Reynolds number, the subscripts j = 1, 2 and 3 denote
the directions x , y and z, respectively, δ1,i is the Kronecker δ, and repeated subscripts
are used to denote a summation. The numerical approach is based on centred second-
order finite differences on a Cartesian staggered grid. The time advancement is based on
a third-order Runge–Kutta method for the convective terms and on the Crank–Nicolson
scheme for the viscous terms. Periodic boundary conditions are applied along the x and
z directions. On the bottom wall, the no-slip condition (u, v, w) = (0, 0, 0) is enforced,
while on the top wall the free shear stress condition (∂u/∂y, v, ∂w/∂y) = (0, 0, 0) is
enforced as in Yuan & Piomelli (2014b). The boundary condition on the bottom rough
surface is imposed by an immersed boundary method similar to that used by Leonardi
et al. (2003).
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In all simulations, the dimensionless lengths of the fluid domain Lx and Lz are set to 6
and 3, respectively, and the Reynolds number Rτ is set to 500. The size of the numerical
grid (nx , ny, nz) varied from (300, 220, 300) to (480, 400, 360) as shown more in detail
in tables 2–6 in Appendix A. The grid spacing in the x direction is smaller than or equal
to 10 wall units. Spatial resolution of about 10 wall units in the x direction has been
used by Guo-Zhen et al. (2020) who used a spacing of 11 wall units in the x direction.
A spacing of 8–10 wall units in the flow direction has been used with the present code
to study oscillatory flow on an irregular rough bed in Dunbar et al. (2023). In that study,
the DNS results were compared with experimental measurements using a laser Doppler
anemometer in a large oscillating flow tunnel, with good agreement even for the higher-
order statistics of the velocity fluctuations. The spatial resolution in the flow direction
is 6 wall units with 480 meshes in the x direction for the simulations of case E, which
has the highest wavenumbers, corresponding to 7 grid points at the shortest wavelength.
Regarding the grid convergence, for example, in case E, for krms = 0.075, increasing the
number of grid points in the x direction from 360 to 480, the variation of �U+ was less
than 0.1 over a �U+ of about 10.8, which is less than 1 %.

The grid spacing in the y direction is not constant, as a number of grid points are
clustered near the rough surface, where large gradients exist. More specifically, in the
layer between the lowest trough and the highest peak of the roughness, the grid spacing
�y+ was kept below 1.

3. Discussion of the results
The roughness function was determined by fitting the logarithmic law of the wall,
expressed by the (3.1), to the spatial and temporal average of the streamwise velocity data:

u+ = 1
k

log(y+ − d+) + C − �U+. (3.1)

In (3.1), k = 0.4 is the von Kármán constant, C = 5 is a constant and d+ is a shift away
from the plane y+ = 0 to maximise the quality of the logarithmic fit. The values of d+ and
�U+ were estimated by the least squares method in the interval 40 � (y+ − d+)� 150. To
check the sensitivity of �U+ to the interval used, increasing the lower bound to 50 resulted
in a difference of less than 0.1. A similar range was considered by Forooghi et al. (2017)
who used y+ = 30 as the lower bound and y/h = 0.3 as the upper bound. In Appendix A,
tables 2–6 show the parameters of the rough surfaces and the numerical values of �U+.

Figure 3(a) shows some semi-logarithmic plots of the velocity profiles for case E, from
which it is evident that the velocity decreases as krms increases.

As shown in tables 2–6, some of the rough surfaces are characterised by a relatively
large Sy5×5 (Thakkar et al. 2017), which may hinder the similarity of velocity profiles
normally observed outside the region directly affected by the roughness. Figure 3(b) shows
the velocity defect profiles for case E, which is that characterised by the largest roughness
heights. It can be seen that the velocity defect profiles approximately follow the trend of the
smooth-wall case with some larger deviations for krms = 0.085. To explain why, despite
the large Sy5×5, there is still a similarity between the velocity profiles of the smooth-
and rough-wall cases, a new measure of roughness height, called H5 %5×5, is introduced.
This height is based on the difference between the position yu , above which the roughness
covers less than 5 % of the total surface x–z, and yl , below which the fluid covers less
than 5 % of the total surface. Height H5 %5×5 is determined as Sy5×5, i.e. the surface is
divided into 5 × 5 tiles and for each of these yu and yl are determined. Finally, H5 %5×5 is
calculated as the arithmetic mean of yu − yl of all the tiles. It can be observed that Sy5×5 is
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Figure 3. (a) Semi-logarithmic plot of the velocity profiles for case E. (b) Velocity defect profiles for case E.
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Figure 4. (a) Roughness function versus k+
rms . Here SF 2009a and SF 2009b refer to the data of Schultz & Flack

(2009) for α = 45◦ and α = 22◦, respectively. The dashed curve is described by the equation (1/k) log(k+
rms) +

1.76. (b) roughness function versus E S. Here SF 2009c1,c2,c3 refer to the highest-Reynolds-number cases of
Schultz & Flack (2009) for α = 11◦.

obtained as the special case when the percentage is set to zero. The reason for introducing
this measure of roughness height is that for the roughness to break the similarity of the
velocity profiles, it is not enough for its height to be large; the roughness must also cover a
sufficiently large proportion of the total area. The value of 5 % of the total area is chosen
as the value below which it seems reasonable that the roughness will not have a significant
effect on the velocity defect profiles. In tables 2–6 it can be seen that H5 %5×5 is about
half of Sy5×5, which can explain why the similarity of the velocity profiles is maintained.
As a further check on the effect of roughness height, the mean velocity profiles were also
computed using the intrinsic spatial average (average over the fluid domain only) and for
case E10 the difference in �U+ with respect to the spatial average was only about 0.3 %.

In figure 4(a), where �U+ is plotted against krms for cases A–E, it can be seen that
�U+ scales with krms only within each case, highlighting that the roughness function
is influenced by additional surface properties depending on the PSD. As we move from
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case A to case E, for a fixed krms , �U+ increases first rapidly and then slowly, so
there is not much difference between cases D and E, which are characterised by the
largest wavenumbers. For comparison, figure 4(a) also shows data from Schultz & Flack
(2009), who performed experiments with a rough wall made of square-based pyramids,
considering three different cases of the angle of inclination α of the pyramid diagonal:
45◦, 22◦ and 11◦. Figure 4(a) shows only the data for α equal to 45◦ and 22◦ as a function
of k+

rms , determined as k+
rms = k+

t /
√

18, where k+
t is the height of the pyramid. When

comparing the two datasets, it should be noted that in the present study E S changes as
k+

rms increases, whereas in Schultz & Flack (2009) E S is held constant and is equal to 1
for α = 45◦ and 0.40 for α = 22◦. We note that despite the large difference in α between
SF 2009a and SF 2009b, these experimental data show no clear difference between them.
On the other hand, the present results show a gap in �U+ between the different power
spectra, albeit small in some cases. Nevertheless, the present results show a trend that is in
line with that of Schultz & Flack (2009), especially for cases D and E, and the relatively
small differences can be explained by the different values of E S, as described below. For
case E, in the interval k+

rms = 2.5−10, the effective slope ranges from 0 to 0.4, i.e. it is
smaller than that of Schultz & Flack (2009) (0.4–1), so that the present �U+ is generally
smaller than that of the aforementioned study. In the range k+

rms = 10−25, the present
values of E S vary approximately between 0.4 and 1, then the effective slopes are similar
and we find that the two �U+ are also similar. Finally, for k+

rms > 25 the present effective
slope is larger than that of Schultz & Flack (2009), and hence the present �U+ are larger
than those of the aforementioned study. This comparison shows that the present results are
generally consistent with those of Schultz & Flack (2009), even from a quantitative point
of view.

As shown in figure 4(b), even when �U+ is plotted against the effective slope E S, the
data collapse on the same curve only within each case. This result contrasts with that of
Napoli et al. (2008), also shown in figure 4(b), who obtained data collapse on the same
curve regardless of the roughness amplitude.

Figure 4(a) shows that cases A and B are quite far apart, whereas in figure 4(b) they
are very close to each other and together they are also close to most of the data from
Napoli et al. (2008). Therefore, based on cases A and B, one could conclude that �U+
scales with E S. This shows that a possible explanation for �U+ scaling with E S in
Napoli et al. (2008) could be the use of surface roughness with a power density spectrum
characterised by small wavenumbers, as in cases A and B. If only surface roughness with
power density spectra characterised by very high wavenumbers is considered, as in cases
D and E, different conclusions can be drawn. In fact, as figure 4(a) shows, the data from
cases D and E appear very close to each other when plotted against k+

rms , so one could
claim that in general �U+ scales with k+

rms , which is clearly not true when looking at the
overall picture of the results.

Since the data from Schultz & Flack (2009) shown in figure 4(a) scale with k+
rms , it

is expected the rough surface is also characterised by large wavenumbers. Taking the
wavenumber relative to the diagonal of the pyramid used as the roughness element as
the reference wavenumber and scaling it by the thickness of the boundary layer, the
wavenumbers range from 64 to 294 for α = 45◦ and α = 22◦ and from 31 to 53 for
α = 11◦. Again, this result shows that scaling with roughness height is associated with high
wavenumbers. Indeed, the case with α = 11◦ did not scale with either krms or E S. The term
’waviness’ regime was introduced by the authors for this case to indicate flows on surfaces
with long wavelengths where �U+ does not scale with roughness height. However, the
effect of the wavenumber is also clearly visible within the data with α = 11◦. In fact, the
case α = 11◦ consists of three subsets of data, each characterised by an approximately
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constant wavenumber, and it can be seen that within each of these subsets, �U+ scales
with k+

rms . Among these three cases, that characterised by the largest wavenumber has the
largest �U+ for a given roughness size (see figure 11 of Schultz & Flack (2009)). The
values of �U+ obtained for the largest Reynolds numbers from these three subsets are
shown in figure 4(b) and it can be seen that they are close to the present results obtained
for the surface characterised by low wavenumbers.

In general, the rate of increase of �U+ with k+
rms tends to decrease as this quantity

increases (note that E S also increases with k+
rms). This is because the increase in k+

rms
causes an increase in Sy5×5 resulting in deep depressions where the flow has recirculation
zones enclosed between ridges with little interaction with the external flow. In these cases,
only the upper part of the roughness makes a significant contribution to drag, and a
further increase in krms will not result in a significant increase in �U+. This behaviour
is related to the asymptotic tendency of �U+ towards the logarithm of k+

rms , typical of
flows approaching the fully rough regime. In the case of the Nikuradse sand roughness,
reaching the fully rough regime is indicated by the roughness function varying according
to the equation

�U+ = 1
k

log
(
k+

s

) + a, (3.2)

with a = −3.5. If krms is used instead of ks , the roughness function in the fully rough
regime still obeys an equation similar to (3.2) where k+

s is replaced by k+
rms and a takes a

different value from that given above.
In figure 4(a) it can be seen that as k+

rms increases, the curves tend to converge, and it
appears that overall they tend to converge towards the curve of (3.2) with a = 1.76 and
k+

s replaced by k+
rms (see the dashed line in figure 4(a)). Since for a fixed value of k+

rms
each curve is characterised by a different value of E S, and yet the curves become closer
and closer together, it follows that E S does not affect the behaviour of the curves for large
k+

rms . This is because as k+
rms increases, so does E S, and at some point �U+ saturates

with respect to E S, after which �U+ starts to scale only with k+
rms . This is consistent

with the statement of Schultz & Flack (2009) that if the roughness slope is steep enough,
the roughness function will scale completely to the roughness height.

To provide a further proof of the independence of �U+ on E S, we focus on case E to
prove by a test that �U+ scales with k+

rms for large values of this variable. To perform
this test, the rough surface of case E8 (krms = 0.065) was used to perform an additional
simulation with Rτ = 654 which gives k+

rms = 42.5. This new simulation has the same
k+

rms as that of case E10 at Rτ = 500 (krms = 0.085, k+
rms = 42.5) but E S of case E8.

By comparing the result of this simulation with that of case E10 it can be verified if
�U+ scales only with k+

rms or if there is also an influence of E S. The result of this
additional simulation shows that for krms = 0.065 and Rτ = 654 the roughness function
takes a value of 11.16, while for krms = 0.085 and Rτ = 500 a value of 11.14 was obtained.
The difference in �U+ is about 0.2 % and is very small considering that it results from a
difference in E S of 30 %. This shows that �U+ scales with k+

rms . This result is only valid
for case E; for the other cases shown in table 1, a test like the previous one would have
shown a dependence of �U+ on E S especially for cases A and B.

Many studies have shown that for a fixed value of roughness height, �U+ increases
for E S less than a certain value, reaches a maximum and then decreases as E S is further
increased. This decrease in �U+ occurs because for large E S the roughness enters the
dense regime, where the roughness elements shelter each other from the flow. This may
lead to the conclusion that the previously shown independence of �U+ from E S in
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the interval krms = 0.065−0.085 is merely a consequence of �U+ being close to its
maximum, so that if krms is increased further, the dependence on E S could emerge and
cause the deviation of �U+ from the fully rough asymptote. In this regard, note that as
krms increases, the wavenumbers of the rough surface remain unchanged, as the shape of
the power density spectrum is constant for each of the cases shown in table 1. Therefore,
the roughness does not become more densely packed and no decrease in �U+ with E S is
observed. An example where an increase in E S led to a decrease in �U+ can be found in
MacDonald et al. (2016), where the roughness height was kept constant and the increase
in E S was obtained by decreasing the roughness wavelength. Those authors showed that
�U+ peaks at about E S = 2Λ ≈ 0.3 (see also figure 5a in Chung et al. (2021)) and then
decreases with E S. Further support for the hypothesis of independence of �U+ from E S
comes from previous studies which, in the case of irregular rough surfaces, have shown
a monotonic increase of �U+ with E S for a fixed roughness height, with a tendency
to reach a plateau at large E S (Yuan & Piomelli 2014a; Kuwata & Nagura 2020). This
behaviour is also observed in the present case, as can be seen in the figure 6, which is
discussed in the following. This result, combined with the constancy of the shape of the
PSD, gives confidence that as krms increases, �U+ is unaffected by E S for large effective
slopes. Despite the above evidence for the independence of �U+ from E S, it is possible
to further verify it for krms larger than considered here by performing simulations for
higher krms and larger Reynolds numbers. However, this is left to future studies on this
topic.

Having shown that for large values of E S the roughness function scales with k+
rms ,

it is possible to determine the equivalent sand roughness which, based on the previous
discussion, is appropriate for large effective slopes such that �U+ saturates when
expressed as a function of E S. The equivalent Nikuradse sand roughness can be calculated
as k+

s = ξk+
rms , where ξ = exp[k(a + 3.5)] and a is the constant in equation (3.2) with

k+
s replaced by k+

rms as the independent variable. In figure 4(a), the constant a of case
E is about 1.76, so using the previous equation we get ξ ≈ 8.2. This value is very
different from the ξ = 4.43 reported by Flack & Schultz (2010). Schultz & Flack (2009),
using their experimental data shown in the present figure 4(a), obtained ks equal to 1.5
times the height of the pyramid. This relationship, expressed in terms of krms , becomes
k+

s = 6.36k+
rms which is still somewhat far from the current result. However, it should be

noted that other studies have also found ξ to be approximately equal to 8. Based on a study
of turbulent flow on a regular three-dimensional rough surface described by the product
of two cosine waves of the type η = A cos(2πx/Lw) cos(2π z/Lw) with wavelength Lw,
Guo-Zhen et al. (2020) reported that in the fully rough regime k+

s = 3.7A+. Since krms
of this surface is equal to 0.5A, we can write k+

s = 7.4k+
rms , which is not too far from

the present result. Chan et al. (2015) carried out a study of flow in a pipe made rough
by sinusoidal undulations such as those described above and reported k+

s = 4.1A+. This
equation, when written in terms of k+

rms , reads as k+
s = 8.2k+

rms , therefore consistent with
the present result. The finding that for substantially different roughnesses, regular or
irregular, the relationship between krms and ks in the fully rough regime is expressed by a
very similar relationship suggests that krms is an appropriate and fairly general measure of
surface roughness.

An equation for the roughness function can also be provided for the transitional rough
regime, but parameters in addition to krms are required. The surface roughness considered
in this study is characterised by three parameters, krms , |κ1c| and |κ2c|, but as shown below,
a good description of �U+ can be obtained with only two parameters by replacing |κ1c|
and |κ2c| with E S. In fact, over a wide range of krms and E S, the roughness function can
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Figure 5. Numerical values of �U+ versus (k+
rms , E S) and comparison with (3.3). For the legend, refer to

figure 4.

be approximately described by the equation

�U+ = 1
k

log(k+
rms) + 1.76 − 3.21 exp(−3.51E S)

−0.42k+
rms exp[−0.54k+

rms E S]. (3.3)

Equation (3.3) has four terms. The first term plus the second gives �U+ in the fully
rough regime when E S is large enough to cause the saturation of the roughness function.
The third term provides a correction to the previous asymptote when E S does not take
large values. Finally, the fourth term is introduced to reproduce the roughness function in
the transitional rough regime. This term is therefore a measure of the deviation of the flow
conditions from the fully rough regime. It should be noted that the region of very small
E S and large k+

rms was not explored in this study, so equation (3.3) is not reliable for these
types of rough walls. The goodness of the fit of this equation to the numerical data can be
seen in figure 5 and is evidenced by a coefficient of determination R2 = 0.99. Given the
good quality of the fit of (3.3) to the present data, it is worth presenting some plots of �U+
as a function of k+

rms where E S is constant, and of �U+ as a function of E S where k+
rms

is constant, shown in figure 6. To be more reliable, these graphs have been drawn through
the areas covered by numerical data. In figure 6(a) we observe that the larger E S the closer
the curve is to the fully rough asymptote of case E and the earlier the fully rough regime
is reached by increasing k+

rms . In figure 6(b) we see that for a fixed value of k+
rms , as the

effective slope increases, �U+ also increases, but it reaches a plateau at about E S = 0.75,
a result that can also be seen in figure 5.

This picture differs from many studies which report that for a fixed roughness height
�U+ reaches a maximum at E S ≈ 0.3 and then decreases with E S. However, the present
results are consistent with those of other studies (Yuan & Piomelli 2014a; Kuwata &
Nagura 2020) on flows over an irregular rough surface. Therefore, this behaviour can
be considered as a characteristic specific to irregular rough surfaces. A critical value of
E S for irregular rough surfaces, above which �U+ decreases with E S, has not been
identified. One of the difficulties in identifying it lies in the considerable computational
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Figure 6. (a) Examples of the trend of �U+ with respect to k+
rms for E S fixed. (b) Examples of the trend of

�U+ with respect to E S for k+
rms fixed. The markers show the numerical data, and the lines are described

by (3.3).

effort involved in solving the governing equations on a rough surface characterised by
increasingly large wavenumbers.

Empirical equations describing �U+ have also been proposed by Chan et al. (2015),
De Marchis et al. (2020) and Guo-Zhen et al. (2020), among others. These equations can
be written in the following general form:

�U+ = α log(k+
rms) + β log(E S) + γ. (3.4)

In De Marchis et al. (2020) α = β = 1/k, while in Guo-Zhen et al. (2020) α = β =
2.66. In the latter case, the condition that in the fully rough regime �U+ varies as
(1/k) log(k+

rms) + const. is not perfectly satisfied. Fitting equation (3.4) to the present
data with α = β = 1/k gave an R2 of 0.87, which is significantly lower than that obtained
with equation (3.3). In this case, the relatively poor quality of the fit is mainly due to the
presence of only γ as a fitting coefficient. Chan et al. (2015) imposed only α = 1/k in
(3.4), and fitting the equation to their data gave β = 1.12 and γ = 0.96. Note that Chan
et al. (2015) used the spatial average of the absolute value of the surface heights as a
measure of the magnitude of the surface roughness, so the coefficient γ has been corrected
to account for the fact that equation (3.4) is written in terms of k+

rms . Using the coefficients
α = 1/k, β = 1.1 and γ = 0.96, which are very close to those of Chan et al. (2015), the
goodness of fit of equation (3.4) to the present data is measured by an R2 equal to 0.95.
This indirectly shows that the present data are consistent with those of Chan et al. (2015),
since they are described by two similar empirical equations. It should be noted, however,
that (3.4) is formally valid only in the fully rough regime; indeed for a fixed value of E S,
�U+ varies as (1/k) log(k+

rms) + const. On the other hand, (3.3) contains a term capable
of describing �U+ in the transitional rough regime, where the roughness function does
not follow the logarithmic law.

4. Conclusions
In this study, numerical simulations of turbulent flow were used to analyse the effect of
irregular surface roughness on the roughness function. Several Gaussian rough surfaces
were generated using five different forms of the PSD and varying the root mean square of
the surface heights (krms) for each.

The results show that in general neither krms nor E S, considered singularly, are
sufficient to describe the roughness function. However, for PSD with low wavenumbers,
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�U+ tends to scale with E S, while as wavenumbers increase, �U+ tends to scale with
k+

rms , and this occurs even for small values of E S, for which it is commonly reported in the
literature not to scale with roughness height. This result is consistent with that of Schultz
& Flack (2009), who found that for short-wavelength three-dimensional roughness, the
roughness function scales almost entirely with the roughness height, whereas for long
wavelengths no clear behaviour was found, as the trend of �U+ depends on the specific
value of the wavenumber.

In general, for a fixed value of k+
rms , �U+ increases as the PSD expands to large

wavenumbers but at a rate that decreases as the magnitude of the wavenumbers increases.
Consistent with the above result, the trend of �U+, plotted as a function of E S for a
constant k+

rms , shows a monotonic increase with a tendency to asymptote at a constant
value. This behaviour differs from that reported in numerous previous studies, which
indicated that �U+ is maximised for certain values of E S. In the light of other studies
(Yuan & Piomelli 2014a; Kuwata & Nagura 2020), which gave results comparable to the
present ones, it seems reasonable to conclude that this discrepancy is due to the irregularity
of the roughness.

For a fixed shape of the PSD, as k+
rms increases, the curves describing �U+ saturate with

respect to E S and eventually tend to asymptote the equation �U+ = (1/k) log(k+
rms) +

const., allowing the equivalent sand roughness to be determined as k+
s ≈ 8.2k+

rms for case
E. An empirical relationship has been derived for �U+ in the transitional rough regime
which includes both k+

rms and E S as independent variables.
Future developments of this study could include analysing flows at higher Reynolds

numbers to gain a deeper understanding of the processes involved in achieving the full
roughness regime, analysing the effect of non-Gaussian surface roughness, determining
the equivalent sand roughness for moderate values of E S that do not induce saturation of
the roughness function and analysing non-isotropic surfaces to see the effect of different
values of E S in the streamwise and spanwise directions.

Funding. This research has been supported by the European Union NextGenerationEU through the funding
of the PRIN 2022 PNRR project ‘SMART – Sea wave energy converters and marine tidal turbines’.

Declaration of interests. The author reports no conflict of interest.

Appendix A
This appendix contains tables with data on the rough surfaces and the results of the
numerical simulations for cases A, B, C, D and E considered in this study.

Case krms E S Sy5×5 H5 %5×5 nx ny nz �x+ �y+
min �y+

max �z+ �U+

A1 0.005 0.018 0.018 0.013 300 220 300 10 0.57 4.76 5 0.15
A2 0.010 0.036 0.037 0.027 300 220 300 10 0.86 4.35 5 0.45
A3 0.020 0.072 0.074 0.053 300 250 300 10 0.84 4.5 5 1.90
A4 0.030 0.107 0.110 0.080 300 300 300 10 0.98 3.23 5 3.55
A5 0.040 0.143 0.149 0.107 300 300 300 10 0.98 3.94 5 5.20
A6 0.055 0.197 0.20 0.147 300 300 300 10 1 5.21 5 7.14
A7 0.065 0.233 0.240 0.174 300 320 300 10 1 5.05 5 8.20
A8 0.075 0.269 0.280 0.200 300 360 300 10 1 5.55 5 9.12
A9 0.085 0.305 0.320 0.227 300 400 300 10 0.97 4.62 5 9.98

Table 2. Rough surface parameters, set-up of the numerical simulations and �U+ values for case A.
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Case krms E S Sy5×5 H5 %5×5 nx ny nz �x+ �y+
min �y+

max �z+ �U+

B1 0.005 0.028 0.022 0.015 300 220 300 10 0.45 5.48 5 0.23
B2 0.010 0.056 0.043 0.031 300 250 300 10 0.57 4.78 5 1.10
B3 0.020 0.114 0.088 0.062 300 250 300 10 0.8 4.90 5 3.30
B4 0.030 0.167 0.130 0.093 300 300 300 10 1 3.78 5 5.60
B5 0.040 0.223 0.175 0.120 300 300 300 10 1 3.7 5 7.20
B6 0.050 0.281 0.220 0.150 300 300 300 10 1 4.63 5 8.34
B7 0.065 0.363 0.280 0.200 300 320 300 10 1 5.6 5 9.60
B8 0.075 0.423 0.330 0.230 300 360 300 10 1 4.3 5 10.24
B9 0.085 0.479 0.370 0.260 300 400 300 10 1 3.79 5 10.73

Table 3. Rough surface parameters, set-up of the numerical simulations and �U+ values for case B.

Case krms E S Sy5×5 H5 %5×5 nx ny nz �x+ �y+
min �y+

max �z+ �U+

C1 0.005 0.051 0.026 0.016 360 220 300 8.33 0.68 4.5 5 0.29
C2 0.0075 0.077 0.039 0.024 360 220 300 8.33 0.81 4.44 5 0.97
C3 0.010 0.103 0.051 0.032 360 220 300 8.33 0.9 4.54 5 1.83
C4 0.015 0.155 0.077 0.048 360 250 300 8.33 0.81 4.58 5 3.41
C5 0.020 0.206 0.103 0.064 360 250 300 8.33 0.85 4.77 5 4.86
C6 0.025 0.258 0.129 0.080 360 300 300 8.33 0.81 3.96 5 6.14
C7 0.030 0.309 0.154 0.097 360 300 300 8.33 0.97 3.91 5 7.00
C8 0.040 0.412 0.210 0.128 360 300 300 8.33 1 4.35 5 8.38
C9 0.048 0.495 0.247 0.155 360 300 300 8.33 1 4.59 5 9.04
C10 0.055 0.567 0.280 0.177 360 300 300 8.33 1 5.11 5 9.55
C11 0.065 0.670 0.330 0.209 360 320 360 8.33 1 5.26 4.17 10.08
C12 0.075 0.773 0.390 0.240 360 360 360 8.33 1 5.94 4.17 10.54
C13 0.085 0.876 0.440 0.270 360 400 360 8.33 1 4.04 4.17 10.91

Table 4. Rough surface parameters, set-up of the numerical simulations and �U+ values for case C.

Case krms E S Sy5×5 H5 %5×5 nx ny nz �x+ �y+
min �y+

max �z+ �U+

D1 0.005 0.067 0.028 0.016 360 220 300 8.33 0.55 2.33 5 0.8
D2 0.010 0.134 0.057 0.032 360 220 300 8.33 0.59 5.40 5 2.63
D3 0.020 0.278 0.114 0.065 360 250 300 8.33 0.53 6 5 5.50
D4 0.030 0.403 0.170 0.097 360 300 300 8.33 0.97 3.90 5 7.40
D5 0.040 0.558 0.227 0.130 360 360 300 8.33 0.8 3.68 5 8.66
D6 0.048 0.669 0.273 0.155 360 360 300 8.33 1 2.75 5 9.30
D7 0.055 0.767 0.313 0.178 360 360 300 8.33 0.96 3.63 5 9.70
D8 0.065 0.906 0.370 0.210 360 360 360 8.33 1 3.67 4.17 10.20
D9 0.075 1.030 0.426 0.240 360 360 360 8.33 1 5.94 4.17 10.62
D10 0.085 1.154 0.480 0.275 360 400 360 8.33 1 5.13 4.17 10.97

Table 5. Rough surface parameters, set-up of the numerical simulations and �U+ values for case D.
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Case krms E S Sy5×5 H5 %5×5 nx ny nz �x+ �y+
min �y+

max �z+ �U+

E1 0.005 0.096 0.031 0.016 480 220 300 6.25 0.51 5.07 5 0.94
E2 0.010 0.192 0.062 0.037 480 220 300 6.25 0.65 5.34 5 2.90
E3 0.015 0.288 0.093 0.049 480 250 300 6.25 0.75 4.0 5 4.80
E4 0.020 0.384 0.120 0.065 480 250 300 6.25 0.8 5.29 5 6.15
E5 0.030 0.576 0.185 0.098 480 300 300 6.25 0.77 4.66 5 7.79
E6 0.040 0.768 0.250 0.130 480 360 360 6.25 0.77 3.76 4.17 8.90
E7 0.055 1.055 0.340 0.180 480 360 360 6.25 1 4.5 4.17 9.91
E8 0.065 1.247 0.400 0.210 480 360 360 6.25 0.90 4.9 4.17 10.40
E9 0.075 1.439 0.460 0.240 480 360 360 6.25 1 5.72 4.17 10.82
E10 0.085 1.631 0.520 0.270 480 400 360 6.25 1 4.96 4.17 11.14

Table 6. Rough surface parameters, set-up of the numerical simulations and �U+ values for case E.
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