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Abstract

Assurance cases offer a structured way to present arguments and evidence for certification of
systems where safety and security are critical. However, creating and evaluating these assurance
cases can be complex and challenging, even for systems of moderate complexity. Therefore, there
is a growing need to develop new automation methods for these tasks. While most existing
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assurance case tools focus on automating structural aspects, they lack the ability to fully assess
the semantic coherence and correctness of the assurance arguments.

In prior work, we introduced the Assurance 2.0 framework that prioritizes the reasoning
process, evidence utilization, and explicit delineation of counter-claims (defeaters) and counter-
evidence. In this paper, we present our approach to enhancing Assurance 2.0 with semantic
rule-based analysis capabilities using common-sense reasoning and answer set programming
solvers, specifically s(CASP). By employing these analysis techniques, we examine the unique
semantic aspects of assurance cases, such as logical consistency, adequacy, indefeasibility, etc.
The application of these analyses provides both system developers and evaluators with increased
confidence about the assurance case.

KEYWORDS: automated assurance reasoning, semantic analysis, answer set programming

1 Introduction

Certification of systems in regulated industries, such as aerospace, nuclear, and health-

care, necessitates authorities to determine whether a system assuredly complies with

domain standards such as security and safety, by evaluating the evidence of system

assurance provided. However, as system complexity increases, the evidence presented

using traditional, highly prescriptive, and process-driven approaches (such as DO-178C

in aerospace) often becomes overwhelming and largely unstructured, which makes their

compilation and review time-consuming and cumbersome. Hence, there has been a grow-

ing interest in recent years in developing Assurance Cases , as an alternative means to

present evidence and establish confidence in system compliance.

The assurance case approach advocates for hierarchically structuring persuasive argu-

ments, backed by a well-organized body of evidence, to effectively substantiate the

top-level claim about the system, such as its compliance with standards. Many method-

ologies emphasize creating and presenting the assurance case using graphical formats.

This systematic and visually engaging approach is increasingly recognized as a preferred

choice for both organizations seeking certification and certifying agencies (Holloway and

Graydon (2018)). While assurance cases address challenges associated with systematically

presenting large bodies of evidence, the descriptions used within their arguments and evi-

dence are predominately natural language statements. Thus, interpreting the meaning

of those statements to assess the arguments’ coherence and evidence’s relevance remains

an intellectually demanding, manual task for assurance case authors and evaluators.

Consequently, there is a significant drive towards researching and developing strategies

to automate the creation and evaluation of assurance cases, aiming to reduce human effort

and enhance confidence in the cases. While most current assurance tools and methodolo-

gies primarily concentrate on verifying the structural soundness of assurance cases, there

is not adequate support to reason about the semantics or the meaning conveyed by the

natural language statements used within the case.

To that end, DARPA’s research program, Automated Rapid Certification of Software,

was intended to explore and address the challenges associated with the generation and

evaluation of assurance cases. As part of this initiative, we have developed a compre-

hensive approach and tool suite named Consistent Logical Automated Reasoning for
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Integrated System Software Assurance (CLARISSA), which is founded on our assur-

ance methodology called Assurance 2.0 (described in Bloomfield and Rushby (2020)).

While the complete details of CLARISSA are elaborated in Varadarajan et al. (2024a);

Murugesan et al. (2023); and Bloomfield and Rushby (2024), we provide only brief and

informal introductions here.

In this paper, we present a subset within our CLARISSA approach that automates the

analysis of the semantic aspects of Assurance 2.0, by leveraging the power of common-

sense reasoning and answer set programming (ASP) Brewka et al. (2011); Gelfond and

Kahl (2014) solvers, namely s(CASP) Arias et al. (2018). s(CASP) is a novel goal-

oriented, non-monotonic reasoner capable of efficiently handling logical reasoning (see

Section 3.2) tasks essential for semantic analysis, which is central to our research. The

goal-directed execution of s(CASP) automates commonsense reasoning based on gen-

eral rules and exceptions (through default negation). That is, it enables inferences to be

drawn from a set of logical rules that formalize the assurance case. Additionally, s(CASP)

performs deductive and abductive reasoning , which is essential for proving whether a top-

level claim can be deduced based on the arguments, evidence, and/or assumptions in

assurance cases, and make it possible to define invariants (as global constraints) that

allows the analysis of scenarios that violate these invariants.

In a nutshell, we leverage the general pattern of each assurance statement – that intu-

itively is nothing but assertions of properties of objects in a certain environment – to

perform semantic analysis. We first capture crucial lexical components – namely objects,

properties, and environment – within the assurance case statement using minimal formal-

ized semantics. Subsequently, we automatically translate the formalized elements of the

entire assurance case into corresponding logical rules under ASP semantics. Using various

semantic properties of interest expressed as rules and queries, we use s(CASP) to provide

the proof that these properties (represented as predicates) hold in the assurance case.

To the best of our knowledge, this methodology is not only the first attempt to tackle

the automated semantic analysis of system assurance cases, it also establishes a new

paradigm for explainable, knowledge-assisted assurance reasoning. This is thanks to the

top-down solving strategy utilized by s(CASP), which produces concise and human-

understandable justifications (Arias et al. (2020)). These justifications are essential to

precisely identify the reasons for the success (positive queries) or failure (negative queries)

of the assurance so that we can resolve the issues raised. Furthermore, s(CASP) supports

various forms of negation, each with unique applications in assurance reasoning. As we

mentioned before, we use default negation to derive detailed justifications for why a given

claim cannot be proven, while classical or strong negation can be used to impose specific

restrictions (see the book by Gelfond and Kahl (2014) for details).

We have evaluated our approach on multiple industrial-strength case studies, partic-

ularly in the fields of Avionics and Nuclear Reactors (refer Varadarajan et al. (2024a)).

In this paper, we use one of the case studies, the ArduCopter system, an open-source

platform (see Section 4), to illustrate the approach and highlight the contributions:

• Methodically identify and capture the vocabulary within each assurance case state-

ment that contributes to the lexical significance of the assurance case. The main

steps of this methodology are outlined in Section 5.
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• Systematically translate the assurance case into an answer set program that is

amenable for execution by the s(CASP) engine. To facilitate this, we have enhanced

the Assurance and Safety Case Environment (ASCE) tool with a plugin that cap-

tures the vocabulary and automatically transforms the use case into logical notation.

The new plugin is described in Section 5.1, and the transformation mapping is

explained in Section 5.2.

• Identify and formalize properties that are unique and essential for assessing the

semantic rigor of assurance cases. These properties are elaborated in Section 5.3.

• Leverage the capabilities of s(CASP) tool to analyze semantic properties within the

assurance case, as described in Section 5.4. In particular, our use of Negation as

Failure involves deriving negative conclusions from the absence of positive informa-

tion, to automatically identify defeaters. Additionally, s(CASP) possesses the ability

to perform non-monotonic reasoning that allows revision of conclusions in light of

new information. This feature is particularly valuable for incrementally assessing

and improving the strength of assurance cases during the authoring process.

2 Motivation

Consider the scenario, used in Holloway (2015), where an assurance case is constructed

with the intent to convince Jon’s father that Tim (a college student known to the family)

is a safe driver to take Jon (a teenager not yet of driving age) to a football game in

Tim’s car. The assurance case, as shown in Figure 1 (uses Assurance 2.0 format i.e.,

elaborated in the next section), has a top-level claim “Tim is a safe driver” (top-most

blue ellipse), that is supported by several fine-grained sub-claims (lower level blue ellipses)

and corroborating evidence (purple rectangles at the leaf level) that establishes Tim’s

capability to drive safely. Jon’s father must evaluate the assurance case and determine if

he is convinced. If not, he must explain.

Evaluating assurance cases is a complex process that involves several critical steps.

It requires analyzing the semantics or meanings of the assurance statements to verify

that sub-claims are articulated accurately and consistently, that they collectively sup-

port the overarching claim, and that the provided evidence is relevant and sufficiently

substantiates the claims. Any semantic discrepancies or gaps discovered during the evalu-

ation undermine confidence in the overall claim. For example, if testimonials (E17 in the

Figure) indicate Tim’s good driving but also mention a minor road incident not formally

recorded by the DMV, it contradicts the sub-claim (C13 ellipse in the Figure) asserting

Tim has not been involved in any accidents. Similarly, if Tim’s driver’s license was issued

in a state different from where the football game took place, this discrepancy indicates

that the context or environment in which the evidence is presented does not adequately

support the top-level claim. Furthermore, the absence of claims and evidence concerning

the condition of Tim’s car in the assurance case, which is crucial for fully convincing

Jon’s dad, further diminishes confidence. As exemplified using a few semantic gaps, the

evaluation process involves interpreting the meaning of statements both individually and

in conjunction with other statements from various perspectives.

Currently, no tools or techniques are available to support evaluators of assurance cases,

such as Jon’s dad, necessitating manual and labor-intensive evaluation processes that are
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Fig. 1. Safe driver - a motivating example.

prone to errors. The development of automation to aid in the semantic analysis of assur-

ance cases–by identifying gaps such as inconsistencies among statements, inadequacies

in claims, the validity of evidence, and deficiencies in the assurance strategy–would be

highly advantageous. Evaluating the semantic aspects of assurance cases for even moder-

ately complex real-world systems is both time-consuming and intellectually demanding.

Automated semantic analysis tools would significantly alleviate the cognitive load on

evaluators and could also assist authors in enhancing the reliability of their assurance

cases. The remainder of this paper outlines our approach to providing automated support

for the semantic analysis of assurance cases developed based on Assurance 2.0 principles.

3 Background

In this section, we present a brief introduction to: (i) Assurance 2.0, the frame-

work/methodology used to create assurance cases of engineering systems, and (ii)

s(CASP), the reasoning engine upon which the semantic analysis of our proposal relies.

3.1 The Assurance 2.0 framework

The Assurance 2.0, defined by Bloomfield and Rushby (2020), is a modern framework

that supports reasoning and communication about the behavior and trustworthiness of

https://doi.org/10.1017/S1471068424000425 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000425


A. Murugesan et al.810

engineered systems and their certification. It provides a framework that separates out the

deductive and inductive reasoning combined with the use of a practical indefeasibility

criterion for justified belief. This frames the notion of defeaters, both undercutting and

rebutting , and motivates construction of arguments that are predominately deductive, an

approach known as “Natural Language Deductivism.” Details on defeaters and elimina-

tive argumentation are provided by Bloomfield et al. (2024). We also advocate the use of

Confirmation Measures to evaluate the strength of evidence and arguments. We reduce

confirmation bias through active search for defeaters and a methodology for doing so by

means of counter-claims and counter-cases. We argue in Bloomfield and Rushby (2024)

that confidence cannot be reduced to a single attribute or measurement. Instead, we

draw on three different perspectives: positive, negative, and residual doubts. Our work

also provides details of the approach to logical evaluation and soundness.

This framework adopts a Claims-Arguments-Evidence approach with an increased

focus on the evidence, doubts/objections, and reasoning and overall semantics of a case.

The building blocks of a typical Assurance 2.0 case are claims (and sub-claims) that

assert the properties of objects, such as ‘The train is safe’ evidences which are artifacts

establishing trustworthy facts directly related to a claim; arguments that serve as bridg-

ing rules connecting what is known or assumed (sub-claims, evidence) to the claim under

investigation; side claims which offer additional justification or assumptions to support

the argument; defeaters that capture doubts and objections that challenge the validity of

claims, arguments, or evidence; and Theories defined as reusable templates that can be

instantiated in concrete assurance cases as sub-cases. Assurance 2.0 cases are authored

using the ASCE tool developed by Adelard LLP (2024). Figure 2 in Section 4 shows an

exemplar of an assurance case authored in ASCE tool using Assurance 2.0 principles.

3.2 s(CASP), a non-monotonic reasoner

To conduct the semantic analysis, we leverage the advances in the field of logic pro-

gramming. In particular, we use ASP, a paradigm rooted in logic programming (see

paper by Brewka et al. (2011) for details), which integrates reasoning methods that auto-

mates commonsense reasoning capturing and managing incomplete information, cyclical

reasoning, and constraints.

Among the different ASP solvers, we chose s(CASP), a goal-directed ASP system

that executes answer-set programs in a top-down manner. The goal-directed execution

of s(CASP) is particularly well-suited for reasoning about assurance cases, because it

generates partial stable models including only the relevant information needed to sup-

port (or decline) a given claim. Assurance cases are commonly structured in a way that

makes sense to human interpretation. Deductive and abductive reasoning , supported by

s(CASP), is essential for proving whether a top-level claim of an assurance case can be

deduced based on the arguments, evidence, and assumptions. Both forms of negation are

supported by s(CASP), and they have diverse applications in assurance reasoning. For

instance, we use default negation to derive detailed justifications for why a given claim

cannot be proven. Additionally, we are exploring the use of abducibles , which involves even

loops over negation and makes it possible to derive negative conclusions from the absence
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Fig. 2. Arducopter case fragment in assurance 2.0.

of positive information, and automatically identify defeaters. s(CASP) supports reason-

ing about global constraints and classical negation, so it is able to analyze scenarios

that violate these constraints. Furthermore, the top-down solving strategy employed by

s(CASP) generates concise, human-understandable justifications (see work by Arias et al.

(2020) for details). These justifications play a crucial role in precisely identifying the rea-

sons for assurance failure and resolving concerns. Lastly, s(CASP) possesses the ability

to perform non-monotonic reasoning , allowing for the revision of conclusions in light of

new information (due to the presence of negation). This feature is particularly valuable

for incrementally assessing and improving the strength of assurance cases during the

authoring process.

4 Illustrative Case Study: The ArduCopter System

To demonstrate the concepts of our approach and tools, we will utilize the open-source

ArduCopter system as a case study in the remainder of this paper. This system was pre-

viously utilized to assess the CLARISSA methodology. Additional evaluations conducted

on industrial-strength case studies from the avionics and nuclear sectors are detailed in

Varadarajan et al. (2024a).

The ArduCopter, derived from the open-source ArduPilot autopilot platform

(Ardupilot 2024), is an unmanned aerial vehicle designed to oversee a diverse range

of avionic vehicles, enabling them to perform various autonomous tasks. Our focus with

ArduCopter is to construct an assurance case using the Assurance 2.0 methodology,
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Fig. 3. Semantic analysis approach.

establishing justified confidence in its ability to conduct autonomous surveillance mis-

sions while adhering to safety and security standards. The complexity of the available

details, including the concept of operations, system architecture, and other development

and verification artifacts for the ArduCopter system, was sufficient to construct a real-

istically sized assurance case with an appropriate level of complexity. This allowed us to

explore the associated challenges and assess the effectiveness of our approach. We will use

excerpts from our evaluation of this system to illustrate the principles of our approach.

Figure 2 depicts a snippet of the ArduCopter assurance case constructed using the

ASCE tool. The overall structure of the assurance case aims to demonstrate that the

ArduCopter exhibits the three fundamental overarching properties–intent, correctness,

and innocuity –that are indispensable for ensuring the safety and security of the sys-

tem. The top-level claim of ArduCopter (the uppermost blue ellipse) is broken down

into detailed sub-claims (blue ellipses) through the use of arguments (green rounded

rectangles), which are substantiated by evidence (purple rectangles) at the leaf level.

The rationale behind these refinements is documented in side-claims (yellow ellipses).

Moreover, any doubts, concerns, or counter-claims regarding any aspect of the case are

captured as defeaters (red ellipses), described by Bloomfield et al. (2024). Several theories

(blue ellipses adorned with a “T” symbol) were employed in formulating the ArduCopter

assurance case, such as the theory of static analysis (ID C107) and its application in a

sub-claim (ID C102). The complete details of this case are available in Varadarajan et al.

(2024a).

5 Semantic Analysis Approach

To a large extent, assurance cases heavily rely on unstructured, free-form natural lan-

guage despite their structured graphical representation, which is not naturally conducive

to automation. On the contrary, complete formal notations allow for automated anal-

ysis, but they present challenges in authoring and reviewing without a steep learning

curve and also have expressibility limitations. Seeking a middle ground, we defined our

approach that facilitates semantic analysis by capturing essential lexical components of

assurance statements in an intuitive and “minimally” formal manner.

Our approach to semantic analysis, shown in Figure 3, has the following steps:

https://doi.org/10.1017/S1471068424000425 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000425


Theory and practice of logic programming 813

Fig. 4. Objects-properties-environments Formalism and LLM support.

1. Formalism of Assurance Statements: The crucial language components used

to articulate statements within Assurance 2.0 cases are categorically grounded and

formally captured within the ASCE tool interface.

2. Transformation into ASP: The formalized language along with the assurance

case structure is automatically transformed and exported into equivalent logical

predicates in ASP.

3. Modeling Semantic Properties: Various properties that ensure semantic rigor

of Assurance 2.0 cases are modeled as rules.

4. Semantic Reasoning using s(CASP): The predicate form of the assurance

case is systemically analyzed for the various properties using s(CASP) engine and

results are reported in a user-friendly manner.

While Figure 3 is aimed to provide a comprehensive high-level overview of our approach,

in the following subsections we elaborate on each step and offer details of the text

presented in smaller font within the figure.

5.1 Formalism of assurance statements

Assurance cases consist of blocks or “nodes” that delineate the properties or relation-

ships relevant to objects within a specific environment. The “Properties,” “Objects,” and

“Environment” for each node are identified and defined, enabling us to formally articu-

late statements like “Object O satisfies property P in environment E.” For instance, the

assertion “ArduCopter Software is fit for purpose in its Intended Environment” can be

broken down into (i) “Object = ArduCopter Software,” (ii) “Property = fit for purpose,”

and (iii) “Environment = Intended Environment (arducopterEnv).”

Currently, the ASCE assurance case authoring tool allows users to explicitly record

objects, properties, and environments as formal semantics, along with their relationships

as depicted in Figure 4. Besides offering a field for natural language descriptions, which

aids in the manual inspection of the assurance case, it also allows manual entry of these

formal semantics by users. These Objects, Properties, and Environments will be crucial

for the next step of transforming the assurance case into a logic program. Because it can

be tedious and time consuming to enter these semantics for every node, we have enhanced

the ASCE tool with open-source LLMs to parse the natural language description and
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Table 1. Concept mapping between assurance 2.0 and first order logic

Assurance 2.0
Concept Mapping into first order logic

Top-level Claim In the assurance case, the top-level claim aligns with the concept of
queries, which can be subjected to logical entailment analysis.

Sub Claims and
Side Claims

Sub-claims and side claims are analogous to predicates serving the
purpose of capturing the relationships between objects.

Argument Arguments that establish relationships among sets of
objects-properties-environment can be equated to rules where
logical implications are utilized to describe these relationships.

Evidence Evidence artifacts that establish the truth about the system are
facts.

Defeater Defeaters are counter-claims to provide support for not believing
that claim, which is the same as negated goals in formal logic.

Binding Theory definitions require the specification of variables for objects
and the environment, that will be instantiated with terms when
applied to a specific assurance case. This process aligns with the
concept of substitution, which involves dynamically mapping
variables to terms.

Reasoning Assurance case reasoning involves demonstrating that a top-level
claim is entailed based on its arguments and evidence, akin to
proofs in logic, where the validity or truth of a claim is established
through logical reasoning.

automatically extract these semantics. Although the current LLM support is limited, we

are investigating methods to improve their use.

5.2 Transformation into ASP

Based on the formalism captured for each node of the assurance case, we have augmented

the ASCE tool with a plugin to automatically transform the entire assurance case into

equivalent logical predicates in ASP. The choice to transform into ASP is based on the

fact that each concept in Assurance 2.0 and the intended analysis can be readily mapped

to corresponding concepts in first order logic. The mapping between these concepts is

illustrated in Table 1.

Table 2 shows the rule to transform each node type to predicate form. The term

ClaimPredicate refers to a ASP predicate represented as the claim([O],[P],[E]),

where [O], [P], and [E] represent comma-separated lists of “Objects,” “Properties,”

and “Environments” associated with each assurance node. As we formalize the proper-

ties, the relationships specified between lists of objects and properties are preserved.

This preservation ensures precision in the analysis. ASCE tool allows 3 different
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Table 2. Assurance 2.0 node mapping into answer set programming

Node Translation into ASP

Claim

...

...

Evidence

Side Claim

...

Defeater

...

types of relationship specification, in addition to the ‘Off’ to indicate no relation-

ship. Consequently, the PropertyList is derived from the ClaimPredicate based on

the generic object-property relationship definition, as described in Figure 5. If the

Relationship property is Off, which is its default value, the PropertyList is empty

and the ClaimPredicate is asserted as an ASP fact, without expanding the prop-

erty list. For example, if properties such as consistent and verifiable are specified for

both high and low-level requirements specification artifacts, the property list is for-

mulated as consistent(high-level-requirements, low-level-requirements) and

verifiable(high-level-requirements, low-level-requirements). On the other

hand, if the properties such as traceable to design and traceable to test cases are

asserted for specific objects of high and low-level specification artifacts, respectively,

the property list will expand to traceable-to-design(high-level-specification)

and traceable-to-test-cases(low-level-specification). Hence, depending on the

specified relationship between the properties and objects, the ClaimPredicate is
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Fig. 5. Object-property relationships.

Fig. 6. Snippet of export of arducopter assurance case into ASP.

expanded in ASP syntax and used for the analysis. Furthermore, to maintain the struc-

ture of the case during export and ensure traceability, certain metadata (such as node

identifiers, descriptions, etc.) is also included within the exported predicates. Figure 6

shows an example of the exported predicates of Arducopter assurance case.

When the ASCE tool exports the assurance case as ASP predicates, they are categor-

ically saved in separate files: (i) the top-level claim is saved as a query, (ii) the negation

of the top-level claim is saved as a negative query, (iii) the body of the assurance case

are saved together as rules and facts, (iv) theory definitions are saved separately, and

(v) defeaters are saved as integrity constraints that counter the claims. In the following

section, we elaborate on various properties of interest and their analyses.

5.3 Modeling semantic properties

Semantic properties are rules about the contextual meaning of the concepts used in

the statements within assurance cases such as consistency among claims, correctness of

arguments, adequacy of evidence, etc. Although these properties are inherent in the minds

of most authors and evaluators of assurance cases, to the best of our knowledge, they

have not yet been systematically defined, let alone automatically checked. We outline

some of the categories of properties that we have identified as crucial for evaluating the

semantic rigor of assurance cases below.

1. Indefeasibly Justified : This property implies (a) the top-level claim is sufficiently

supported by well-founded arguments and evidence, ensuring justification and (b)

there are no unresolved defeaters that could potentially alter the decision regarding

the top-level claim called indefeasibility . This semantic property is fundamental

to an assurance case and in simple terms, it means the top-level claim can be

indisputably deduced given the arguments and evidence.

2. Theory Application Correctness : Theories in Assurance 2.0 are reusable assurance

fragments that can be independently specified, and ‘pre-certified’ that could be
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applied to concrete assurance cases as sub-cases. However, when using theories,

it is critical to ensure that they are instantiated appropriately and that all the

necessary properties and evidences obligated by the theory are provided in the

concrete case. This property guarantees the correct use of the theories.

3. Property-Object-Environment Consistency : Claims, arguments, and evidence assert

properties of objects in specific environments. In extensive, hierarchically defined

assurance cases, it is crucial to ensure no conflicts or contradictions exist among

these assertions. While some conflicting terms are universally recognized, such as

‘X is safe’ and ‘X is hazardous,’ others, like ‘X has no vulnerabilities’ and ‘X

has residual security risks,’ are domain-specific. We call these sets of inconsis-

tent combinations of properties, objects, and environments as consistency rules for

assurance.

4. Adequacy : Assessing the sufficiency of sub-claims and evidence supporting the

stated claims is a crucial aspect scrutinized in assurance cases. For example, for

the Arducopter case we defined rules that required properties of evidence such as:

requirements testcas coverage achieved,

requirementsbased testcases passed and

structuralcoverage of requirementsbased tests achieved

to be present to meet the claim with property:

do178C requirements test conformance achieved

Similarly, meets intent, is correct, and innocuous properties were required for

the top-level claim with the overarching property. Any violation of these rules

shows inadequacy in the assurance case. Though these adequacy rules require a

deeper understanding of the domain and context, unlike consistency rules, once

defined, these adequacy rules will enable easy, rigorous, and recurrent validation

of subsequent versions of large and complex assurance cases.

5. Completeness: Completeness of assurance cases refers to the state of encompassing

all the necessary elements in the domain of objects, properties, and environments

for the system in consideration. While adequacy property is defined to find the

presence of desired properties of a certain object, completeness concerns the pres-

ence of the same property for all the objects of a certain type. For instance, in the

Arducopter case example, we defined rules that required the process of assessment

to be completed (process complete) for all types of assessments performed on

the Arducopter system.

6. Harmonious Coexistence of Theories : As outlined in Section 3, Assurance 2.0 per-

mits the incorporation of theories into an assurance case. However, employing

multiple theories concurrently poses a risk of conflicts and contradictions stem-

ming from disparities in their definitions or application methods, despite each

theory being flawless on its own. Since these conflicts are mainly semantic, defin-

ing incompatible combinations as rules allows automatically checking for their

presence.

The properties listed above represent only a fraction of potential assurance case prop-

erties. We view this effort as an initial step in identifying essential property categories
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Fig. 7. Semantic analysis option in ASCE Interface.

for evaluating assurance case rigor. In the following section, we formally define these

properties and discuss their automated analysis.

5.4 Semantic reasoning using s(CASP)

In this section, we outline how we use s(CASP) to automatically analyze these properties

using the exported ASP program of the assurance case. The ASCE tool is enhanced with

semantic analysis capabilities, allowing users to invoke s(CASP) and perform semantic

analysis through the ASCE interface, as illustrated in Figure 7.

In essence, the s(CASP) system rigorously analyzes whether a specific query can be

deduced in the provided ASP program. A successful execution yields the display of a

“model,” offering a detailed explanation as to why the query is entailed. Conversely, if the

query cannot be deduced, executing the negation of that same query enables retrieving

an explanation for the cause of the failure. Our objective is to harness this capability

of s(CASP) to analyze the exported program of the assurance case for various semantic

rules. Furthermore, for enhanced usability, we utilized the --html flag option of s(CASP)

that displays the justification tree via an interactive HTML page, allowing the display

of analysis results and models in a web browser. To address scalability concerns with the

s(CASP) system, we enhanced the s(CASP) system l by implementing a more efficient

and robust search, adding a debugger, and incorporating several builtins.

In the remainder of the section, we delve into the details of analyzing each of the previ-

ously outlined properties using s(CASP), illustrated with examples from the Arducopter

system. Although the specific properties and results are particular to this case example,

the general methodology is widely applicable to a broad range of assurance cases.
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Fig. 8. Positive and negative query exported from top-level claim node.

Fig. 9. Example of s(CASP) output of failed positive query and successful negative query.

5.4.1 Indefeasibly justified

As mentioned earlier, this property concerns indisputable entailment of top-level claim.

Formally, we represent this property as a query that includes the top-level claim. We have

enhanced the ASCE tool to automatically and separately export the top-level claim in

ASP as both positive and negative queries in addition to exporting the entire assurance

case along with defeaters. The snippet of the exported query of ArduCopter assurance

case’s top-level claim is shown in Figure 8.

When the positive query is successfully executed in s(CASP) and an explanation is

provided, it signifies that the assurance case indeed possesses this property. Conversely,

if the negative query is successfully executed, s(CASP) returns the unresolved defeaters

as violations, as illustrated in Figure 9. While the specifics of the model and justification

depend on the system being analyzed, Figure 9 primarily shows how the results of positive

and negative queries will be displayed.

5.4.2 Theory application correctness

As previously explained, a theory is a reusable assurance case fragment applicable to

concrete system assurance cases. To ensure reusability, objects and environments in the-

ory nodes are defined as variables (uppercase), while properties are atoms (lowercase).

Applying a theory in the concrete case requires the properties in that node and its

sub-nodes to match the respective theory node’s property. Additionally, the objects and

environment of those nodes must be atoms defined as instances of the respective variables

in the theory node. When authoring the assurance case, the types of objects and envi-

ronments, along with their system-specific instantiations, should be predefined by the
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Fig. 10. Consistency rules and s(CASP) analysis output.

author. Using the ASCE interface, the author selects the desired theory and the correct

instantiations (from the predefined list of type-instances) for each of the theory.

To automate the verification of correct theory application, we rely on s(CASP) to

assess : (a) the direct match between properties outlined in the theory and those in the

corresponding application nodes, and (b) the validity of all objects and environments as

instantiations of the types specified in the theory nodes. For the analysis, we execute

using the scasp command along with the exported program of the assurance case, the

theory definition, and the same queries used to check the indefeasibly justified property.

The analysis results are reported similarly to indefeasibly justified property analysis.

5.4.3 Property-object-environment consistency

We formally expressed consistency rules as global integrity constraints expressed

in ASP notation. These constraints are specified in the form of conjunctions of

properties(Objects, Environment) or properties(Objects), where properties are

atoms, whereas Objects and environment are defined as variables. This approach allows

us to detect any consistency issues present in any instance of object or environment. The

snippet displayed on the right side of Figure 10 illustrates the consistency rules devised

for examining the ArduCopter case.

To verify the adherence to these rules, we execute the scasp command alongside the

exported program of the assurance case, the consistency rules, and the query, which

is ‘?- true’. Essentially, this query prompts the s(CASP) engine to determine whether

the assurance case contains instantiations (objects) for the inconsistent set of properties

defined by the rules. s(CASP) notifies us of any violations it discovers, as demonstrated

on the left side of Figure 10 for the Arducopter case.

5.4.4 Adequacy

The adequacy property is also specified as rules structured as conjunctions of

properties(Objects, Environment) or properties(Objects), similar to consistency

rules. While consistency rules are global integrity constraints, adequacy rules are designed

to verify the concurrent presence of properties for the same instance of an object.

Therefore, the query posed to s(CASP) is whether all the properties in the conjunction

are present in the assurance case. We execute the scasp command using the exported

program of the assurance case, the adequacy rules, and this query. Essentially, this query
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Fig. 11. Adequacy rules and s(CASP) analysis output.

prompts the s(CASP) engine to verify whether the assurance case contains instantiations

(objects) with all the properties.

For instance, consider one of the adequacy rules defined for ArduCopter, which checks

if the three overarching properties, namely meets intent, is correct, and innocuous,

are satisfied, as shown in Figure 11. When analyzed using the exported program of the

Arducopter case, the s(CASP) engine searches through the case to identify instantia-

tions that fulfill this rule. If this condition is not met, as illustrated on the right side

of Figure 11 for explanatory purposes, by negating the query to s(CASP), we get a

justification tree, detailing the reason for the ‘inadequacy’, such as the absence of the

is innocuous property for the arducopter software object.

5.4.5 Completeness

Completeness properties concern the domain of the objects, properties and environment

within the entirety of the assurance case. Since Assurance 2.0 case creation requires

authors to define a global set of objects, properties, and environments for the system

under consideration, we utilize this predefined set for specifying and analyzing com-

pleteness properties. These completeness property specifications are similar to adequacy.

However, instead of verifying if completeness is met, we negate the property and query

s(CASP) to determine the reason why the assurance case does not meet the completeness

property. This query prompts s(CASP) to search for an instantiation of an object that

does not satisfy completeness. This level of detail allows the assurance evaluator to assess

if all instantiations of a certain type have certain common properties.

In the Arducopter case, we established a completeness property assessment(X) and

not process complete(X). When the negation of this rule was executed in s(CASP),

along with the assurance case and the definition of the domain types and their instanti-

ations, the result was a justification explaining the reason for the failure. As illustrated

in the Figure 12, the lack of the process complete property in the assurance case for
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Fig. 12. Completeness rules and s(CASP) analysis outputs.

the security assessment instance of type assessment was identified as the cause of

failure.

5.4.6 Harmonious coexistence of theories

Inharmonious theory definitions of rules resemble consistency rule def-

initions. For example, in the Arducopter case, we defined a rule for

inharmonious DAL theories, to identify if theories pertaining different DAL

levels coexist, such as achieves DAL C DO178c requirement testing(X) and

achieves DAL A DO178c code coverage(X). These are also defined as global integrity

constraints, and their analysis is conducted in the same manner as consistency rules.

Essentially, this query prompts the s(CASP) engine to determine whether the assurance

case contains references to theories that are defined as inharmonious, as defined by

the rules. s(CASP) notifies us of any violations it discovers, similar to the way the

inconsistencies were reported (as shown earlier in Figure 10).

In sum, the realm of semantic analysis offers a wide range of possible analyses. As

part of our ongoing work, we are exploring valuable and powerful properties to analyze.

Automating these analyses provides valuable insights and relieves humans from repetitive

tasks, leading to improved decision-making regarding assurance cases.

6 Conclusion

The Assurance 2.0 framework aims to advance the science behind assurance cases and

enhance confidence in their development and assessment across various certification

regimes. This paper introduces our method of enriching the Assurance 2.0 framework

with semantic analysis capabilities by harnessing the reasoning abilities of s(CASP). Our

approach innovatively involves systematically translating Assurance 2.0 cases into ASP

notation and formally defining key properties essential for the robustness of assurance

cases, thereby enabling semantic analysis via s(CASP). To our knowledge, this methodol-

ogy represents the first effort to automate the semantic analysis of system assurance cases,

establishing a novel paradigm for explainable, knowledge-assisted reasoning. Evaluations
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conducted on industrial-strength case studies in safety-critical domains such as avionics

and nuclear reactors have yielded positive feedback from assurance authors and eval-

uators. As part of future work, we intend to explore the use of LLMs for semantic

property specification and analysis, as well as enhance the tool’s capability to analyze

large assurance cases assembled using several complex theories. While this paper focuses

on the semantic analysis of assurance cases within our CLARISSA approach, interested

readers are referred to Varadarajan et al. (2024a) and Varadarajan et al. (2024b) for a

comprehensive overview of our work.
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