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THE SEMICENTRE OF A GROUP ALGEBRA

by PAUL WAUTERS
(Received 12th February 1997)

We study the semicentre of a group algebra K[G] where K is a field of characteristic zero and G is a
polycyclic-by-finite group such that A(G) is torsion-free abelian. Several properties about the structure of this
ring are proved, in particular as to when is the semicentre a UFD. Examples are constructed when this is
not the case. We also prove necessary and sufficient conditions for every normal element of K[{G] which
belongs to K[A(G)] to be the product of a unit and a semi-invariant.

1991 Mathematics subject classification: 16834, 16U70, 16P40.

Introduction

Let K be a field of characteristic zero and G a polycyclic-by-finite group such that
K[G] is a prime Noetherian ring. This type of group algebra is often compared with a
universal enveloping algebra U(L) of a finite dimensional Lie algebra L over a field of
characteristic zero. A number of basic properties are similar, but we show that there
are also some striking differences between the semicentre of both types of rings. To be
a little more concrete, in both cases the semicentre is a commutative domain graded
by an abelian monoid. In the case of U(L) it is well-known and obvious that this
monoid is torsion-free abelian while for K[G] we prove this is a finite group. We show
that this difference in the grading monoid implies that the semicentre of the classical
ring of quotients of K[G] behaves quite differently from the case of U(L) (cf. [7]). The
main difference is perhaps the property of being a UFD: the semicentre of U(L) is
always a UFD (cf. [9, 13]) and we observe when it is a UFD in case of a group algebra.
This is an immediate consequence of a result of M. Lorenz on rings of multiplicative
invariants [10]. In computing the semicentre of K[G)] in a number of examples we show
e.g., that the property of being a UFD of the semicentre does not depend only on G
but also on the field K.

Throughout this paper K is a field of characteristic zero, K* denotes K\{0} and K
is the algebraic closure of K. The group of elements of a group G which have only
finitely many conjugates is denoted by A(G) or shortly by A. Then K[G] is a prime ring
if and only if A(G) is torsion-free abelian, by Connell’s Theorem (see e.g., [19,
4.2.10]). Unless explicitly mentioned, all groups are polycyclic-by-finite such that A(G)
is torsion-free abelian.
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1. Definitions and basic properties

In [22] M. Smith makes a distinction between semi-invariant ring and semicentre.
To improve readability, we combine the definitions as mentioned in {22, p. 1283 and
p- 1290].

Definition 1.1. Let R be a K-algebra and G a subgroup of units of R. Then G acts
on R by inner automorphisms. If r € R and g € G, denote grg™' by r’.

(1) Let 0 #r e R and 1 € Hom(G, K*). Then « is said to be a semi-invariant with
weight 1 if for each g € G r? = A(g)r.

(2) If A € Hom(G, K*) we denote the set of semi-invariants with weight 1 together
with 0 by R,. If R, #0, 4 is a weight. The set of all weights is denoted by A(G, K) (or
shortly by A(G)).

(3) The semicentre of R, denoted by SzR, is defined as

SzR= ) R,

LeA(G)

Of course, if R = K[G] is a group algebra, G acts on K[G] by inner automorphisms
and the foregoing definition makes sense.

Proposition 1.2. (1) SzK([G] = @,c(KIG)), is a subring of K[A(G));
(2) SzK[G] is a commutative domain;
(3) A(G) is an abelian cancellative monoid and SzK[G] is a A(G)-graded ring;

(4) A semi-invariant is a normal element.

Proof. (1) As mentioned in [22], a standard linear algebra argument shows that
2 1ea(KIG)), is in fact a direct sum @, (K[G]);. If « is a semi-invariant with weight
A, then gag™ = A(g)x for all g € G, hence supp o C A(G). Therefore SzK[G] c K[A(G)).

(2) and (3) follow directly from (1) because K[A}] is a commutative domain.

(4) If a is a semi-invariant with weight A, then for all g € G ga = a(A(g)g) and
ag = (AMg)"'9)a. So K[Gla = aK[G}, i.e., a is a normal element. O

Lemma 1.3. If A € A(G), then A(G') = (C4(A)) = 1.
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Proof. (1) If g, h € G, then i([g, h]) = Aghg™'h™") = A(g)A(W)A(g)'A(h)™' = 1.

(2) Let « be a semi-invariant with weight 1. If g € C5(A), i.e., gh = hg for all h € A,
then o = gag™ = « since @ € K[A]. On the other hand ¢ = A(g)a. Thus i(g) = 1. O

Lemma 1.4. (1) G/Cs(A) is a finite group;

(2) C;(A) = Cy(x) for some x € A.

Proof. (1) Clearly C4;(A) is a normal subgroup of G. On the other hand, A is a
subgroup of G, thus finitely generated, say by x,,...,x,. Then C;(A) = ﬂ:;l Ca(x).

Since x; € A, (G:Cg4(x))) is finite and hence (G: Cg(A)) is finite by e.g., [19,
Lemma 4.1.3].

(2) This is proved in [16, Lemma 2]. O
We now construct all semi-invariants having a certain weight 1. This is partially based
on [15, Lemma 3]. First note that if « = )" a,g € (K[G]); and x € supp « with (finite)
conjugacy class C,, then obviously a,) =" . 4,9 is a semi-invariant having weight 2
and a is a sum of such «,. Therefore it suffices to construct semi-invariants « such that
supp « is precisely a conjugacy class.

Lemma 1.5. Let A € Hom(G, K*).

(1) If C4(x) C ker A for some x € A(G) and T denotes a left transversal for Cy(x) in
G thena=3y AMt)"'x" is a semi-invariant with weight . (note that supp o = C,).

(2) Conversely, if a € (K[G)), such that supp o equals precisely a conjugacy class of

an element x, then o = a(3_,.; At)~'x') where a € K* and T is a left transversal for Cg(x)
inG.

Proof. (1) This is proved in [15, Lemma 3], up to a slight difference in notation.

(2) Conversely, let o € (K[G]), such that supp a = C, for some x. Let T be a left
transversal for Co(x)in G. Write T = {t, = 1,t,, ..., t,}anda = Y_._, a;x". If j # 1, then

o = Zl: a;x"i and o = A(t))x = Zl: a;At;)x".

In particular, a, = g;A(¢)) or q; = ).(tj")a,. Therefore

«=a, (i /'.(t{')x"').

a

Proposition 1.6. A(G) = Hom(G/C;(4), K*) and thus A(G) is a finite abelian group.
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Proof. Since A(C;(A)) =1 if A € A(G) by Lemma 1.3, it is straightforward to check
that the map

A(G) = Hom(G/C4(A),K*) : A — 2 : G/C4x(BA) = K*
g— Ag)

is a well-defined injective homomorphism of monoids. To prove the surjectivity, let
A € Hom(G/C4(A), K*), then with

G — G/C4(8) 5 K,

u

u € Hom(G, K*) such that u(C;(A)) = 1. Combining Lemma 1.4(2) and Lemma 1.5(1),
there exists a semi-invariant « with weight p. Thus u € A(G) and @ = 4. In particular
this shows that A(G) is a finite abelian group. O

Corollary 1.7. SzK[G] = ZK|[G] if and only if Hom(G/Cs(A), K*) = {1}.

Of course, if G is nilpotent (and such that G is polycyclic-by-finite and A(G) is
torsion-free abelian), then Cg;(A) = G since A(G) = Z(G) in this case (cf. e.g., [19,
Lemma 11.4.3]). However, since A(G) = Z(G), we immediately have K[Z(G)]C
Z(K[G]) C SzK[G] C K[A(G)] = K[Z(G)] and thus SzK[G] = ZK[G]. Example 6.4 shows
however that SzKG can also be equal to ZK[G] if G is not nilpotent.

The next proposition shows that every finite abelian group can be the group of
weights of some group algebra.

Proposition 1.8. FEvery finite abelian group is the group of weights of some group
algebra K[G)] where K is algebraically closed.

Proof (due to D. S. Passman; the original proof of the author was longer). Let 4
be an infinite cyclic group and H a finite abelian group. Let G be the wreath product
of A by H, denoted G = AvH. Then G = W x, H, the semidirect product of W and H,
where W is a direct product of copies of A4 indexed by H. Using the fact that A is
abelian and infinite and that H is finite abelian, it is straightforward to conclude that
A(G) = W = C4(W). Thus G/C4z(A) = H and using Proposition 1.6 we obtain that
A(G) =2 Hom(H, K*) = H because K is algebraically closed. O

Remark 1.9. Proposition 1.8 does not hold if K is not algebraically closed. For
example, let K = R; then the cyclic group of order 4 cannot be the group of weights of
some group algebra R[G]. For if such a group exists and a is a semi-invariant with
weight 2, then for all g € G A(g*) = A(g)* =1 since 4 € C,. Within R this means A(g) is
either 1 or —1. Thus A> = 1 within A(G). Hence A(G) is not isomorphic to C,.
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2. The semicentre of @ (K[G])

2.1. Since K[G] is prime Noetherian, it has a classical ring of quotients Q.,(K[G])
which is simple Artinian. We will denote this ring shortly by Q. The group G is
obviously contained in the units of Q and so the definition of semi-invariant and
semicentre of Q makes sense by Definition 1.1. In this case we will denote the set of
weights by Ay(G, K) (or shortly A,y(G)).

Remarks 2.2. (1) As mentioned in proposition 1.2 and its proof, ZAEAq(G) Q; isin
fact a direct sum @,cpy Q-

(2) Let A € Ay(G) and 0 # a € Q,. By definition of a semi-invariant Qa =«Q and
hence « is invertible. In particular Ay(G) is a monoid. From gag™' = A(g)x one obtains
goe'g7 = Ag)'a' for all g€ G, ie, o' is a semi-invariant with weight 2~'. Thus
Ay(G) is an (abelian) group. Clearly A(G) C Ay(G); we will show later on that these
two groups coincide.

(3) By (1) and (2) SzQ is a Ay(G)-graded ring and (SzQ), = Z(Q.(K[G])) which
equals Q,(ZK[G]) by [19, Theorem 4.4.5].

The following lemma is just a basic observation.

Lemma 2.3. Letx € Q,. If u,v € K[G], u regular, then (u™'v)a = a(2*(u) ™' A*(v)) where
YLD u,g9) = Y u,Mg)g (cf. (15, p. 397] for the notation iHy.

Proposition 2.4. SzQ is the localisation of SzK[G] at the nonzero central elements of
K[G), ie., SzQ = (SzK[G))zkiap01-

Proof. Obviously (SzK(G])zxcne 1S contained in SzQ. We show the converse
inclusion. Let « € Q,. Denote I, = {u € K[G]|lux € K[G]} and I, = {u € K[G]|eu € K[G}]}.
By Lemma 2.3 I, and I, are nonzero twosided ideals of K[G]. Thus « € Q,(K[G]), the
symmetric Martindale ring of quotients of K[G]. If K[G] is prime and G is polycyclic-
by-finite, then Q(K[G]) = K[G]zxgn0) bY {21, Theorem 11.12] (or {20, Corollary 7.8] for
a detailed proof). Thus za € K[G] for some nonzero central element z in K[G].
Obviously za € (K[G]), which shows the result. d

Corollary 2.5. (1) Ay(G) = A(G); in particular, Ay(G) is a finite abelian group;

(2) SzQ is a commutative domain;

(3) SzQ = F'[A(G)), a twisted group algebra, where F = Q (ZK[G]);

(4) SzQ = Q(SzK([G)), the field of fractions of SzK[G].

Proof. (1) and (2) follow immediately from Proposition 2.4.

(3) Let A€ A(G) and choose a nonzero element a, € Q,. Since a;' e Q,- (cf.
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Remarks 2.2 (2)) Q,a;' € F and thus Q, C Fa,. The converse inclusion is trivial and.
therefore Q, = Fa,. This shows that SzQ = @, Fa; which is obviously isomorphic to
F[A(G)).

(4) By (2) and (3) SzQ is a commutative domain and finite dimensional over F; a
classical argument shows that SzQ is a field. Moreover,

SzK[G] C SzQ = (SzK[G])zkiep 0y € Q(SzK[G)).

Since SzQ is a field, every nonzero element of SzK[G] is invertible in SzQ and thus

SzQ = Q(SzK[G]). O

The foregoing proposition and corollary show that SzQ behaves quite differently
from SzD(L), where D(L) denotes the division ring of quotients of a universal
enveloping algebra of a finite dimensional Lie algebra L. In case of D(L) one has
SzD(L) = ZD(L)[Ap(L)] {17], a group algebra over the torsion-free abelian group of
weights Ap(L). In particular SzD(L) is finite dimensional over ZD(L) only in case A,(L)
is trivial. This is also the only case in which SzD(L) is a field.

3. Centralizers of semi-invariants

We prove the analogue of [7, Prop. 1.15 and Cor. 1.16] in the case of a group
algebra.
Denote G, = [;eaq ker 4.

Proposition 3.1. Let a be a semi-invariant of K[G] with weight ). Denote H = ker A.
Then

(1) Cxa(@) = K[H];
(2) Col@) = Qu(K[H)).

Proof. Since H has finite index in G we have A(H) C A(G); conversely A(G) C
Cs(A) Cc ker A = H by Lemma 1.3. Thus A(H) = A(G). Also note that by Proposition
1.2 a € K[A(G)] = K[A(H)] C K[H].

(1) Clearly K[H] C Cig(®). To prove the converse inclusion, let {g, =1,g,,...,4,}
be a transversal for H in G. Then K[G] = &_, K[H]g; and each element u € K{G] can be
written in a unique way as u =) . g, where u; € K[H] for all i. Let u € Cgig(«) and
write u= ),  u,g; as before. Using the fact that « € (K[G]),, and that « and all y
belong to K[H], we obtain
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0=uo —ou
= uga— ) oug
= uwig)ag, — Y wag;
= ua(dg) — Dg;

and thus ua(A(g;) — 1) =0 for all i. If i £ 1, then A(g,) # 1 since g; ¢ ker A = H. Thus
o =0 and hence u; =0 because o is a regular element. This shows that
u=u, € K[H].

(2) Clearly Q. (K[H]) C Cy(2). Conversely, let u € Cy(x). By [19, Lemma 13.3.5].
Q.(K[G)) = {7 'yly € K[G], B a regular element of K[H]}. Thus fu=7y for some
y € K[G] and some regular element § € K[H]. Since § and u commute with «, the same
holds for y and by (1) y € K[H]. Therefore u € Q,(K[H]). O

Proposition 3.2. (1) Cx(SzK[G]) = K[G,];
(2) Co(SzK[G]) = Q.(K[G,)).

Proof. (1) Cy(SzK[G]) =, semi-invariant Cxia(®) = Nieacq) Klker 2] = K[G,];
(2) This is shown in the same way as (1), using again [19, Lemma 13.3.5]. O

4. Structure of SzK([G]

We already know by Proposition 1.2 that SzK[G] is a commutative domain. In this
section we show that SzK[G] has a much richer structure. To simplify notations we will
denote C;(A) in this section by C.

Lemma 4.1. ZK[G] = K[A]° = K[A[® where G = G/C.
Proposition 4.2. SzK[G] = K[A]* = K[A]°* where G, = G,/C.

Proof. The proof is a slight change of the proof of [22, Lemma 3}; for the sake of
completeness we include the main details. First note that G/G, is a finite abelian group
because G' C G, and Cg4(A) € G,. If G, = G, then A(G,) = AG) =1 for all i e A(G),
i.e.,, A=1. In particular A(G) =1 and thus SzK[G] = ZK[G] = K[A]° = K[A]** by
Lemma 4.1.

If G, # G, we claim that G/G, is K-complete. Let x € G\G,; then for some
2 € A(G) we have A(x) # 1. Since A(G,) =1, the map A: G — K" can be lifted to
2:G/G, — K*. So A(xG,) = A(x) # 1. Thus G/G, is K-complete.

By definition of G, it is obvious that SzK[G] c K[A]*. To prove the converse
inclusion, let a € A; if C(a) denotes the centralizer of a in G, then C = Cg4(A) € C(a).
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Let Q be a (finite) transversal for C in G,. Define s, = quq a”; clearly s, is independent
of the choice of Q; moreover K[A]°* is spanned by elements of the form s,. Let
4 € A(G) and U be any transversal for C in G. Define s, = Y___,4(c"")a’. Then s, is
independent of the choice of U and s, € K[G],. In particular, if P={p, =1,...,p,}isa

transversal for G, in G and Q@ ={q,, ..., q,} is defined as before, then PQ is easily seen
to be a transversal for C in G. A straightforward calculation as in [22, Lemma 3] shows
that

5= Mpih)st
i=I1

As mentioned before, A can be lifted to 1: G/G, — K". Since G/G, is K-complete, by
(19, Lemma 4.3.3] there exist 4,, ..., 4, € Hom(G/G,, K*) such that det(4(p;")) # 0. By
elementary linear algebra each s} is a linear combination of s, ,...,s, , thus belongs
to SzK[G). In particular s, = s? € SzK[G). This shows that K[A]°* ¢ SzK[G]. 0

In the case that the field of coefficients is algebraically closed, M. Smith proved
that the result of Proposition 4.2 can be sharpened - and simplified — by replacing G,
by G'.

Proposition 4.3. (1) SzK[G] = K[A]® = K[A]°“/S;

(2) SzK[G]N K[G] = K[A]® = K[A]®°/“.

Proof. (1) As mentioned, this is proved in [22, Lemma 3].
(2) By (1) SzK[G] n K[G] = K[A]° N K[G] = K[AI®. O

Example 6.4 shows that it is possible that SzK[G] g (SzK[G] N K[G]). In some cases
however, equality holds.

Lemma 4.4. Let K and L be fields with K C L. Write L = &,,a,K for some index

set I and choose a, = 1. If A = A(G, K) = A(G, L) (i.e., A(G) C K* for all 2 € A(G, L)),
then

(1) for each % € A (L[G)), = ®,,a(K[G]),,
(2) SzL(G) N K[G] = SzK[G].

Proof. Obvious. O
Corollary 4.5. If A(G, K) = A(G, K), then SzK[G] = Sz(K[G]) N K[G] = K[A]d.

Corollary 4.6. Given a field K there exists a finite extension L of K such that
SzL{G) = LIA)C.
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Proof. Consider A(G,K), which is a finite group by Proposition 1.6. Write
A(G,K) ={4,,..., A,} for some m. Also G is finitely generated, say by g,,..., g, for
some n. Let L be the field generated by K and all (g;), where ] <i<mand1<j=<n.
Since each Z(g)) € K, it is clear that L is a finite dimensional extension of K. By
construction of L we have 4,(G) C L* for all i. Thus A(G, K) = A(G, L). The result
follows now from Corollary 4.5. O

Proposition 4.7. ZK[G], SzK([G)} and SzK[G] N K[G] are finitely generated K-algebras
and Noetherian Krull domains.

Proof. By 4.1, 4.2 and 4.3 the rings mentioned above are fixed rings of K[A] under
a finite group. Noether’s theorem implies that these rings are finitely generated K-
algebras and thus Noetherian. Since

ZK[G] = K[A)® = K[A]N LE,

where L is the field of fractions of K[A], it is trivial to see that ZK[G] is a Krull
domain. For the two other rings, the proof is similar. O

In contrast to Lie algebras, an example due to the author which appeared in [17]
shows that ZU(L) and SzU(L) need not be Noetherian. We have shown now that
ZK[G), SzK[G] and Sz(K[G]) N K[G] are Krull domains. A natural question is whether
these rings are also UFD’s, and if not in general when are they a UFD? Note that in
the case of a universal enveloping algebra U(L) of a finite dimensional Lie-algebra L,
the semicentre SzU(L) is always a UFD, as is well-known {12, 9].

Therefore S. Montgomery asked whether the semicentre of a prime group algebra
is a UFD, as is mentioned in the introduction of [22]. M. Smith answers this question
in the negative sense. In the same paper [22], M. Smith states that it may be of interest
to determine necessary and sufficient conditions for SzK[G] to be a UFD. In particular
she asks whether SzK[G} is a UFD in case K[G] is a UFR in the sense of Chatters
and Jordan [6]. We show that the example of a group algebra K[G] - given by M.
Smith in [22] - such that SzK[G] is not a UFD, is such that G is polycyclic-by-finite
and K[G] is a prime UFR (cf. Example 6.3).

Quite recently, M. Lorenz described the class group of a ring of multiplicative
invariants [10]. To be a little more precise, recall that SzK[G] = K[A]°* where
G, = G,/C is a finite group which acts on the finitely generated free abelian group A.
By identifying A with Z° for some d, G, becomes a finite subgroup of GL,(Z) = GL(A).
In particular SL(A) = SL,(Z) are the elements of GL,(Z) having determinant 1. If N
denotes the (normal) subgroup of G, generated by all the reflections in G, and D the
(normal) subgroup generated by the reflections that are diagonalisable over Z, then the
following result holds.

Proposition 4.8 (M. Lorenz [10]). The class group of SzK[G] is isomorphic to
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CI(SzK[G]) = Hom(G,/N, K*)® H'(G,/D, A®). m|

By replacing G, by G (resp. G'C/C) one obtains a similar result for the class group
of ZK[G] and Sz(K[G]) " K[G]. The formula in Proposition 4.8 already indicates that
the property of being a UFD will not only depend on G but also on the field K.

The following result is due to K. A. Brown and M. Lorenz [5] and is somewhat
weaker than Proposition 4.8, but will turn out to be more practical in some concrete
cases.

Proposition 49 (K. A. Brown, M. Lorenz [5]). (1) CIZKI[G)]) is a subgroup of
Hom(G, K*) x H'(G, A);

(2) CISzK[G)) is a subgroup of Hom(G,, K*) x H'(G,, A);
(3) ClSz(K[G)) N K[G)) is a subgroup of Hom(G'C/C, K*) x H'(G'C/C, A);

(4) if K is algebraically closed, then CI(SzK[G)) is a subgroup of Hom(G'C/C, K*)x
H'(G'C/C, A).

Corollary 4.10. (1) If Hom(G, K*) = {1} and H'(G, A) = {1}, then SzK[G} = ZK][G]
and is a UFD;

(2) If (G : C) is odd and H'(G, A) = {1}, then SzR[G] = ZR[G] and is a UFD.

Proof. (1) This is obvious by Corollary 1.7 and Proposition 4.9(1).
(2) An elementary calculation shows that Hom(G, R") = {1} because |G| is odd. [

5. Normal elements versus semi-invariants

If L is a finite dimensional Lie-algebra, then u € U(L) is a normal element if and
only if u is a semi-invariant (see [7, Proposition 1.8] or [21, Corollary 13.8]). In case of
a group algebra K[G] this is no longer true, because any unit in K[G] is trivially a
normal element but a unit u is only a semi-invariant if u= kg where k€ K* and
g € Z(G). Therefore the best we can hope is that every normal element is the product
of a unit and a semi-invariant. In general this will not be the case. In Theorem 5.3 we
will prove necessary and sufficient conditions such that every normal element which
belongs to K[A] is the product of an element of A and a semi-invariant. In case K[G] is
a UFR in the sense of Chatters and Jordan, the restriction to normal elements
belonging to K[A] won’t be a real restriction.

Lemma 5.1. (1) If a is a normal element of K[G), then for each g € G there exists a
unit v, of K[G) such that «° = gag™" = av,.

(2) If a is a normal element belonging to K[A], then v, = ku, where k, € K* and
u, € A
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Proof. (1) Let g € G; since a is normal
(9297 )KI[G) = gaK[G] = gK[Glx = K[Glx = aK[G]
and the fact that « and gag™' are regular implies that gag™ = av, for some unit v, of
K[G].

(2) If a is normal and « € K[A], then v, € K[A] because o’ € K[A]. The fact that v,
is a unit in K{A] and A is torsion-free abelian implies that v, = k u, for some k, € K*
and u, € A d

Up to a slight difference in notation, the following lemma is proved in [15,
Lemma 2} and {16, Lemma 1(i)].

Lemma 5.2. Let o€ AutG centralise a subgroup of finite index. Let
W = Cs(0) = {g € Glo(g) = g} and T be a left transversal of W in G. Denote

°= Zt"t".

teT

Then o is a normal element of K[G) belonging to K[A] such that g°ag™ =« for all
geaG.
Theorem 5.3. The following conditions are equivalent:

(1) every normal element of K[G] belonging to K[A] can be written as us where uc A
and s is a semi-invariant;

(2) if o€ Aut G centralise a subgroup H of finite index, then o is an inner
automorphism of G,

(3) H'(G/Cq(4), A) = {1}.

In the case that these conditions are satisfied, the decomposition of a normal element into
a product of an element of A and a semi-invariant is unique up to a central element of G.

Proof. (1) = (2): Let 0 € Aut G be such that o centralises a subgroup of finite
index. If W = C4(o), then (G : W) is finite. Using the result and the notations as in
Lemma 5.2, a = ¥, t°t"" is a normal element of K[G] belonging to K[A]. By (1) « can
be written as a = us, where u € A and s € (K[G]), for some weight 1. Forallge G

of = us? = A(g)u's = Ag)uu'a. (%)
By Lemma 5.2

o =g(g7") 'g°ag™ = g(g™') o (%)
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A combination of (x) and (xx), using the fact that « is regular, yields
9(g™'y = Mgwfu™.
For a start this implies that A(G) ={l}, ie., s is a central element. Secondly
g(g™")’ = w’u”" implies (¢7')° = ug~'u”', ie., o is an inner automorphism.
(2) < (3): This holds even more generally, as shown by K. A. Brown in [4, p. 85].

(3) = (1): Let o be a normal element of K[G] belonging to K[A]. By Lemma 5.1(2),
for all g € G we have gag™ = k,u,a for some k, € K* and u, € A. Note that if ge C
then gag™ = a, so k, = 1 and u, = 1. Hence the following map is well-defined:

G/C — K[G]: g — of =gag™".

For all g,he G,(gholgh)™ =kyu,a and (gh)u(gh)™ = ghah™)g™" = g(ku,a)g™ =
k,kyu,uje, which implies that ky, = k.k, and u,, = u uj. Therefore

fiG/IC>A:gG—uy,

is a l-cocycle. By (3) f, is a l-coboundary, so there exists v € A such that
u, = f,(g) = v'’ for all ge G/C. Let s=v""a. Using the fact that A is abelian a
straightforward calculation shows that s is a semi-invariant with weight k. Since « = vs,
this shows (1).

Finally suppose o = us = u's’, where u,u’ € A and s (resp. s") are semi-invariants with
weight A (resp. ). Then s = u’s’ where v’ = u™'u' € A. Using the fact that s and s are
semi-invariants we obtain

Ag)s = s° = u"s? = i (gu"s = A(guu" s,
which implies that A = A’ and " = " for all g € G, i.e., v’ € Z(G). d

Proposition 5.4. Let K[G] be a UFR such that H'(G/C, A) = {1}.

(1) Every height one prime ideal P of K[G) is generated by a semi-invariant.

(2) A normal element of K[G] is the product of a unit of K{G] and a semi-invariant.

(3) Every semi-invariant can uniquely (up to an element of K* and of Z(G)) be written

as a product of irreducible semi-invariants.

Proof. Note first that a Noetherian UFR is a maximal order [6, Theorem 2.4]. In this
case a divisorial prime ideal is the same as a height one prime ideal. Moreover the group
of divisorial ideals is a free abelian group generated by the height one prime ideals.

(1) This is clear from the fact that K[G] is a UFR, that P is generated by a normal
element belonging to K[A] [3, Theorem B] and Theorem 5.3.
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(2) Let p be a normal element of K[G]. If p is not a unit of K[G] then K[G]p is a
divisorial ideal of K[G]. Using the fact that each height one prime ideal P is generated
by a semi-invariant s, we have

p=us...s,

for some n, u a unit of K{G] and each s; a semi-invariant.

(3) This is proved in the same way as (2), using the fact that in the expression
s=us;...s, the unit u of K[G] belongs to K[A] and is a semi-invariant, thus
u € K* - Z(G). The uniqueness of this decomposition follows from the fact that K[G] is
a UFR. O

6. Examples

In this section we give a number of examples which either illustrate some of the
results in the foregoing section or either illustrate some differences with the semicentre
of a universal enveloping algebra of a Lie-algebra, especially concerning the question
of when the semicentre is a UFD.

6.1 Example 1. Let G be the group generated by x and y such that yxy™ =x7".

Clearly G is torsion-free poly-infinite cyclic, so K[G] is a Noetherian domain which is a
maximal order by (3, Theorem F] and even a UFR, because K[G] is clearly a PI-ring,
by [3, Theorems C and D]. As can easily be checked A = A(G) = C4(A) = C = (x, y*)
and G’ = (x?). For any field K we have Hom(G/C, K*) is cyclic of order two; thus by
Corollary 4.5 SzK[G] = K[A]G' = K[A], because G’ C C.

Using the fact and notation that G/C = (j) where 3 =1, we obtain by direct
calculation that a map ¢ from G/C to A is a l-cocycle if ¢(3) =x' (i € Z) and ¢ is
a l-coboundary if @(3)=x* (i€ Z). Thus H'(G/C,A)= C,. By Theorem 5.3, not
every normal element of K[G] which belongs to K[A] can be written as the product
of an element of A and a semi-invariant. A concrete example is the following: let
p=1+x; as is directly checked p is a normal element belonging to K[A]. Using the
fact that ypy™ = x'p, the map ¢,: G/C — A is such that ¢,(¥) = x' is a l-cocycle
but not a l-coboundary. A straightforward calculation shows that a normal element
p which can be written as us where u€ A and s a semi-invariant induces a 1-
coboundary ¢,.

A useful property in enveloping algebras of finite dimensional Lie-algebras is the
fact that u and v are semi-invariants if uv is a semi-invariant [13]. This need not
hold anymore for group algebras K[G]. Consider this group G. Let u = (1 + x)y;
then W =Q+x+x"))y’ € ZK[G]. Let v=2+x and w=2+x"', then ww=
S+ 2(x+x7") € ZK[G). In particular «* and vw are semi-invariants but neither u, v
or w is a semi-invariant, in fact v and w are not even normal elements.
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6.2 Example 2. This example can be found in [11, pp. 383-384]. Let A be the free
abelian group with basis a, b, ¢ and d, and let {z) be an infinite cyclic group acting on
A via an automorphism ¢,, where ¢,(a) = a, ,(b) = b"'a, ¢,(c) =cb and ¢ (d) =d'c.
Let G be the semidirect product of 4 and {z). As mentioned in [11], G is torsion-free
nilpotent-by-finite and by [11, Proposition 5.4} every nonzero ideal of K[G] intersects
ZK[G] nontrivially. By [3, Theorems C and D], K[G] is a UFR. One has
A = A(G) = (a,b) and C = C4(A) = (A, 2%); thus G/C = (z) and Z* = 1, which implies
that A(G,K)=~Hom(G/C,K*)=~ C, for all fields K. On the other hand,
AcC G = (A c'd®) c C. Corollary 4.5 implies that SzK[G] = K[A]G' = K[A] for any
field K. A straightforward calculation shows that every 1-cocycle from G/C to A is a
1-coboundary. Thus H'(G/C, A) = {1} and the results of Theorem 5.3 and Proposition

5.4 apply.

6.3 Example 3. This example appears in [22, Example 1], in which the author proves
that the semicentre is not a UFD in case K is algebraically closed. We will show precisely
for which fields the semicentre is a UFD; in the other case we will compute the class
group of the semicentre. The next two examples are variants of this construction.

Let A be free abelian on a,, by, ¢, a,, by, c; and let H be generated by ¢ and t such
that gt6™' = v™' (H is thus the group used in Example 1). Let ¢ : H —> Aut 4 be a
homomorphism defined by ¢(o) (denoted in brief by ¢,) for which ¢,(a) = b,
0,(b)=a, o,(c)=c; (ie{l,2})) and ¢, is defined by cyclic permutation of a,, b, ¢,
and a,, b,, ¢c,. Let G be the semidirect product of A and H. Clearly G is torsion-free
poly-infinite cyclic. Then A = A(G) = (4, ¢°, ©°). Thus (G : A) is finite, G is abelian-by-
finite and K[G] is a PI-ring. Using [3, Theorems C and D], K[G] is a UFR. Moreover
C =Cg4A) = A and G/C is isomorphic to the symmetric group of degree 3. Then
A(G, K) = Hom(G/C, K*) = C, for any field K. Then G, = (%) is cyclic of order three
and we have G, C SL(A), as is readily checked (the notation SL(A) is mentioned just
before Proposition 4.8). In particular G, contains no reflections, since a reflection has
determinant —1 (see e.g., [10]). To show that H'(G,, A) = {1}, let f be a l-cocycle
defined by f(7) = pa®t¥, where p € 4 and i,j, € Z. Using the fact that 7° = I, direct
calculation shows that i=j=0 and f(¥)=p = (a,c;")*(b,c;") (a,c;")2(byc;")"* for
some a;, oy, B, B, € Z. Let u = b;"¢'b;"¢2; then f(7) = ™", i.e., f is a 1-coboundary.
Proposition 4.8 implies that CI(SzK[G]) = Hom(G,, K*). Obviously SzK[G] is a UFD
if and only if K does not contain a primitive third root of unity. In the other case
CIl(SzK[G)) = C,.

6.4 Example 4. This example is a slight variation of the foregoing example. Let
again A be the free abelian group on a,b,,¢,,a,,b,,c, and H = (z) be infinite
cyclic. Let ¢ : H— Aut 4 be defined by ¢(r) which permutes {a,, b, ¢,} and {a,, b,, ¢,}
cyclically. Let G be the semidirect product of A and H. Then A = A(G) = (4,7%) =
Cs(A) = C and G' = (a;'b;, b ¢;li € {1, 2}). Note that G’ C C. Since G/C = C,, we have
A(G, K) =2 Hom(G/C, K*) = {1} if K does not contain a primitive third root of unity;
in the other case Hom(G/C, K*) 2 C;. A computation similar to the one in Example 6.3
shows that H'(G/C, A) = {1}.
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This leads to the following result. If K does not contain a primitive third root of
unity, then Corollary 4.10 implies that SzK[G] = ZK[G] is a UFD. If K does contain a
primitive third root of unity A(G, K)=A(G,K), so SzK[G]= K[A]G' = K[A] by
Corollary 4.5 and the fact that G' C A. Since G = G/C = C, and, as in Example 6.3,
G C SL(A), so that G contains no reflections. Proposition 4.8 used for ZK[G] shows
that CI(ZK[G)) = Hom(G, K*)® H'(G, A) = C,. In this example SzK[G] is a UFD for
all fields while ZK[G] is not. Finally, SzK[G] g Sz(K[G]) N K[G] if K does not contain a
primitive third root of unity.

6.5 Example 5. Let A be the free abelian group on x,, y,, x,, y, and let H = (o) be
infinite cyclic. Let ¢ : H - Aut 4 be defined by ¢(c)(x;) = y;' and ¢(e)(y,) = x; where
ie{1,2). Let G be the semidirect product of 4 and H. Then A = A(G) = (4,¢*) =
Cs(A) = C and G = (x,y,, X, 97", X275, X,¥5') (C A). Since G/C is cyclic of order 4, we
have Hom(G/C,K*)= C, if K does not contain a primitive 4th root of unity and
Hom(G/C, K*) = C, if K does contain a primitive 4th root of unity. In the last case,
A(G, K) = A(G, K) and thus by Corollary 4.5 SzK[G] = K[A]G' = K[A], which clearly is
a UFD. If K does not contain a primitive 4th root of unity, we claim that SzK[G] is
not a UFD. Since A(G, K) = C,, we have G, = G,/C = (%) = C,. Now G, C SL(A):

G — SL(A)
-1 0

and therefore E,\_ contains no reflections. By Proposition 4.8 CI(SzK[G]) =
Hom(G,, K*) ® H'(G,, A) and Hom(G,, K*) is always nontrivial, thus so is CI(SzK[G])
and SzK[G] is not a UFD. By direct computation we have

SzK[G] = K[o*, 6™ *[(xEyf + x;7*y7%li,j € (1,2}, k, £ € Z).

Comparing Examples 6.3 and 6.5 leads to the following observation. Let G be the
group as in Example 6.3; then SzR[G] is a UFD but SzC[G] is not a UFD. In
Example 6.5 the converse happens: SzR[G] is not a UFD while SzC[G] is a UFD.

6.6 Example 6. If L is a finite dimensional Lie algebra, then SzU(L) is never trivial,
i.e., equal to K, because every non-zero ideal of U(L) contains a semi-invariant. This
example shows that for a group algebra K[G] the semicentre can be trivial. This
example appears e.g., in [1, p. 195]. Let A be a free abelian group with basis y and z
and H = (x) be infinite cyclic. Let H act on A by
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H—> AutA:x— ¢,
where
@ (y) =y and ¢,(2) = y’ 2,

h

product of A by H. A straightforward calculation shows that A(G)= {1}, thus
SzK[G] = ZK|[G] = K. As mentioned in [1], K[G] is not a UFR in the sense of Chatters
and Jordan.

such that the matrix (; S ) has no integer eigenvalues. Let G be the semidirect
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