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1. A g-analogue of the integral J f(t)dt is defined by means of

~rof(t)d(t; q) =x(1-q) . i a~flxq™")

=1
which is an inverse of the g-derivative

D, f(x) = f——();g :fl ()x).

(1.1)

(1.2)

The present author (2) has recently obtained a g-analogue of a formula of

Cauchy, namely,

KY(x) = f i f A f ® J0d(t; 9)dx1; @) dCxn—r 4)

g~ Ne-D2 o
= Tﬁjl_]'_f (t—X)y-1f(tq* ~Md(t; q)

where, for real or complex « and N a positive integer,

1__ @
[ = T2, [0t = 1, [N]! = [1][2]...(N]
and
(t=x) =1, t~x)y = (t—x)(t—g%)...(t—q" " 'x).
We shall also use the notation
(@o =1, (@ = (1-a)(1-ga)...(1—g""'a).
The g-binomial coefficient is defined by

[a] -1, [a] _ [eJ[e—1]...[a—k+1]

0 k [£]! ’

so that we have
N N
(1—x)y = 2 (—1* [ ] qFrE = DN =kyk
x <o k

+ Dedicated to the memory of my friend E. L. Whitney.
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(1.3)

(1.4)

(1.5)
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The purpose of this note is to obtain fractional generalisation of (1.3) as
well as a g-analogue of the fractional operator (3.1) of Erdélyi and Sneddon.
Elsewhere we shall give similar results for fractional g-integrals based on the

.g-analogue of f J(Hdr.

a
We now give a few preliminary results.
An analogue of the exponential function is

e(u) = H (L—uq™ 20 BN

The binomial (1.5) can be extended to non-integral values of N by means of

ll

1.6)

oy = @YX
(x—y)=x ) 1.7)
In view of the known identity [(5), p. 92]
e _ & (@

e(au) k=0 (qk
formula (1.7) can be written as

(x—y)=x" Z (-1)f [ ] HE=Dy/x) (1.8)
From (1.7) and (1.8) we see that
(I +x), (1 +x9%5 = (14X),45 (1.9

:s0 that, upon equating coefficients of x*, we get

F e o

As a g-analogue of the gamma function we define

e(q%)
F(y= ——22 - (x#0, -1, =2, =3, ..). (1.11)
T el —g) !
‘This function satisfies the functional equation I j(o+1) = [«][ () and if
o = m, a positive integer, we have I';(n+1) = [n]!.
An analogue of Gauss’ theorem for the sum of hypergeometric functions is
5. p. 97]

—n “M(b dfb), b
20:[b.q7" ds q] = Z @O0 gu _ (/0D p. (1.12)
k=0 (q)ld) (d),
In the following we shall assume that 0 <g<1 and that the functions under
<consideration are such that the series in (1.1) is absolutely convergent. In
particular this implies that lim f(x) = 0.

X = oo
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2. We are now in position to define the fractional generalisation of (1.3).
‘We put, for arbitrary v £ 0, —1, —2,

--g-v(v 1)
K7 fy=1 T j (t=x), -1 f(tq" ~)d(t; ),
K2 f(x) = f(x). (2.1)

‘This is a g-analogue of the Weyl fractional integral
K = oo [ = o
)
When v = n, a positive integer, formula (2.1) reduces to (1.3). On the other
hand formula (2.1) can be written as

K@ =a et —ay § 0t ] e e e @)

This formula is now valid for all v and, in fact, when v = —n a negative
integer, (2.3) reduces to

Kifx) =x""(1=q)™" Y (=1 [Z] gHE- D=0 Df(xg"™ ) (2.4)
k=0
which is a well-known formula (4) for (—1)"Dgf(x).
It follows immediately from the definition (2.1) that
Ki(e fi+c.fy) = e Ko fy + ¢, K5 f,.
We now proceed to prove that

] K. K8f(x) = K2**f(x) 2.5)
valid for all « and §.

To prove (2.5) we have by means of (2.3)
K. Kif(x) = K; {q'*”“’"”x'”(l—q)‘” Y (-1 [ﬁ] q*"““wxq"‘*)}
k=0
= q'i‘a(d"l)—%ﬁ(ﬂ— 1)(1 _q)—a-ﬂx-a io (_ l)r [‘:] qir(r— 1)
- 3 o [B] e v a4
k=0

= q—ia(a—l)—&ﬂ(ﬂ—1)—aﬂ(1_q)—a—ﬁ Zo (- 1)"q*"("'l)f(xq“+”'")

—a— < a rée=nr+t+r,
LXTeTE, Zo[r][nf]qz +ré,

The inner sum in the right-hand side can be evaluated by means of (1.10).
We get

K:Kgf(x) = q"i‘(a*‘ﬂ)(ﬂ*'ﬁ“l)(l _‘q)-a—ﬂx—a—ﬂ
© a |+ (= R "
Zo (_1) [ ﬁ] q&( ly(xq +8— )
= K3 f(x).
E.M.S.—K
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3. Erdélyi and Sneddon (3) defined the fractional operator

K (x) = r%) f ? =Py )y 3.1)

A g-analogue of this is

f = X1y (g~ 3-0) 32)

F o)
where o # 0, —1, —2, .... This formula can also be written as
Kgfx )— ( ) Z g —=g"* )y flxg™*7H). (3.3)

By means of (1.7) and (1.10) we can write

Kpf@ =gy $ (~itgrrorssn [ | g, Gy

Formula (3.4) is valid for all « and may be taken as a continuation of (3.1).
If « = — N, a negative integer, we get

Ky () = (1=g)™™ T (= 1igkemm*sen V] 7.

Comparing this with (2.5) we see that
Ky 7f(x) = (= 1)~ DD {x (). (3:5)
Let us consider the expression
DY{x~"* K ¥(x)}.

If we substitute for K;’"’”’ f(x) from (3.4) and then g-differentiate the resulting
expression N times by means of (2.5) we obtain, using formula (1.10),

Kz’af(X) - (_ I)Nqi-N(N+1;+a—l)xn+N+aD5;'{x—n-¢K;,,a+N}. (36)
We now prove that
K2 2K2+*’f(x) = K **#f(x), (3.7

valid for all #, «, B.
The left-hand side is

e(q)e(q)(l—q)”ﬂ < sn —a—p- S k(] _ gk+1 1—gst1-k .
D) DI (C I NPV Bl Ay RSl i M

The inside sum is equal to

e(qﬂ)e(qs+a l) -s . 2—-s-a.
DT 2010 7% a5 g  9)
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This expression, by (1.12), is equal to

« eqP)e(qDe(g* P 1) — g T (e (B)
e(q)e(q**P)e(q”) I (a+8)

(1 —qs)a+p-1-
We thus get

2 sn _ .S+l -—a~f-
q( +ﬁ) SZ (1—-q a+p—1f(xq )]
= K?**#(x).

This completes the proof of (3.7).
From (3.7) it follows that

n aKn+a ﬁf( )_

{K5 3 () = K§* (). (3.8)

It is easy to see that
Ky {x"f(x)} = x"q =Ky " (x). (3.9
The relationship between the two fractional operators we defined above is
K f(x) = x"q e Dag “elx~170f(x)]. (3.10)

4. We give now a short table of transform pairs. Because of (3.10) we shall
give only those involving the operator K.
We first recall that

r¢s(a13 azs ...y Gy b19 bZ’ eces bsa x) =

(a)(az)y...(a) Xk
k=0 (@b i(b2)i-- (b
and that

utats

) _ 0 o 1-q
I'q(u+oc)_(1 2 1=—I ey

For brevity we shall write the left-hand side. We shall also write f(x)—g(x)
instead of K7 %f(x) = g(x).

T.(n—A
X g {n—4) 4 4.1
I (n—2A+a)

AN gk T (n—2) (g' " )y X N

e N, t te }
Co—it® @, (N, a positive integer). (4.2)
X4 by atg it TS (o, 43
F(=4)
- _ _ r,(4) ,
x A+n x(n A) a(A—n) q l; A+a; a .
e(c/x)— q 79 191975 g cq°/x) (4.4)

xu+n—le(x)__,xu+n—lq—a(n+rl— 1)

‘l:m)1¢1(qu_a; q*; x). (4.5)

https://doi.org/10.1017/50013091500011469 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500011469

140 W. A. AL-SALAM

r(a-

=1 x), bt _LATE g oov e g gy, a6)
r(l+oe—p)
T 1
X" (b4 x), bV Igati =Y ~———~—"(V+ ) (bg*+x)y+, (v#£0). @47
r(v+o+1)
x**11,6,(4% 4% 4% x)

_ -y LA=2
__)xi.+11 1 —al{A+n—1) q a, b, l—a; A’ c; X 48
q -—————rq(lw_l)s%(q q’,q q% 4% x)  (4.8)
Formula (4.8) reduces, when A =g, « = —n or when A = ¢c+a, a = —n,

to formulae of Agarwal (1). Formula (4.8) can be extended further so that the

left-hand side involves a ,¢,_, and the right-hand side a ;, ,¢,.
We now illustrate an application of the above formulae. We have from

(1.9) and (1.8)

(@™ " qk(v+).)xu+k(l+x);' = x*(1+X),4,-
k=0 (g

Now applying (4.6) we get

kel

2¢l(q-z—v, 7*; g*; quV): Z (q )k(g ) k(A +v)
k=0 (@)(q"
201(a7h §*F5 gt xgtth).
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