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On the problem of non-smoothness of
non-reflexive second conjugate spaces

lvan Singer

We prove that if E is a Banach space which has a subspace G
such that the conjugate space G* contains a proper norm closed
linear subspace V of characteristic 1 , then E#** 1is not

smooth and there exist in ﬂE(E) points of non-smoothness for
E** | where Mo E » E** is the canonical embedding. We show

that the spaces FE having such a subspace G constitute a large

proper subfamily of the family of all non-reflexive Banach spaces.

1.

A Banach space E is called smooth if for every z € E with |zl = 1
there exists a unique f € E* with ||fl =1 such that f(x) =1 . If E
is not smooth, any x € E with [zl =1 for which there are f , fé € E*
vith f), # f, > [fyll = £l =1, satisfying f)(x) = f(z) =1, is
called a point of non-smoothness for E .

Giles [6], Day ([3], p. 70), Petczyhski, Phelps and Rainwater [12]

have proved that a non-reflexive Banach space E has non-smooth third

conjugate space E*** and that for any f € E* with |[|fll = 1 which does
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not attain its norm on the unit sphere of £ , TI‘E,*(f) is a point of non-
smoothness for E*** | where Tow E* > E**%  jg the canonical embedding.

In the present paper we shall study the problem whether the second
conjugate E** of a non-reflexive Banach space E is non-smooth, raised
by Rainwater [12], and the problem whether one can find points of non-

smoothness for E** already in TrE,(E') , Where T, : E > E** is the

E
canonical embedding. In §2 we shall prove that this is indeed the case for
a large family of non-reflexive spaces F , including non-reflexive

conjugate spaces (which yields again the result mentioned above) and spaces
E for which dens £ < dens E* , where dens E denotes the density

character of % (that is, the smallest cardinality of a dense set in £ ).
In §3 we shall prove that there exist non-reflexive Banach spaces E which

do not satisfy our sufficient condition for the non-smoothness of E**

The notations and terminology used here will be the standard ones
(see, for example, [3], [73]). We recall (see [4]) that the characteristic
of a subspace V (by subspace we shall always mean norm closed linear sub-

space) of a conjugate space E* is the number

r(V) = inf sup f[ z ]I = inf (7 (x)+0f ,
XEE fEV Tzl €8, llzll=1 E
z#0 llfll=1 vert

where V- = {0 € E** | &(f) = 0 (f € V)} . Thus, »(E*) =1,
0=»r(V) =1 (V< E*) , and we have r(V) =1 if and only if

lcll = sup |f(x)] , (z €E),
fev
I Fll=1
L
or equivalently, if and only if the projection p of T\'E,(E') @V onto
1
ﬂE(E) along V° has norm |lp|l =1 . Also, we recall that if the
conjugate space E* is separable, the norm of E is called [5] a Xadee'-
*

Klee norm if the relations {fn} CE*, feEt, f, N Ilfnll = [Ifll
imply an-fH + 0 . In [5], Corollary 1, it was proved that every Banach

space FE with separable conjugate space E* admits an equivalent norm

such that in this new norm for every proper subspace V of E* we have
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r(V) < 1 , namely, any equivalent Kadec'-Klee norm has this property
(equivalent Kadec'-Klee norms exist by [§], [9]).

2.
DEFINITION 1. We shall say that a Banach space E has
(a) property (CHl) » if the conjugate space E* contains a

proper subspace V (that is, such that V # E* ) of

characteristic »(V) =1 ,
(v) property (SCHl) , if E contains a subspace (G with

property (CHl) .

THEOREM 1. If E <8 a Banach space with property (SCHl) s then
E** {8 not smooth. Moreover, there exist in nE(E) points of non-
smoothness for E** .

Proof, Let us first assume that the theorem holds for every Banach

space with property (CHl) and let G be a subspace, with property
(CHl) , of E . Then, by our assumption, G** = ¢ c B** is not smooth,

hence E** 1is not smooth. Also, by our assumption, let x € G be such

that nG(x) is a point of non-smoothness for G** , so there exist
AA% i = =

Yo b, €6 with ¢, # ¢, such that [l = gl =1,

¥y (m(=)) = vy (my(2))

E , then T = u**nG , u*** maps FE*** onto G*** and for each

1 . If u is the identical embedding of G into

Y € G*** there exists E € E*** with w***(E) =¢ , [Z]l = W/l . Hence,

if = . 0% 4% 424(2) = y. 2= v, =
if 5,5 €E are such that wu (,J) wJ , J” ”wJ” 1

(=1, 2) , then El # 52 and
Bi(mgu(2) = Es{urtny(@) = wirt () (np(2)) = wi(np(=)) =1, (G=1,2),
so ﬂEu(x) is a point of non-smoothness for E** ., Thus, it is enough to

prove Theorem 1 under the assumption that F has property (CHl) .

Let V be a proper subspace of E* with »(V) =1 . It will be
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enough to prove that there exist in TTE,(E') points of non-smoothness for

the subspace ﬂE(E) @ V' of E* , Since then by the Hahn-Banach Theorem
these will be points of non-smoothness also for E** .

Since V # E* and V is norm-closed, there exists f € E*\V with
IIfll =1 such that f(x) =1 for some x € E with |zl = 1 (indeed, by
the Bishop-Phelps Theorem [1] those f € E* with |ff =1 which admit

such an & are norm dense in the unit sphere of E* ). We shall show that

nE(x) € TTE,(E') is a point of non-smoothness for 1rE,(E') ® v

Let us denote by p +the restriction mapping

o(2) = E| (E € F*#%)

TTE(E)@V‘. ’
and by p the projection of TTE(E') @® e onto TTE(E) along V; [hence,
by r(V) =1 we have |lpll =1 ). We shall show that the functionals
®) = P (f) 5 9, = [Trglp)*(f) € [TTE(E) ® V“]*
satisfy, for any & € VS with ® # 0 (such a ® exists, as f € E*\V ),
0,(8) # 0= 09,(0) , o (mp(x)) = wz(ﬂE(x)) =1, lel, lloh =1,

which will complete the proof. Indeed, we have

0, (0) = T OO = TN (0] = 108 = 8 40,
E
0001 = 18] (N(@) = #lre(@)] = Flrko)) = st0) = 0,

¢, (my(=)) = ’TE,e(f)ITT (E)@V‘(HE(x)) = o (H) {mp(2)) = m(2)(f) = flz) =1,

E

flx) =1,

() st =2

@, (my(a)) = f[ﬂ,}lp(TrE(x))] = f[ﬂg,lnE(x)]

IA

< = *
llo Il = Nollllmp Al =2, No,ll < lp*l

which completes the proof of Theorem 1.

REMARK |. Clearly, for every 'nE(x) € TIE,(E’) with IITIE(:L‘)” =1, the
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unit ball SE‘** admits a weak* closed support hyperplane at ﬂE(x) ;3 that
is , of the form H, = [y € B2 | TTE'*(f)(\P) =1} for some f € E* with

Ifll =1 . The above proof shows that if £ is smooth and has property
(CHl) , then there exists a nE(:z:) € nE,(E) with IITTE(:z:)ll =1, such that

SE“ admits also a weak* dense support ‘hyper’plane at nE(:c) s that is, of
the form H, = {¥ € B** | 3(¥) =1}, for some E € EAA\T, (B*) with

Il = 1 (containing the support line through TTE(:I:) and TTE,(x) + 0,

where © € V' is as above).

REMARK 2. The conclusion of Theorem 1 remains valid, with a similar
proof, for any space E for which there exists a triple (&, f, x) with
depr*, ferr, x €E of norm ol = lIfll = llzll = 1 , such that

of) £0, fl=) =1, Inz+atl 2 In(a)l

1 for all scalars Q .

Indeed, it is enough to replace then TTE(E‘) ®v by the two-
dimensional subspace ETTE(:L')] ® [?] of E** and the functionals ?y5 @,

above by

N -

*
' _ _ -1 *
(Pl = p[“E(x)]qq)]nE&(f) ’ P?, = pap[.n,E(x)] [‘"E ] (f) € ([WE,(.’X.')] @ [(D]) ’

vhere DIF(E) = EII. for all E € E*** and for any subspace T of E**
and where Py denotes the projection of [TTE,(:L')] + [®] onto [TIE,(x)]
along [?]

REMARK 3. There may exist also other points of non~smoothness for
E** | For example, if there existe a ® € E**\HE(E’) with

(1]l

£l
one hand, nE,*(f)(Q) =1 , so the weak* closed hyperplane

1}

1 = dist (<I>, TTE,(E)) which attains its norm at some f € E* with

1, then & <s a point of non-smoothness for E** . 1Indeed, on the

i = {¥ € g2+ | T FI(Y) = 1} supports S at ® and, on the other

EA*
hand, by a corollary of the Hahn-Banach Theorem there exists

€ My E) © B\t (B*) with IE] =1, E(8) =1, so the weak* dense
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hyperplane £, = {y € p** | 2(¥) = 1} also supports & at @ .

EA%
However, it is well known that there are Banach spaces for which there
exists no ¢ € E'**\TIE,(E') such that [|¢]] = 1 = dist (o, nE(E))

Let us give now some corollaries of Theorem 1.

COROLLARY 1. If dens E < dens E* , then E** 18 not smooth and
there exist in TTE,(E) points of non-smoothnees of E** .

Proof. It is well known that E has property (C’Hl) (it is enough

to take a dense set {xi} in Sp with cardI= dens F and then for

1€I
each 71 € I a functional fi € SE,,f with fi (:z:i] =1 and to put
V= [fi]iGI , the closed linear span of {fi}iGI ).

We also obtain as a corollary the following slight improvement of the

Giles-Rainwater result:

COROLLARY 2. If E contains a subspace G <igometric to a non-
reflexive conjugate space B* , then E** is not smooth and there exist
in WE,(E) points of non-smoothness for E** .,

Proof. It is well known that G has property (CHl] (take Vv G*
to be the image of nB(B) C B** under the isometry B** = G* ).

Finally, let us observe that in the above cases E cannot have any
one of the properties implied by the smoothness of E** , for example:

COROLLARY 3. If E satisfies the condition of Theorem 1 (or of

Corollary 1 or 2), then E*** is not strictly convex.
Let us also observe that if a Banach space E contains a subspace G
. Ll
1somorphic to eq > then E** g not smooth. Indeed, G** = G < E** ig

then isomorphic to 7* and hence is not smooth, by a result of Day [2], so

E** is not smooth.
If there exists a non-reflexive space E’O with smooth second
conjugate space E's* , then (by passing to a subspace, if necessary) we may

assume that E. 1is separable (even that E,. has a basis, by [10]) and

0 0
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then by the above results, Eo must have the following properties:

(a) Es is separable;

(v) E. contains no subspace isomorphic to e

0 o

(c) Eo contains no non-reflexive subspace isometric to a
conjugate Banach space B* .

Therefore it is natural to raise

PROBLEM 1. Does the quasi-reflexive space E = J of James [7] admit

II*ll ) is smooth?

an equivalent norm ||/l such that (E*+*,

3.
Clearly, a Banach space with property (SCHl) is non-reflexive.

Unfortunately, there are non-reflexive spaces which do not have property

(SCHi) , as we shall show below (and therefore Theorem 1 alone does not

imply that every non-reflexive Banach space F has non-smooth second

conjugate space).

THEOREM 2. Let E be a non-reflexive Banach space with gseparable
conjugate space E* . Then E admits an equivalent norm ||*|l  such that
(B, Il ) doee not have property [SCHl] . In fact, every equivalent

Kadec'-Klee norm on E satisfies this condition.

Proof. By §1, for any equivalent Kadec'-Klee norm [|«||| ,
(E, |I*ll } does not have property (CHl) . Therefore it will be

sufficient to prove that for any subspace G c E the restriction to G of
a Kadec'-Klee norm ||l on E <s a Kadec'-Klee norm on G .
% - AN
Let {o,}c6*, o€, o ¢ 5> Mol > lloll . We shall
show that every subsequence {wn } c {wn} contains a subsequence {w }
k "k
m

such that l”(pn -(.p"l + 0 , which will complete the proof (since then
k

m

llo,lll >0 ).
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Let {fh} CE* , f € E* be any Hahn-Banach extensions (that is, with

the same norm) of {¢n} and ¢ respectively. Then

swp |7, || = o, |) <=
k "k k "

whence, since E 1is separable, {fh } contains a subsequence {f }
k

"%
m
w* w*
such that fh ——> h € E* . Then, from fh =e, — ¢ , We obtain
k k k
m m| m
h]G =¢ , whence [lolll = llzfl . On the other hand,
Wal < um 5, [ =2 flo, || = Wen.
oo k mo Mg
m m
hence H‘fh |” +> |2} . Consequently, since the norm on £ is a Kadec'—
m
Klee norm, ”'fh —h’” + 0 , whence, by restriction to G ,
k
m

"l¢n —wl“ > 0 , which completes the proof of Theorem 2.
k

m

REMARK 4., Theorem 2 shows, in particular, that there exist non-
reflexive Banach spaces FE 1in which there is no asymptotically monotone
non-shrinking basic sequence (although it is well known that in every
Banach space E there are asymptotically monotone basic sequences and in
every non-reflexive space E there are non-shrinking basic sequences);
indeed, for an asymptotically monotone basic sequence the coefficient
functionals span a proper subspace of characteristic 1 . 1In [I7] it was
proved that for every non-reflexive Banach space E , there exists in

E**\HE(E) an asymptotically monotone non-shrinking basic sequence.

REMARK 5. After this paper was completed, Dr J.R. Giles communicated
to us that Corollary 1 can be also proved by using a result of Tacon,
{14], Lemma 6, p. 420.
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