J. Aust. Math. Soc. 78 (2005), 273-290

TOPOLOGIES ON SPACES OF VECTOR-VALUED
MEROMORPHIC FUNCTIONS

ENRIQUE JORDA
(Received 19 December 2002; revised 30 October 2003)

Communicated by A. J. Pryde

Abstract

This paper presents two natural extensions of the topology of the space of scalar meromorphic functions
M () described by Grosse-Erdmannin 1995 to spaces of vector-valued meromorphic functions M (2, E).
When E is locally complete and does not contain copies of w we compare these topologies with the
topology induced by the representation M (2, E) ~ M (2)e E recently obtained by Bonet, Maestre and
the author.

2000 Mathematics subject classification: primary 46E40; secondary 46A03, 46E05, 30D30.

1. Introduction

Grosse-Erdmann gives in [4] a description of the locally convex topology defined by
Holdgriin in [7] on the space M (2) of meromorphic functions on a connected open
subset 2 of C as a projective limit of Fréchet spaces. Grosse-Erdmann shows that
the locally convex space M (€2) is a complete Montel space and that it contains the
space of holomorphic functions H (€2) as a topological subspace. This locally convex
topology seems to be natural in M (€2). Moreover, the projective description allows
him to give nice applications of the description of the dual of M (£2) [4, Section 5].
In this paper, we consider the space M(£2, E) of meromorphic functions with
values in a locally complete locally convex space E endowed with the topologies
which are the natural extensions of the projective and the injective limit description of
the topology in M (£2). We see that the inductive Holdgriin topology is generally finer
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than the projective topology, and that H (2, E) is a topological subspace of M (2, E)
endowed with either of these two topologies. In case that E is a Fréchet space the two
topologies coincide.

In {2], Bonet, Maestre and the author proved that if E is a locally complete locally
convex space which does not contain w as a subspace then M (2, E) can be canonically
identified with the e-product of Schwartz M (2)¢E. We consider in M (2, E) the
topology which makes this representation a topological isomorphism. We prove that,
if E has infinite algebraic dimension, this topology is strictly weaker than the projective
topology. Connected with this. Let us point out that the characterization of the locally
convex spaces which are locally complete [2, Proposition 2] stated in the next section
permits to conclude, by a classical argument (see [8, Theorem 16.7.4]), that if E is a
locally complete locally convex space then H (§2, E) >~ H(Q)e E holds topologically.

2. Notation and preliminaries

Throughout this paper Q denotes a complex domain (a subset of C which is open
and connected), and E denotes a complex locally convex space. Let I be an index set,
the product of locally convex spaces each one of them isomorphic to E is denoted by
E!, and their direct sum is denoted by E(. CM is denoted by w and C™ by ¢.

In the sequel we will use the Pettis integral. Given a compact subset K € C
and a function f : K — E, f is called Pettis integrable if there exists e € E such
that forevery u € E', uo f € L'(K) and u(e) = fK uo f(z)dz. Inthis case e is
called integral of f over K and we write ¢ := f «f (@) dz. Ttis well known that if f
is continuous and the closed absolutely convex hull acxf (K) is compact, then f is
Pettis integrable. In this case, an easy application of the Hahn-Banach theorem shows
that for every continuous seminorm p on £ the following inequality holds

¢y P(/f(z)dz) S/POf(z)dz.
K K

A function f : @ — F is called meromorphic if it satisfies that for each ¢ € Q
there exists k € N and there exists a sequence (a;(f ));>_, C E such that

o0

) f@=) af)z-a)

n=—k

uniformly in the compact subsets of the punctured open ball B(x, r) \ {«} for some
r > 0. We denote by M (2, E) the space of E-valued meromorphic functions (M (£2)
if E = C). For a meromorphic function f, we call the minimum k € N satisfying (2)
order of a at f (0,(f)). « is called a pole of f if 0,(f) > 0. The principal
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part of f at o is h*(f) := Z}"':(,f)a;j(f)(z — a)™. In case 0,(f) = O, then, at
a, either f is holomorphic or f has a removable singularity. From the definition it
follows that a meromorphic function is holomorphic except on a discrete set. The
space of E-valued holomorphic functions on € is denoted by H (2, E). We refer to
[6, Théoreme 2], [1, Section 3], [11, 7.4] and [5, 4.3] for equivalent definitions of
vector-valued holomorphic and meromorphic functions (see also [3, Chapter 11, 2}).
In all the results presented we also assume that E is locally complete. Recall that
a locally convex space is called locally complete if every absolutely convex closed
bounded set spans a Banach space endowed with its Minkowski gauge. In [2, Propo-
sition 2], the locally convex spaces E which are locally complete are characterized as
follows: E is locally complete if and only if for each Q2 open in R", for each compact
subset K of Q and for each weakly C' function f : Q — E, the set acx(f (K)) is
compact in E. Then, for E locally complete and f € M (L2, E), a classical argument
(see [8, Theorem 16.7.2] for vector-valued holomorphic functions) shows that, for
each o € 2 we can get a circle I" centered at « such that for every k € Z we can write

3 a(f) = e /(z - f () dz.
r

2mi

3. The topologies of Holdgriin and Mittag-Leffler

In this section we define the natural extensions to M (2, E) of the two topologies
in M (£2) studied and shown to coincide in [4]. The proofs of some of the results are
only indicated because they are simple extensions of those stated in [4] for spaces
of scalar meromorphic functions. We refer to [9, Capitulo 3] for the details of these
proofs.

A mapé: 2 — NU {0} is called positive divisor on €2 if there exists a discrete
subset P; of © such that §(z) = O for every z €  \ D. Given a positive divisor §
on , we denote by M (2, 8, E) the subspace of M (€2, E) of all the functions f which
are holomorphic on € \ P; and such that 0,(f) < §(«) for every ¢ € P;. In these
spaces we consider the topology inherited from H (2 \ P;, E) (that is, the topology of
uniform convergence on the compact subsets of Q \ P;).

PROPOSITION 3.1. For every positive divisor § on Q, the spaces H(S2, E) and
M (2,8, E) are topologically isomorphic.

PROOF. Given a positive divisor § on €2, we assume, without loss of generality,
8(a) # 0if ¢ € P;. We can get a holomorphic function g : Q@ — C, such that for
eacha € Ps, g(a) =0, lim,_,, g(z)/(z —a)’*® # 0and g(z) # Oforeachz € Q\ P;
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(see [14, Theorem 15.11}). We define the linear mapping

T-HQ,E)y—> MQ,8E), fmr— f—
4

We consider an arbitrary O-neighbourhood in M (£2, 8, E) of the form

U:= {f eM(Q,8,E) supp(f (7)) < 1},

147.4

where p is a continuous seminorm on E and K is a compact subset of 2 \ P;. Since
K is compact in € and g(z) # 0 for each z € K, we can get ¢ > 0 such that
inf,cx |g(2)] > €. If we consider the O-neighbourhood of H (2, F)

V.= {f € HQ,E) :supp(f (2)) < e],

ek

we have that T(V) C U, obtaining the continuity of 7.
If we consider natural extensions to P, then the inverse mapping of T is given by
T~'(f) = fgforeach f € M(2, 4, E). We consider a O-neighborhood in H (2, E)

V= {f € HQ,E):supp(f 7)) < 1},
zek

where p is a continuous seminorm on E and K is a non-empty compact subset of .
We can assume, without loss of generality, that K is non discrete and that every point
in K N Pj is an interior point of K. We set K N P; := {z; : 1 < i < n} (notice that
the set is finite because P; is discrete in 2 and K is compact), and we take r > O such
that the closed disc D(z;, r) C K and also D(z;, r) N Ps = {z;} for1 < i <n. We
consider the compact subset of 2\ P;

K=K\ JBG@.n.
i=1
K, is non-discrete (K, contains at least the union of the circles | J]_, S(z;, r) if
K N P; # ). Hence, the maximum value M of the modulus of g in K is strictly
positive. We consider now the 0-neighbourhood in M (€2, é, E)

U:= {f e M(Q,8,E):supp(f (2)) < i}
z€K, M

If f is an E-valued holomorphic function defined on an open set containing the closed
disc D{(a, r), then, for every continuous seminorm p on E the maximum of p o f
on D(a, r) is attained at the circle S(a, ). This is a consequence of the Maximum
Modulus Principle for holomorphic functions and the Hahn-Banach theorem. Thus,
if f € U, maxex p(T7'(f)(z)) = max,ex, |g2)p(f (z)) < 1, which is equivalent
to T-'(U) ¢ V, and T} is continuous. ]
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We denote by 2, the set of all positive divisors on € and we consider in it
the natural order 8, < §, if §,(z) < 8:(z) for every z € Q. It is easy to check
that the inclusions i : M(R2,68,, E) —> M(S, J,, E) are continuous for §; < §,.
Moreover, M(2, E) = Uae% M (82,8, E). Therefore we can endow M (L2, E) with
the topology given by the locally convex inductive limit inds;ce, M (2, 8, E), which
is called Holdgrtin topology (see [4, 71) and it is denoted by ty,. By Proposition 3.1,
the space (M (L2, E), tyo) is an inductive limit of copies of H (L2, E).

We denote by HZ(S2, E) the space of all E-valued functions defined on Q which
can be written as a sum of a holomorphic function and a rational function; more
precisely, f € HZ(Q, E) if there exists g € H(Q, E) and (a%)geq nen € EN
such that

f(Z)=g(Z)+ZZ$-

ae neN

The functions f € HZ(S2, E) are the meromorphic functions defined on  and
with values in E which have only a finite number of poles. We consider, in the
spaces HZ(R2, E), the topology endowed by H(Q2, E) x E®™M_ If we denote
by Z% q the family of all the relatively compact subdomains of €2, then M (L2, E) =
ﬂOEﬂ% HZ(0, E). Moreover, as in [4, Section 3.2], if O; € O, are two elements
of #€ q, the linearmap T : HZ(O,, E) - HZ(O\, E), f > f o, is easily seen
to be continuous. Thus, if we consider in Z% , the order of the inclusion, we can
endow M (K2, E) with the topology provided by the locally convex projective limit

4) Proj peze, H#(O0, E).

As Grosse-Erdmann does in the scalar case we call it the Mittag-Leffler topology
and we denote it by 1y,. If E is complete then also HZ(O, F) is complete for
each relatively compact subdomain O of Q. Thus, endowed with the Mittag-Leffler
topology, M (S2, E) is complete whenever E is. Moreover, E is easily seen to be
complemented in (M (L2, E), ty.). Hence the completeness of (M (2, E), tyy) is
equivalent to that of E. Again as it is done in the scalar case (see [4, Remark 2 (ii) and
Theorem 1]), we can obtain an equivalent projective description: the Mittag-Leffler
topology is generated by the seminorms || - ||, x5, Where p is a continuous seminorm
on E, K C Qis compact and b = (p})uek nen is a family of continuous seminorms
on E. Each one of these seminorms acts on a function f € M (2, E) as follows (see
[4, Theorem 1] for the scalar case):

) W llkps =supp ((f - Zh"(f)> <z)> + Y paa" ().

aek aek, neN
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REMARK. For (M (€2, E), ta.) to be Hausdorff one has to identify the meromor-
phic functions which coincide except on a discrete set. We do this throughout this
paper. Hence we can always assume that f € M (2, E) does not have removable
singularities. This identification is implicit in [2] and [4].

A proof analogous to the one of the first part of [4, Theorem 2], but using (1), (3)
and the claim, already used in the proof of Proposition 3.1, which asserts that if we
consider an E-valued holomorphic function f and a continuous seminorm p on E
then the maximum of p o f on a closed disc D(«, r) is attained on the circle S(a, r),
permits to show the next result.

PROPOSITION 3.2. The topology Ty is coarser than tyy in M(S2, E).

From the above proposition and the description (5) of the Mittag-Leffler topology,
by using an analogous argument to the one used in [4, Theorem 4 (b)], we obtaine the
next result.

PROPOSITION 3.3. 1y and ty, endow in M (2, 8, E) their topology inherited from
H(Q\ Ps, E). Inparticular, H(S2, E) is a topological subspace of M (K2, E) endowed
with any of these two topologies.

The technique which we use to show that the two topologies have the same bounded
sets differs from the one used in [4] for the scalar case. We characterize the metrizable
spaces admitting a continuous embedding in (M (€2, E), Ty, ), obtaining the desired
result as a consequence.

PROPOSITION 3.4. Every metrizable space F continuously embedded in the space
(M (82, E), tpr) has its image contained in M (L2, 8, E) for some positive divisor §
on Q.

PROOF. First we show that every subspace H of M (2, E) either is contained in
some M(S2, 8, E) or there exists a surjective continuous linear mapping from H
onto ¢.

Suppose that H is a subspace of M (2, E) such that there is no positive divisor §
on  for which H € M(R2, 8, E). We denote by P(H) the subset of 2 formed by
all the poles of the functions of H. The condition on H implies that either P(H)
is not discrete or there exists @ € P(H) such that for every n € N there exists a
function f € H such that 0,(f) > n. First we suppose that P(H) is not discrete
in . Since 2 can be written as a countable increasing union of relatively compact
subdomains, we can get a relatively compact subdomain O such that the cardinality
of the set (P(H) N O) is infinite. Since O is relatively compact, each f € M(Q2, E)
only has finitely many poles in O. Thus, the choice of O allows us to get inductively a

https://doi.org/10.1017/51446788700008089 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700008089

[7 Topologies on spaces of vector-valued meromorphic functions 279

sequence (fy, Zt, M, U)zey C H X (P(H)N O0) x N x E’ such that u; (a,™ (1)) = 1
anda,™(f;) = 0ifk > j (actually we can get each z; as a point in which the functions
{f; : J < k} are holomorphic).

Now we observe that, given a relatively compact subdomain O of €2, the projective
description (4) of (M (K2, E), t) yields the continuity of the projection

To: (M E), ty) = HRZ(O,E) = H(O, E) x E(ON,

fe (f - Zh“(f) |o’ (a;"(f))aeo,neN> .

ae0

Hence, Pp : (M(Q,E), tmr) — EON, f > (a;"(f Naconen is a surjective
continuous linear mapping. The continuity of the projection P, implies the continuity
of the mapping p : (M(R, E), 1) — E®™ defined by p(f ) = (a;™(f ))i2,- Hence
it is immediate that the linear mapping

T: HCM(Q,E), ) — @
f = (ula™ ()2,

is also continuous. To see that T is surjective we observe that, if we denote by C*
the subspace of ¢ formed by the sequences which have vanishing all the coordinates
greater than &, then this space is generated by span{T(f;) : j < k}. A similar
argument shows that if we supposed that there exists @ € P(H) such that there exists
a sequence (f,), C F and an increasing sequence (n;), C N such that 0,(f;) = n,
then H would be mapped continuously onto ¢.

Now, for a metrizable locally convex space F, we suppose that there exists a
continuous embedding A : F — M (2) suchthat A(F) is not contained in M (L2, 8, E)
for any § € 2. Then, by extending to the completion, we can find a continuous and
surjective linear mapping B : F > ¢. Thus, by the De Wilde’s open mapping
theorem [12, Theorem 24.30], F is a Fréchet space with a quotient isomorphic to an
infinite direct sum of copies of C, a contradiction. a

COROLLARY 3.5. The Mirtag-Leffler topology and the Holdgriin topology have the
same bounded sets in M(2, E). They are those which are contained and bounded in
M (R, 8, E) for some positive divisor § on SQ.

PROOF. As a consequence of Proposition 3.2, every tyg-bounded set is Ty .-
bounded. Conversely, if B is a 74, -bounded set, we apply Proposition 3.4 to ob-
tain that (the linear span of the closed absolutely convex hull of) B is contained in
M(S2, 8, E) for some & positive divisor on 2, and in this subspace both topologies
coincide. . O
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REMARK. Proposition 3.4 together with Proposition 3.1 implies that the subspaces
of M (2, E) endowed with any of the two topologies that we have seen in this section
which are Fréchet for the induced topology are isomorphic to Fréchet subspaces of
H (Q ) E ) *

THEOREM 3.6. If E is a Fréchet space, then tyy = Tty in M(2, E). In this case
M(Q2, E) is a Hausdorfflocally convex space which is complete and ultrabornological.

PROOF. Let E be a Fréchet space. To show the coincidence between the two
topologies, in view of Corollary 3.5, we only have to show that (M (2, E), tTy) is
bornological. This is obtained using the same method to the one used in the proof of
{4, Lemma 2 (b)] for M (£2). We only include a brief sketch of the proof. We fix an
absolutely convex subset U which absorbs 7, -bounded sets and we show that there
exists a relatively compact subdomain O of 2, a compact subset K of O, ¢ > 0 and
a continuous seminorm p on E such that if f € M (2, E) does not have poles in O
and satisfies sup,., p(f (z)) < ¢, then f € U. To obtain p one has to use that the
topology on E is generated by a countable set of seminorms. Once this is proved, we
observe that the subspace Z(0, E) of (M (2, E), 1y ) of all the functions f that can
be written in the form

o J
f(Z)'—'ZZ(—Z—_%a—)j,

a€0 j=1

all the vectors @/ = 0 but finitely many, is isomorphic to E©*™, Then it is bornolog-
ical. These facts are used to show that if we denote by V the set

f € M(Q,E):supp (f(z)— Eh“(f)(z)) <& Y h(f)e UNR(O, E)]

€k 73] acO

then V is a 0-neighbourhood in 7y, such that V C 2U.

The topological vector space M (2, E) is complete since it is a projective limit of
complete spaces and it is bornological since it is an inductive limit of Fréchet spaces.
Consequently it is ultra-bornological. O

A question which arises naturally is whether the equality between Mittag-Leffler
and Holdgriin topologies in M (€2, E) holds for (DF)-spaces E. We have not solved
this problem. However, we show below that the space M (2, ¢) endowed with the
Holdgriin topology is not bornological. From the projective description of the Mittag-

- Leffler topology in M (€2, E) for a locally complete space E, we know that, forn € N,
the projection over E givenby P "(f ) = a;"(f ) is continuous in M (2, E) endowed
with its Mittag-Leffler topology, and hence also if we consider the Holdgriin topology.
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PROPOSITION 3.7. For oy € 2, the linear mapping defined on M (2, E) and with
values in E, f +— ago(f ) is continuous for the topology Ty in the space of vector-
valued meromorphic functions.

PROOF. For each relatively compact subdomain O of €2, we denote by Py and Ty
the projections defined on (M (2, E), T4;,) and with values in E©©*™ and H(O, E)
defined by Po(f) = (a;"(f Naconen and To(f) = f — 3,0 h*(f) respectively.
Both of them are continuous as a consequence of the description (4) of the Mittag-
Leffler topology.

We fix a relatively compact subdomain O of Q containing oy and we fix n € N.
For each f € M(S2, E), we can assume without loss of generality that the function
f — h*(f) is holomorphic in a certain neighbourhood of aq contained in O. This
function can be developed by

©6) (f —h°(N@ =D al(F)z—a)

n=0

In the locally convex space H (O, E), the evaluation map at a fixed point is continuous.
Therefore, the continuity of T, implies that the mapping T : (M (2, E), Ty) — E,
f (f =Y o b (f ))(ao) is also continuous. Moreover, by (6), we have

aQ,(f) = (f —h™(f)(aw) = T(f) + ( > h“(f)) (o).

ae O,a#ay

Thus, we have only to show the continuity of the second part of the sum above. To do
this we observe that this element is the composition of P, with the continuous linear
mapping which maps every (a”)sc0.qen € E©O*N to

l n
Z ZmaaEE. |

ae0,a#ay neN

REMARK. On account of the fact that in the locally convex space H(O, E), the
linear mapping which maps each function to its n-th derivative evaluated at a fixed point
is continuous, a slight modification of the previous proof shows that the projections
over the positive terms in the Laurent development P (f ) = a;(f ) are continuous on
MR, E), tir)-

To study the space M (£2, ¢), we first note that this space is algebraically isomorphic
to M(Q)M. Actually, if f € M(Q, ¢) we can write f = (f,),, and the fact that the
set of zeros and poles of a non-zero meromorphic function is countable implies that
fr = 0except for finitely many n. We denote by 7, the (bornological) topology which
makes M (2, @) isomorphic to M ()™,
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PROPOSITION 3.8. In M (S2, @) the Ty -bounded sets (and consequently the tyq-
bounded sets) coincide with the t,-bounded sets.

PROOF. We identify C" with the subspace of ¢ formed by the sequences which
have vanishing coordinates greater than n. If B is bounded in M ($2)™, then there
exists n € N such that B ¢ M (2, C") and we can get a positive divisor § on £ such
that for each compact subset K of Q2 \ P; there exists M (K) > 0 such that for every
f = (fu)i_, € B we have f, € M(R2, 8) and sup,, |f+(2)| < M(K). That is, we
can choose & such that the n projections over M (£2) which are not identically zero
are contained and bounded in M (2, 8). Therefore, for each f € B, we have that
f € M(£2, 4, ¢) and for each compact subset K of Q\ P; and for each b = (by) € w,

sup ) |bufe(@)] = sup ) _ |befi(2)] < 00

ek k=1 ek P

Hence we conclude that B is bounded in M (2, 8, ¢) and thereby it is 7, -bounded.
Conversely, let B be a 13y, -bounded subset of M (£2, ¢). We suppose that there is no

n € N such that B is contained in M (§2, C*). We choose a sequence (f "), C B, with

f" = (f))L, and an increasing sequence (k,), C N such that k, > n and f # 0.

The subset of £ formed by the poles and zeros of the functions f;' with n, k € N is

countable. This allows us to select zo € Q in which every function f* is holomorphic

and different from zero. The linear mapping

P2 (M(Q,9),tM) — @
f o= &)

is continuous according to Lemma 3.7. It follows that (Pz?)(f ") = (f;(20))« and
fi(z0) # 0. Hence, for each n € N, the k,-th coordinate of the sequence (Pz‘;(f )]
of ¢ is different from zero and therefore there is no m € N for which Pg (B) is
contained C™, and then Pz‘; (B) is not bounded in ¢, a contradiction with the continuity
of Pg. Thus we can get a natural number n such that B C M(2, C"). As, by the
hypothesis and Corollary 3.5, B is contained and bounded in M (2, 8, ¢) for some
positive divisor § on 2, we have that the n projections of B over M (£2) which are not
identically zero are bounded in M (£2, §), and we conclude that B is 7,-bounded. O

PROPOSITION 3.9. The space (M (2, ¢), Tua) is not bornological.

PROOF. Since T, is bornological, the above proposition implies Ty, < 7;. We have
to show that 7, is strictly finer. We observe that if we assume the continuity of the
identity I : (M (L2, @), Tha) = (M (2, @), T,), then the restriction of I to H(£2, ¢) is
also continuous. Hence Proposition 3.3 implies that

(7 H(Q,¢) ~ HQ®N
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holds topologically. Since ¢ is complete, H (£2, ¢) is isomorphic to the completion of
the projective tensorial product H () ®, ¢ (see [8, page 366)), and then (7) contradicts
{13, Proposition 11.6.11]. a

REMARK. For a locally complete space E, it is not difficult to show that M (S2) is
a (complemented) subspace of M (§2, E) endowed with either of the two topologies
view. Thus, [4, Theorem 3 (b)] implies that M (2, E) is not metrisable nor nuclear
or Schwartz. Moreover, a similar argument to the proof of [4, Theorem 3 (b)] works
to show that (M (2, E), 1y ) is not separable. Then Proposition 3.2 implies that the
space (M (2, E), tyq) is not separable.

4. The injective topology

If F is a locally convex space, as usual, we denote by F the topological dual of
F endowed with the compact open topology. For E and F locally convex spaces,
L,(F.,, E)denotes the space of continuous linear maps from F_; into E endowed with
the topology of the uniform convergence on the equicontinuous subsets of F’. This
space is called g-product of Schwartz and it is denoted by E¢ F. In [2] it is proved that
if E does not contain a subspace ismorphic to w, then for each T € L(E , M(Q2))
there exists f € M(R2, E) such that T(«) = u o f, this correspondence being an
algebraic isomorphism. This representation has been used in [10] to obtain results of
meromorphic extension assuming only weak meromorphic extension. In this section
we study, for locally complete spaces E which do not contain copies of w, the topology
on M (K, E) which makes it isomorphic to M (2)¢E. This topology is called the -
topology and it is denoted by t.. We need some notation. (iven a continuous
seminorm p on E, we denote by U, ; the 0-neighbourhood of E formed by the vectors
e such that p(e) < 1. The polar set Uy , is the subset of E’ formed by the functionals
u such that |u(e)| < p(e) forevery e € E. The t,-topology in M (2, E) is generated
by the seminorms

@) Nfllp.xs= sup (SUP

o
uelp, \ zeK i

u (f - Zh“(f)) (2)

aek

+ Y b lu(a;"(f»l),

aekK neN

where K is a compact subset of €2, p is a continuous seminorm on E and b =
(BD)ack.nen € RE*N. Moreover, [4, Theorem 1] yields that this system of seminorms
is directed; that is, given K C K, two compact subsets of 2 and b € {Rf *N there
exists ¢ € RN such that || f Il,.x.6 < IIf ll,.x,.c for each p continuous seminorm on
E and foreach f € M(RQ2, E).

First we see that the e-topology is weaker than the Mittag-Leffler topology and
after this we check that it is actually strictly weaker if E is infinite dimensional.
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PROPOSITION 4.1. If E does not contain w as a subspace then the topology 1, is
coarser than Tty in M(Q2, E).

PROOF. To establish the claim we have to show the continuity of the algebraic
isomorphism T : (M(Q, E), tmr) — M(Q)eE, f — T;, where T; (u) = uo f for
each u € E’. We identify f and T; for each f € M(Q2, E). We fix a continuous
seminorm p on E, a compact subset K of & and b = (b])yck nen € [Rf *N and we
consider the continuous seminorm || - ||, k5, for 7, as in (8). But the seminorm | - |
defined on M (Q2, E) by

f1:=supp (f Zh“(f)) @+ Y Bp@()
zeK aek,neN
is continuous for the Mittag-Leffler topology according to (5). We observe that
a;"(uof)=u(a;"(f)) holds for each f € M(2, E), for each n € N and for each
u € E'. Hence |f |k, < |f|foreach f € M(Q, E). O

To see that the Mittag-Leffler topology is strictly stronger that the e-topology we
need to use a characterization of the locally convex spaces (not necessarily locally
complete) which are nuclear. For a locally convex space E, in [8, 15.7 and 16.5]
are defined the space I;[E] of unconditionally o (E, E')-Cauchy sequences and the
space [;{E} of absolutely Cauchy sequences. By [8, Theorem 21.2.1], the locally
convex spaces spaces E which are nuclear are those for which [,{E} = [,{E] holds
algebraically and topologically. This characterization can be written as follows.

LEMMA 4.2. E is nuclear if and only if for each continuous seminorm p on E there
exists a continuous seminorm q on E and § > O such that, for each finite subset

{x1,...,x,) Of E,

© sup > ()l <5 = Zp(x)<1

“GU;1 i=1

PROPOSITION 4.3. Let E be a locally complete locally convex space which is not
nuclear and does not contain w as a subspace. Then the topology Tty is strictly finer
than the topology t. in M(2, E).

PROOF. Let E be a locally complete space wich does not contain £2 and such that
T, = Ty on M (2, E). We fix a continuous seminorm p on E and an uncountable
compact subset K, of Q. We define the following seminorm on M (2, E) which,
according to (5), is continuous for Ty

If Nkop := supp ((f - Zh"’(f)) (z)) + > p"(f)).

2€ko aeky aeKg,neN
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By the hypothesis || - || x,.» is also continuous for t.. Therefore we can find a seminorm
Il - | , 6.4 @s in (8) for a compact subset Ky 2 K of 2, a continuous seminorm g on E
and a vector b = (b}) € Rf‘XN such that ||f || x,p < IIf k.64 foreach f € M(Q, E).
We define the sets B; = {(o,n) € Ko x N : |b}| < j}. We have that K, x N can
be written as the countable union of these sets and therefore we can get j, € N such
that B, is infinite. We define ¢ = (c?) € R¥*N by

o YJo if (a,n) € B;

“7|br  otherwise.
If we consider the 1,-continuous seminorm || - || ¢,.c.; then we have
(10) W lkop < Uf iy g < NS lkyicq

for each f € M(Q2, E). We take a sequence (a;, n;);2, of different points of Bj,.
For an arbitrary finite subset (x;)7., of E, we consider the meromorphic function
f @) =" (z—a)™x;, and apply (10) to f to get

m 1 m
sup Y fu(x)| < — = Y plx)<l
uelUgy o Jo i=1

Therefore Lemma 4.2 yields that E is nuclear. O

Now we introduce a concept closely related to the well-known countable neigh-
bourhood property (see [13, Definition 8.3.4]) satisfied by all the (DF)-spaces.

DEFINITION 4.4. Let o be a cardinal number. A locally convex space E is said
to satisfy the a-neighbourhood property if for each index set I with cardinality not
greater than o and for each set (p;);c; of continuous seminorms on E there exists a
set (¢;);e; of positive numbers and a continuous seminorm p on E such that p; < ¢;p
for every i € 1. Equivalently, if given a set (U;);e; of 0-neighbourhoods in E there
are a(i) > 0 such that U := (,, a(i) U; is a O-neighbourhood in E.

The a-neighbourhood property is easily checked to be inherited by subspaces. It
is also clear that every normed space satisfies the a-neighbourhood property for every
cardinal number a. We are interested in the case when ¢ is the continuum cardinal 2%.
There exist non-normed spaces E which satisfy the 2%-neighbourhood property. For
instance, if I is an index set whose cardinality is strictly greater than 2% and we
define E as the space [ (I) endowed with the topology of uniform convergence on the
subsets of I with cardinality no greater than 2%, then we have that E is a non-normed
space which satisfies the 2™ -neighbourhood property.
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LEMMA 4.5. Let E be a nuclear locally convex space. Then E satisfies the
2% -neighbourhood property if and only if E is finite dimensional.

PROOF. Every space of finite dimension is a normed space and then satisfies the
a-neighbourhood property for every cardinal number «.

If we suppose that there exists an infinite dimensional nuclear space E satisfying the
2%-neighbourhood property, then we could obtain a subspace F of E with countable
algebraic dimension. Thus F is nuclear and it satisfies the 2% -neighbourhood property
as a subspace of E. The space F endowed with its finest locally convex topology
is isomorphic to the separable space ¢. Then F is also separable with its topology
inherited from E. We select a subset D of F which is countable and dense. Let
(Uy)icr be a basis of pairwise different closed 0-neighbourhoods of F such that each
U is the closure of its interior. We consider the map defined on I and with values
in P(D) (the set formed by all the subsets of D) which maps each i € I to the set
U; N D. We observe that for each e; € U; and for each open set V containing e;, by
the hypothesis, V meets the interior of U;. Consequently, the intersection of V with
the interior of U; is a non-empty open set and then V N U; N D # @. Thus we have
that U; N D = U, and from this it follows that the mapping i — U; N D is injective.
Then we have that |I| < 2%. Now we apply that F satisfies the 2%-neighbourhood
property to obtain that F is normed. As F is also nuclear, then it is finite dimensional
by the Dvoretzky-Rogers theorem, a contradiction. O

THEOREM 4.6. Let E be a locally complete locally convex space which does not
contain w as a subspace. The locally convex topologies T, and Ty, coincide in
M (2, E) if and only if E is finite dimensional.

PrROOF. By Proposition 4.3 if both topologies coincide in M (S2, E) then E is
nuclear. Suppose that E is nuclear. We show that the equality between the topologies
is equivalent to the 2™ -neighbourhood property, obtaining then the desired claim by
applying Lemma 4.5. Let E be a space as in the hypothesis satisfying 1, = Ty
and let (p;);e; be a set of continuous seminorms on E such that [I| < 2®. Let K
be a compact subset of Q with |K| = 2%. We define a mapping i : K x N — [,
(o, n) — i(a, n), such that i is surjective. If we define p); := pi(,n, then we have
{p2}renwex = {pi}ier- Let p be any continuous seminorm on E. We define the
0-neighbourhood in the Mittag-Leffler topology

U:= feM(SZ,E):suI;()po(f—Zh“)(f)(z)+ > p;(a;"(f))<1].

aek ackK,neN

By the hypothesis there exists § > 0, a compact subset K, of 2 (which we can assume
to contain K), a continuous seminorm g on E and a set (b})yek, nen Of positive
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numbers such that, if we denote by V the 0-neighbourhood in 7, formed by the
functions f € M(Q2, E) which satisfy

uo (f Zh“(f)) @)+

QEK]

sup
€K,

Y Brlua;" ()l <

aeK,,neN

for each u € Uy ,, then it holds V € U. Looking at functions of the form f (z) =

(z—a)™x withx € E and (o, n) € K x N, we get that, for each x € E it holds
bygx) <88 = p,x)<l.

Hence we conclude that E satisfies the 2% -neighbourhood property.

Conversely, if we suppose that E has the 2%-neighbourhood property, by Proposi-
tion 4.1 we have only to show that 7y, < t.. We consider an arbitrary 0-neighbourhood
of the basis in the Mittag-Leffler topology

U—[feM(Q E): supq(f Zh“(f)><z)+ 3 q:(a;"(f>><1],

aek aeK,neN

where g and g are continuous seminorms on E and K is a compact subset of Q.
By applying the 2™-neighbourhood property to the seminorms (g”)yck nen We get a
continuous seminorm p on E and positive numbers b} suchthatg < p,and g, < blp,
foreach @ € K and each n € N. Thereby, if we consider the 0-neighbourhood in 74,

= [f € M(Q,E): supp (f - Zh“(f)) @+ Y. bp@a ()< 1]
€k aek aeK,neN
then we have that W C U. Since E is nuclear, we can apply Lemma 4.2 to obtain that
there exists a continuous seminorm r on E such that, for each finite subset {x, ... , x,}
of E, there exists § > 0 such that

(11) sup Zlu(x)|<6 = Zp(x)<—

uell)

From the fact that for every f € M (2, E) and for each compact subset K of €2 the
subset of K x N formed by the (e, n) for which a;"(f) # 0 is finite and (11), it
follows that if we denote by V the 0-neighbourhood in 7, formed by the functions
f € M(K2, E) which satisfy

u (f —Zh“(f)) @)+

aek

Z b, lu(a;"(f))l) <8

aek,neN

sup | sup
uely, \ zeK

then V C W C U, concluding the proof. |

https://doi.org/10.1017/51446788700008089 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700008089

288 Enrique Jorda {16]

LEMMA 4.7. (a) Forevery positive divisor § on , the topology 7. on M(R2, 6, E)
coincides with its natural topology inherited from the space H(Q2 \ P;, E).
(b) The projections P;" . (M(Q, E),t.) = E, f +— a "(f), are continuous for
every a € 2 and for every n € N.

PROOF. The description (8) of 1. implies (b) and, together with Proposition 3.2 and
Proposition 4.1, also implies (a) as in [4, Theorem 4 (b)]. O

THEOREM 4.8. If F is a Baire space continuously embedded in the space
(M(2, E), 1.), then there is some positive divisor § on Q2 such that the image of
F under the embedding is contained in M (L2, 4, E).

PROOF. We denote by A the continuous embedding. Let (O,), be a sequence of
relatively compact subdomains of €2 such that the closure of O, is contained in O,
forevery n € Nand Q = Un 0,. We fix n € N and, for m € N we define O,,, as
the subset of F formed by the vectors e such that A(e) is a meromorphic function
which has in O, at most m poles. It is clear that F = UmGN O,... We show that O,,,
isclosedin F. Let ¢ € F \ O,,. There exist distinct points {«, ...} in O, and
natural numbers ky, ... , k4 such that Paj"" (A(e)) #Oforeveryl <i <m+1. By
Lemma 4.7 (b), the subset

m+1

H := (P, (C\ {0}

i=1

is open in (M (2, E), t.). The continuity of A implies that A~!(H) is an open subset
of F containing e which does not meet O,,. Thus, since F is a Baire space we
conclude that there exists mqy € N such that O, ., has non-empty interior. We observe
that it holds O,,, + O,m C Onom and AO,,, = O,,, for each A € C\ {0} to conclude
that there exists a 0-neighbourhood in O, ,,,. This yields that F = O, ,,. It is not
difficult to show that, for each subspace G of M(Q2, E), if f € G,a € O, isnot a
pole of f and there exists g € G such that « is a pole of g, then there exists ¢ > 0
such that if 8 € Csatisfies 0 < |8| < ¢ then each pole of f in O, and also « are poles
of f + Bg € G. Thus, the equality F = O, 24, yields that the subset of O, formed
by the points which are poles of the meromorphic functions which belong to A(F) is
finite. Hence, if we denote by P (F) the subset of Q2 formed by the points which are
poles of meromorphic functions which can be written as A(e) with e € F, we have
that P(F) is discrete in Q.
Now we fix @ € P(F). We define

Fp:=(\(P;*oA)(0).

k=n
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Each F” is a closed vector subspace of F. Moreover, we have F = | J>-, F”. Since
F is a Baire space, we can get n(a) € N such that F = F*®. Then we can define
§:Q — NU{0} by é(x) = n(a) if ¢ € P(F) and §(«) = O otherwise. We have that
8 is a positive divisoron Q and F C M (R, 6, E). a

COROLLARY 4.9. If E is a locally complete locally convex space which does not
contain a subspace isomorphic to w, then the subsets of M(Q2, E) which are t.-
bounded are the same ones that the Ty -bounded (or tyg-bounded) sets.

PROOF. (M (S2, E), t.) is the locally complete space M(Q2)eE (since M (2) and
E are locally complete). Therefore the conclusion follows as in Corollary 3.5 by
applying Lemma 4.7 (a) and Theorem 4.8. O

COROLLARY 4.10. If E is an infinite dimensional locally complete locally convex
space which does not contain copies of w then (M (2, E), t.) is not bornological.
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