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Abstract

Unravelling apparent paradoxes has proven to be a powerful tool for understanding the complexities of special relativity.
In this paper, we focus upon one such paradox, namely Bell’s spaceship paradox, examining the relative motion of two
uniformly accelerating spaceships. We consider the view from either spaceship, with the exchange of photons between the
two. This recovers the well-known result that the leading spaceship loses sight of the trailing spaceship as it is redshifted
and disappears behind what is known as the ‘Rindler horizon’. An immediate impact of this is that if either spaceship
tries to measure the separation through ‘radar ranging’, bouncing photons off one another, they would both eventually
fail to receive any of the photon ‘pings’ that they emit. We find that the view from this trailing spaceship is, however,
starkly different, initially, seeing the leading spaceship with an increasing blueshift, followed by a decreasing blueshift.
We conclude that, while the leading spaceship loses sight of the trailing spaceship, for the trailing spaceship the view of
the separation between the two spaceships, and the apparent angular size of the leading spaceship, approach asymptotic
values. Intriguingly, for particular parameterisation of the journey of the two spaceships, these asymptotic values are
identical to those properties seen before the spaceships began accelerating, and the view from the trailing spaceship
becomes identical to when the two spaceships were initially at rest.

Keywords: methods: analytical — methods: numerical

1 INTRODUCTION

The discussion of apparent paradoxes in physical theo-
ries have proven to be powerful means of elucidating key
theoretical concepts, and Einstein’s relativity is no ex-
ception. While there has been significant focus upon the
‘twin paradox’ and ‘barn-and-pole paradox’, both occu-
pying a significant number of pages in the literature and
textbooks, more recent discussions have considered uni-
formly accelerating spaceships in what has become known
as ‘Bell’s spaceship paradox’ (Dewan & Beran 1959; Bell
2004).

In this paper, we re-examine the question of uniform ac-
celeration in special relativity, with a focus upon the view
from the two spaceships in Bell’s paradox. We consider
the exchange of light signals during their flights, recov-
ering established results, as well as uncovering novel and
intriguing outcomes in terms of the view from the space-
ships. The layout of this paper is as follows: in Section 2,
we review in detail the discussion of Bell’s spaceship para-
dox in the literature, while in Section 3, we outline the
approach adopted in this paper. The results and discus-
sion are presented in Section 4, and the paper concludes in
Section 5.
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2 BELL’S SPACESHIP PARADOX

Bell’s spaceship paradox has a long, and sometimes contra-
dictory, history in the story of special relativity, see Evett
(1972), Nikoli¢ (1999), Nikolic (2000), Cornwell (2005),
Styer (2007), Redzi¢ (2008), Franklin (2010), Franklin
(2013), Marzlin & Lee (2014), and Redzic (2014) for several
examples of contributions to the literature, and the reader is
directed to the recent review by Fernflores (2011) for a more
complete discussion. The starting point is to consider two
spaceships initially at rest with respect to each other. At atime
that is synchronous in the rest frame of the spaceships, they
fire their engines and undergo uniform acceleration; here,
uniform implies that the crews of the spaceships experience
identical and constant ‘g-forces’ as the spaceships accelerate.
Given the identical nature of the acceleration experienced by
the spaceships, their separation in the original rest frame re-
mains constant. Their world-lines in the coordinates of this
frame differ only by an offset: Xicading (f) = Xtraiting(f) + L.
The paradoxical aspect of the Bell’s scenario comes from
considering a taut thread strung between the two spaceships
while they are initially sitting at rest. Once the spaceships
begin to accelerate, what happens to the thread? There are
three options, namely that it remains taut, sags, or stretches
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until it eventually breaks. A cursory examination of the prob-
lem might suggest that, due to relativistic length contraction,
the distance between the two spaceships decreases and so the
thread will sag. Or, the string and the distance between the
spaceships will contract equally, so the thing will be unaf-
fected. However, when examined in detail, it is found that
the distance between the spaceships increases, so the string
snaps.

Perhaps, the clearest way to see that the string snaps is pre-
sented by Maudlin (2012). Suppose that after some time, f¢pq,
both spaceships shut off their engines and return to inertial
motion at coordinate velocity vepg in the original rest frame.
Note that this can be achieved by the spaceship pilots agreeing
to burn their engines for exactly the same amount of proper
time before shutting them down. While the rockets shutting
down their engines is seen to be simultaneous in the original
rest frame, these events will not be simultaneous to the pilots
on-board the spaceships (e.g. Boughn 1989). However, the
resultant world lines after the acceleration are straight and
parallel. If the string returns to the same equilibrium state as
before the acceleration, with the same forces balanced be-
tween atoms that make up the string, then a beam of light
bounced off the far end of the string will return in the same
amount of time as before the acceleration. If the light takes
longer to return, then this can only mean that the distance is
greater and the string must have stretched and snapped; we
will return to this question of ‘radar-ranging’ through the ex-
change of photons in detail in Section 4.1, but here we give
an outline of the results.

Figure 1 presents a systematic representation of two space-
ships under consideration in Bell’s paradox, with the red line
indicating the leading spaceship, while the blue line is the
trailing spaceship. The grey line denotes the path of a light
ray exchanged between the leading and trailing spaceship.
Before the acceleration, the bouncing light returns to the sta-
tionary spaceship after Afyetore = 2. We can similarly trace
a radar-ranging photon on a space-time diagram after the
acceleration has ceased and the spaceships are in uniform
motion, and calculate the proper time between its emission
and reception. We find that the time taken for the photon to

return is Atyper = 2/4/1 — veznd /c2. The distance between the
spaceships has expanded, and the string has snapped.

We can also reconstruct the series of events in the instan-
taneous reference frames of each of the spaceships. Consider
the trailing spaceship at some time during the accelerating
phase. In the coordinates of the original rest frame, the si-
multaneity slice of the rocket is tilted upwards with respect
to the x-axis. Given an event at time ¢ on the world-line of
the trailing rocket, the simultaneous event (according to the
trailing rocket) on the world line of the leading rocket is at a
larger value of 7. While the acceleration is symmetric in the
original frame, the trailing rocket concludes (having recon-
structed the series of events in its instantaneous frame) that
the leading ship is in fact accelerating more rapidly, as it is
travelling faster at any given time. Conversely, the leading

PASA, 35, e001 (2018)
doi:10.1017/pasa.2017.70

https://doi.org/10.1017/pasa.2017.70 Published online by Cambridge University Press

Lewis et al.

6 — T T T

51 Trailing Spaceship |

4t i

3k §
T

2L Leading Spaceship 4

X

Figure 1. An illustrative space-time diagram of the paths of the two space-
ships under consideration for this paper, with the leading spaceship shown
in red, whereas the trailing spaceship shown in blue. Example exchanges of
photons are shown in grey.

ship concludes that the trailing ship accelerated more slowly;
thus, the string snaps. This is not merely a consequence of the
finite speed of light. That is, it is not about what the trailing
ship sees. It is consequence of the relativity of simultane-
ity, and the changing slices of simultaneity as the spaceships
accelerate.

The majority of the literature on Bell’s spaceship paradox
has focused upon this question of what happens to the taut
string between the ship, with examinations of the question
of relativistic stress in accelerating objects. However, in the
remainder of this paper, we will turn to less-explored ques-
tions regarding the relativistic influence on their view of each
other.

3 APPROACH

To understand the view from each spaceship, we will con-
sider acceleration within special relativity, a topic which has
been discussed in detail elsewhere [see Chapter 5 of general
relativity by Hartle (2003) for an excellent discussion] and
here we provide a summary of the key points. The motion
of an accelerating spaceship through space-time is described
by a 4-velocity, u*, and 4-acceleration, a*, the motion obeys
key normalisation relationships, namely,

U= ngpu* uf = -2,
a~a=170,,3a‘”aﬂ= g,
u-a:naﬁu”aﬁ_

|
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where c is the speed of light. Here, 1,4 are the components of
the Minkowski metric of flat space-time, and g is the magni-
tude of the acceleration, experienced as a g-force within the
spaceship. The final expression here demonstrates that
the 4-velocity and 4-acceleration remain orthogonal during
the motion, see the work of Rindler (1960) for a detailed
discussion of orthogonality and the hyperbolic nature of rel-
ativistic motion.

In this paper, we will consider uniform acceleration, such
that the magnitude of the acceleration is the same in the in-
stantaneous reference frame aligned with the spaceship. For
motion purely in the x-direction, the world line of a spaceship
has an analytic form, namely,

x* = (ct(7), x(1))
2

CE (sinh (%) , cosh (%) + C) s (1

where 7 is the proper time experienced by an observer on the
accelerating spaceship. The acceleration begins at the proper
time of T = 0, corresponding to a coordinate time of r = 0,
and C is a constant set by the starting spatial location of the
spaceship. The components of the 4-velocity are given by

u = (céi—;, %) —c (cosh (%) , sinh (%)) . 2)

In examining the situation as described in Bell’s spaceship
paradox, the two spaceships are initially considered to be at
rest within a particular coordinate system, with one spaceship
at the origin, x = 0, while another is located at x = L; clearly,
in this reference frame, the two spaceships are separated by
L. At a coordinate time of r = 0, the two spaceships fire their
engines to produce an identical uniform acceleration, and the
motion is described by the above equations. The space-time
diagram shown in Figure 1 demonstrates these paths, with the
leading spaceship shown in red, while the trailing spaceship
is shown in blue. Again, note that the separation between the
two spaceships in the initial reference frame remains L for
the duration of the journey.

Within the flat space-time of special relativity described
by the Minkowski metric, the null paths traced by photons
are lines at 45° in (ct, x) coordinates, and therefore the trajec-
tories of photons exchanged between the two spaceships can
be determined from purely geometric considerations, two ex-
ample paths of photons that are exchanged between the two
spaceships are shown in Figure 1. To determine the relative
energies of the exchanged photons, we can use the fact that
the energy of a photon with a null 4-momentum of k* = (k/,
k*) as seen by an observer with a 4-velocity of u* = (u', u*)
is given by

E=—-k-u= —naﬁk“uﬁ 3)

[see Narlikar (1994) for a generalised discussions of redshifts
in relativity]. With this, the energy of a photon as observed
by one spaceship, E,, compared to the energy it was emitted
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by the other spaceship, E., is given by

& _ naﬁkaug
Ee naﬁk“ueﬂ.

C)

Given that photons follow null paths, in the Minkowski space-
time k' = |k*|, where the absolute aspect of the spatial com-
ponent accounts for photon paths in either the positive or
negative x-direction. With this, the relative energies of the
photons is given by

! X
By _ %4

= , 5

E. ul, F ug )
where the positive term is for photons travelling in the nega-
tive x-direction, while the negative term is for photons trav-
elling in the positive x-direction.

4 RESULTS

Given the analytic form of the 4-velocity in Equation (1),
and the geometric form of the photon path, we are able
to drive expressions for the relative emitted and observed
photon energies between the two spaceships. In the follow-
ing, the subscript, /, refers to the leading spaceship, while ¢
is the trailing spaceship. Additionally, we adopt units in which
the speed of light, ¢ = 1, in which we employ a normalised
acceleration given by a = &

¢’

4.1. Radar distance

The concept of radar distance is well established in relativis-
tic physics, with an observer measuring the time taken for
a photon to travel to an object of interest and back again.
In Figure 1, the grey photon path from leading spaceship to
trailing spaceship and back again to the leading spaceship,
representing a single ‘ping’ in the leading spaceship’s de-
termination of the radar distance to the trailing spaceship
(Lewis et al. 2008; Perlick 2008). Given the analytic form of
the spaceship paths given by Equation (1), we can relate the
proper times for the emission and receipt of light rays dur-
ing the accelerated portion of the spaceships’ journeys. For
a light ray travelling in the positive x-direction, this is given
by

exp(—at;) = exp(—ar;) —al, 6)

whereas for a light ray travelling in the negative x-direction,
the corresponding expression is

exp(art;) = explat;) —a L. @)

Using these expressions, it is straightforward to calculate the
radar distance determined by the two spaceships and these
are presented in Figure 2, for an acceleration of a = 0.5 and
L =1, we note that there is a degeneracy between the sepa-
ration and acceleration, with present equations above depen-
dent upon only their (dimensionless) product, namely a L.
Here, the solid line denoted the light travel time as a func-
tion of the proper time that a photon is emitted, whereas the
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Figure 2. The radar distance as measured by the leading spaceship in red
as a function of the proper time photons are emitted (solid) or subsequently
received (dashed). The corresponding radar distance for the trailing space-
ship is presented in blue. As for the previous figures, this is presented for a
fiducial case where a = 0.5 and L = 1.

dashed line is as a function of the proper time that a photon
is received. The red curves represent the view from the lead-
ing spaceship, whereas the blue curves are for the trailing
spaceships.

In examining the solid curves in Figure 2, it is immediately
apparent that the radar distance for both spaceships diverges
at a finite proper time. This is understandable due to presence
of the Rindler horizon for the leading spaceship as eventu-
ally it will outrun any photon emitted or reflected from the
trailing spaceship, and so the return journey required for the
radar ‘pings’ become impossible. But as we have seen previ-
ously, while the leading spaceship loses sight of the trailing
spaceship as it slips behind the Rindler horizon, the trailing
ship continues to view the leading spaceship, even though it
can no longer measure a finite radar distance. So it would
be able to see the leading ship’s tail-lights, but would be un-
able to illuminate the ship with its own headlights. This also
confirms the resolution of the original Bell’s paradox: as the
ships accelerate, the (radar-ranging) distance between them
increases, snapping the string. In the final section of this pa-
per, we will consider the apparent angular size of the two
spaceships as determined by those travelling on them.

4.2. Blueshift and redshift

4.2.1. View from the leading spaceship

When considering the view from the leading spaceship, it
must be remembered that when it begins its acceleration,
it is still receiving photons from the trailing ship that were
emitted before it begins its acceleration. So, for the initial
stages of its journey, the 4-velocity for the photon emitter
is given by u% = (u}, u}) = (1, 0). Eventually, the leading
spaceship will receive photons from the trailing spaceship
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after it begins its acceleration, where the 4-velocity is given
by the above relations.
With this, for the first stage of the journey, the relative
energies of the photons is given by
Ey

£ exp(—ar), (8)

while the second stage of the path, this is given by
E; 1

. S— 9
E; 1+4+alL exp(at) ©)

where 7 is the proper time recorded on a clock on the leading
spaceship. The transition between these two relations occurs
at
1
n=—-log,(1—al). (10)

a

4.2.2. View from the trailing spaceship

As with the view of the leading spaceship, when the trailing
spaceship begins its acceleration, it is still receiving photons
from the leading spaceship when it was at rest, so again u =
@, u}) = (1,0), and, again, the trailing spaceship begins to
receive photons from the leading spaceship once it begins
its acceleration. In this circumstance, the ratio of the photon
energies for the first stage of the accelerated path is given by

E
— = exp(ar,) (11)
E;

and the corresponding values for the second part of the jour-
ney is given by
E, 1

- (12)
E 1 —alL exp(—ar)

where 7, is the proper time recorded on a clock on the trailing
spaceship. The transition between these two relations occurs
at

1
w=—-log,(14+al). (13)
a

4.2.3. Interpretation

Figure 3 presents a graphical illustration of these results,
again for an initial separation of L = 1.0 and an acceleration
of a = 0.5, with the red curve representing the view from
the leading spaceship, while the blue curve is the view from
the trailing ship; again, we note that the results depend only
upon the product of these two quantities. As per the above
expressions, the leading spaceship’s views the trailing ship
as being increasingly redshifted, with the observed energy
dropping to zero as the image of the trailing ship is frozen on
what is known as the Rindler horizon (Rindler 1966).

This freezing on the Rindler horizon can also be seen
in Figure 4 which presents the proper time on the emitting
spaceship when a photon is emitted, and the corresponding
time on the receiving spaceship when the photon is observed.
Again, the red curve corresponds to the case where photons
are emitted from the trailing spaceship and observed by the
leading spaceship, whereas the blue curve is the case where
photons are emitted from the leading spaceship and received
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Figure 3. The observed blue/redshift of photons as seen by the leading
spaceship (red curve) and trailing spaceship (blue curve) as a function of
the proper time of the observe. The distinct breaks in each of the curves de-
lineates the point in the journey where there is a transition between observing
the emitting spaceship from being stationary to accelerating. As noted in the
text, the leading spaceship loses sight of the trailing ship, with the observed
energy tending to zero. The trailing spaceship initially sees an increase in
the blueshifting of the leading spaceship, before it decreases back towards
unity.

Proper time of emitter

0 2 4 6 8 10 12 14
Proper time of observer

Figure 4. The relationship between the proper time of the emitting space-
ship when a photon is emitted, compared to the proper time on the observing
spaceship when the photon is received. The red curve represents the case of
a photon being emitted from the trailing spaceship and being observed by
the leading spaceship, while the blue curve corresponds to the emission
of photons from the leading spaceship and being observed by the trailing
spaceship.

by the trailing spaceship. Considering the red curve, it is clear
that proper time of the emitter is asymptoting to a particular
value as the redshift increases, demonstrating the freezing of
the image of the trailing spaceship on the Rindler horizon.
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Examining the blue curves in Figures 3 and 4 reveals that
the view from trailing spaceship is quite different, with the
asymptotic behaviour of the relative energies tending to unity,
so there is no net redshifting or blueshifting, and the relative
ticking of the clocks becoming in sync. Hence, the trailing
ship appears to settle back into the view before the acceler-
ation began. We will return to the interpret the asymptotic
behaviour of the emitted and observed photon energies in the
next section.

In re-examining the results presented in Equations (9) and
(12), in the limit where the acceleration and separation as
small, we note that the exponential terms tends to unity and
the ratio of the observed photon energies depend upon aL.
The form is equivalent of the observed photon redshifting and
blueshifting in a uniform weak gravitational field which is
dependent upon the potential difference between the emitter
and the observer, with a L being equivalent to A® = gh, such
aresultis expected from the relativistic equivalence principle
of uniform acceleration and a uniform gravitation field, and
the reader is directed to Chapter 6 of Hartle (2003) for more
details.

4.3. Angular size

Unlike radar ranging, which requires a two-way exchange of
light, ‘seeing’ only requires light to travel in one direction.
For the purposes of this study, we will consider the angular
size of each spaceship as determined from the other. In cal-
culating this, we assume each spaceship is a disk of radius d
orientated perpendicular to the x-direction. It is straightfor-
ward to connect light paths leaving the edge of one of the
spaceships to a camera at the centre of the other by using the
fact that these paths must be null:

—(1(7) = 1(7)) + (x(r) = x(1))* + d* = 0, 14

where 7; and 1; are the proper times experienced on each of
the spaceships. For the purposes of this study, we decided to
employ a numerical root-finder to identify the null paths.

Once the light paths are identified in space-time, their ori-
entation relative to the camera can be determined. However,
it is essential to transform these into the observer’s frame
to determine the angle as discerned by the camera. For this,
we identify an orthonormal frame [see Hartle (2003), chap-
ter 8 for details] with the observer and can transform the
x-component of the photon 4-momentum to be

pr=pu = pu, (15)
where u' and u* are the components of the 4-velocity of the
observer, and p’ is determined from the fact that photon paths
are null.

For the purposes of this study, we solve this problem nu-
merically and in Figure 5 we present the apparent angular
size of the two spaceships. For this, we assume that d = 0.01,
with L =1 and a = 0.5 assumed previously, with the red curve
denoting the view from the leading spaceship, while the blue
curve represents the view from the trailing spaceship.
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Figure 5. The apparent angular size of the two spaceships as viewed from
each other, with the red being the view from the leading spaceship, and the
blue being the view from the trailing spaceship. As in previous examples,

L =1,a=0.5, and the radius of the spaceships is d = 0.01.

The view from each spaceship is starkly different. The trail-
ing spaceship sees the leading steadily decreases in angular
size, getting smaller and smaller as the two spaceships accel-
erate. However, the leading spaceship initially sees the trail-
ing spaceship grow in size; this, of course, is a well-known
special relativistic result, where an observer at relativistic
speeds sees objects, such as a distant star-field, apparently
pile up in the direction of motion, a relativistic aberration
effect'. This is reflected in the linear change in the apparent
angular size of the spaceships once the acceleration starts.
In the low velocity limit, we can approximate the velocity
to be v ~ at and the apparent angular size given by special

relativistic aberration relation is given by

’

%N(l:l:v)~(1:|:at)

(16)

accurately describing this initial linear behaviour at the start
of the acceleration. But, as the acceleration continues, the
angular size deviates from the linear relationship, and the
view seen by the leading spaceship decreases, tending back

to the angular size seen before the acceleration starts.

An exploration of the magnitude of the acceleration and the
separation of the spaceships reveal these views to be generic,
with the trailing spaceship seeing a diminishing size for the
leading spaceship, whereas the leading spaceship sees the an-
gular size of the trailing ship asymptote to some fixed value.
This is generally not the size of the spaceship as seen before
the acceleration starts, and the particular asymptote seen in
Figure 5 is due to the particular choice of a and L. Will illus-
trate this in Figure 6, which presents the case in the previous
figure, but also adding the case where L = 0.5 and d = 0.005
(thick solid line) and L = 1.5 and d = 0.015 (thick dashed

leg. math.ucr.edu/home/baez/physics/Relativity.../SR/Spaceship/

spaceship.html
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Figure 6. AsFigure 5, with an acceleration of a = 0.5, but different values of
the initial separation (L) and angular size (d). Again, the red lines corresponds
to the view from the leading spaceship, while the blue is the view from the
trailing spaceship. The thin line represents the situation where L = 1 and
d=0.01 (as in the previous figure), while the thicker solid line corresponds to
L=0.5andd =0.005, and the thicker dashed lineis for L= 1.5 andd =0.015.
In each case, the apparent angular size before the period of acceleration
is the same, but it is clear that the asymptotic angular size of the trailing
spaceship as seen by the leading spaceship depends upon the chosen values of
Landd.

line). With these, the apparent size of the spaceships before
the acceleration is the same, and after the acceleration, the
trailing ship sees the size of the leading spaceship continue
to decrease, whereas the leading spaceship sees the size of
the trailing spaceship asymptote to a constant value, although
the precise value of this asymptote depends explicitly of the
chosen values of L and d.

5 CONCLUSIONS

In this paper, we have revisited Bell’s spaceship paradox, ex-
panding the problem to consider the view from both the lead-
ing and trailing spaceships, with the exchange of photons be-
tween the two during their journeys, a previously unexplored
aspect of the scenario of identically accelerating spaceships.

As well as recovering established results in Bell’s space-
ships, we also find that, due to the presence of the Rindler
horizon, the distance between the two spaceships as deter-
mined by radar ranging diverges for both spaceships. How-
ever, the view from each spaceship does not reflect this di-
vergence and are distinctly different.

For the leading spaceship, we find that it sees the trailing
spaceship being progressively redshifted and shrinking as it
vanishes behind its Rindler horizon. The view from the trail-
ing spaceship is quite different, finding that there is an initial
increase in the blueshifting of photons, before a subsequent
decrease. Similarly, the angular size of the two spaceships
has some strange behaviour, with the trailing spaceship see-
ing the leading spaceship shrink in size, whereas the leading
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spaceship sees the angular size of the trailing spaceship
asymptote to some particular value. This behaviour is quite
peculiar and unexpected, and, in conclusion, while Bell’s
spaceship paradox is well studied and discussed in the field
of relativity, it still has some surprises yet to yield.
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