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ABSTRACT 
Cyber-physical systems (CPS) are able the collect huge amounts of data about themselves, their users, 
and their environment during their usage phase. By feeding these usage data back into product 
planning, manufacturers can optimize their engineering and decision-making processes. Despite 
promising potentials, most manufacturers still do not analyze usage data within product planning. 
Also, research on usage data-driven product planning is scarce. Therefore, this paper aims to identify 
the main concepts, advantages, success factors and challenges of usage data-driven product planning. 
To answer the corresponding research questions, a comprehensive systematic literature review is 
conducted. From its results, a detailed description of usage data-driven product planning consisting of 
six main concepts is derived. Furthermore, taxonomies for the advantages, success factors and 
challenges of usage data-driven product planning are presented. The six main concepts and the three 
taxonomies allow for a deeper understanding of the topic while highlighting necessary future actions 
and research needs. 
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1 INTRODUCTION 

The megatrend digitalization has turned mostly mechanical and electrical products into complex 

systems integrating hardware, sensors, data storage, microprocessors, software and connectivity 

(Porter and Heppelmann, 2014). These so-called Cyber-Physical Systems (CPS) integrate computation 

and physical processes (Lee, 2008) enabling the collection, analysis and sharing of huge amounts of 

data about the product and its environment (Porter and Heppelmann, 2014). As a consequence, CPS 

turn their users into incessant generators of data (Erevelles et al., 2016). By feeding these data from 

the usage phase back into product development and especially product planning, manufacturers can 

optimize their engineering and decision-making processes (Erwin et al., 2015). As a result, these data 

enable the companies to turn their customers and users into a powerful source of innovation (Holler et 

al., 2016a) and – consequently – to develop a competitive advantage (Porter and Heppelmann, 2015).  

2 SCIENTIFIC BACKGROUND OF USAGE DATA-DRIVEN PRODUCT 

PLANNING 

Product planning is the first activity in the product creation process. It aims at finding the success 

potentials of the future to create a promising product design in the form of a principle solution 

(Gausemeier et al., 2011). The results of product planning are the products to be developed by the 

organization (Ulrich and Eppinger, 2016) and the corresponding requirements lists for the subsequent 

product development (Pahl et al., 2007). The interconnections between product planning and product 

development are strong: For Gausemeier et al., both are coupled by the conceptual design 

(Gausemeier et al., 2011). Pahl et al. link product planning to the clarification of the task in product 

development to underline the necessity of a content-related junction and a work-related integration of 

the two (Pahl et al., 2007). Ulrich and Eppinger describe product planning as the initial phase or phase 

zero of product development (Ulrich and Eppinger, 2016).  

The success of product planning depends on the utilization of the available data which – esp. for CPS 

– can be enormous. The process of accessing, aggregating and analyzing large amounts of data from 

multiple sources is called data analytics (DA). It enables companies to extract knowledge from data to 

understand historical and predict future events (Tyagi, 2003). Data analytics is based on mathematics, 

computer science, and business analysis techniques (Porter and Heppelmann, 2015). It can be divided 

into four types with increasing value and complexity: descriptive, diagnostic, predictive and 

prescriptive analytics (Steenstrup et al., 2014).  

As shown, product planning and data analytics are two established and independent research areas. 

Together, they span the new research area of usage data-driven product planning which still needs to 

be thoroughly researched. Studies show that companies increasingly make decisions based on data 

analysis results, seeing data analytics as a crucial building block for creating value; yet, most 

companies do not utilize usage data within product creation processes (Erwin et al., 2015). Also, 

research on the topic is scarce. From these considerations, four research questions are derived:  

1. Main concepts: What concepts constitute usage data-driven product planning? 

2. Advantages: Why should companies pursue usage data-driven product planning? 

3. Success factors: What factors contribute to the success of usage data-driven product planning? 

4. Challenges: What makes the implementation of usage data-driven product planning difficult? 

3 RESEARCH DESIGN 

To answer the research questions, we conducted a systematic literature review (SLR), following the 

suggestions of Webster and Watson (2002), Brocke et al. (2009) and Rowley and Slack (2004). First, 

we prepared a list of relevant journals on the basis of the Financial Times Research Rank by Ormans 

(2016) and an additional extensive web search for topic-related journals (Webster and Watson, 2002). 

We included journals which focus on disciplines like “Product Innovation”, “Innovation 

Management”, “Engineering Management”, “R&D Management”, “Systems Engineering”, “Data and 

Knowledge Engineering”, “Data Science”, “Big Data”, “Marketing Management”, “Operations 

Research” etc. as usage data-driven product planning is an interdisciplinary field. All in all, the final 

list included 44 journals. Second, we created a concept map to identify important concepts and their 

synonyms (Rowley and Slack, 2004; Brocke et al., 2009). We used the concept map to iteratively 

create and test search strings as a combination of the concepts in the concept map. Through iterative 
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improvement, the following search string was formed: (“product development” OR “product design” 

OR “product engineering”) AND (“usage data” OR “operational data” OR “lifecycle data” OR “big 

data” OR “data analytics” OR “closed-loop” OR “feedback information” OR “feedback data”). 

Since the number of logical connectors (OR and AND) was limited, we decided to not include the term 

“product planning” as it is not widely used and our tests provided better results for the alternative 

terms “product development”, “product design” and “product engineering”. Third, we searched for 

articles within each journal (from 2005 to 2020) in the Google Scholar Database using the literature 

research tool “Publish or Perish” (Harzing, 2007). The search resulted in 1870 articles which we 

screened on a title and abstract basis. While hundreds of articles addressed topics like “big data” or 

“data analytics” in different contexts, the abstracts of only 36 papers suggested a focus on usage data-

driven product planning. After reading these papers and conducting a backward and forward search 

(Webster and Watson, 2002), we identified 12 papers which contained answers to our research 

questions; the other papers were sorted out. Fourth, we examined papers from conference proceedings. 

From prior research, we knew of 14 papers within the context of usage data-driven product planning. 

We used these to conduct a backward and forward search, resulting in a list of 76 papers. From these, 

12 papers contained answers to our research questions. Finally, following the suggestions of our 

reviewers, we added 4 more articles.  

In total, we identified 28 highly relevant articles. For the detailed analysis, we read each paper twice, 

extracted all relevant information concerning our research questions and loosely clustered them into 

thematic chunks. Thereafter, we iteratively improved the clustering by critically investigating each 

cluster, splitting clusters up and building new clusters. As the result of this iterative process, we obtained 

the main concepts, advantages, success factors and challenges of usage data-driven product planning.  

4 RESULTS 

4.1 Main Concepts 

Usage data-driven product planning consists of six main concepts (see Figure 1): 

1. The product’s sensors capture real-time readings of the product in its operating environment (Fathi 

et al., 2011; Porter and Heppelmann, 2015; Hou and Jiao, 2020; Igba et al., 2015; Chowdhery et 

al., 2020). The data include user-generated data (capturing user behavior), product operating data 

(capturing product behavior) and environmental data (capturing environment behavior) (Hou and 

Jiao, 2020, 2020). In addition, further data like manual reports can also be collected (Chowdhery 

et al., 2020). The data collection approach can either be reactive and thus be driven by concrete 

events (e.g. machine failures) or it can be proactive by collecting data on a large scale and 

analyzing it exploratorily (Holler et al., 2016b; Holler et al., 2017). 

2. Using cyber-infrastructure (van Horn et al., 2012), the captured usage data are fed back into the 

product creation process (Porter and Heppelmann, 2014; Jun et al., 2007), where they are valuable 

in all stages (Holler et al., 2017; Hou and Jiao, 2020; Jun et al., 2007), but offer the highest value 

in the early stages like product planning as these are characterized by lots of uncertainties and the 

determination of lifecycle costs (Holler et al., 2016b; Holler et al., 2017). Here, the data are used 

to objectively quantify product performance and usage profiles (van Horn et al., 2012) to find 

usage-centric improvements for the product under consideration (Holler et al., 2016b; Holmström 

Olsson and Bosch, 2013; Jun et al., 2007; Hou and Jiao, 2020; van Horn et al., 2012).  

3. To identify improvements, statistical analysis, data mining and machine learning techniques must be 

applied (Hou and Jiao, 2020; Igba et al., 2015). The data analysis can (a) build upon the available 

data in a bottom-up approach (less effort and faster implementation) or (b) start with a predefined 

objective in a top-down approach (more effort, clear future-focus) (Wilberg et al., 2017b).  

4. The results of the data analysis enable developers to make decisions based on facts instead of 

assumptions only (Hou and Jiao, 2020; Chowdhery et al., 2020), thus improving the decision-

making process (Jun et al., 2007; Wu et al., 2020; Fathi et al., 2011).  

5. Identified improvements can be implemented in existing and future products (Jun et al., 2007; 

Wilberg et al., 2017b; Abramovici et al., 2017; Wu et al., 2020; Xu et al., 2016; van Horn et al., 

2012). For future products, especially the development of new product generations is suited for the 

analysis of feedback data (Holmström Olsson and Bosch, 2013; Igba et al., 2015; Fathi et al., 2011; 

Chowdhery et al., 2020). 

https://doi.org/10.1017/pds.2021.590 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.590


3292  ICED21 

 

Figure 1: The six main concepts of usage data-driven product planning 

6. By feeding back usage data into product planning, usage data-driven product planning represents 

an inverse design approach which will not replace, but complement the traditional, assumption-

based forward design (Hou and Jiao, 2020; Wilberg et al., 2017a). In conjunction, inverse and 

forward design form a reinforcing loop for the continuous and iterative improvement of product 

design (Hou and Jiao, 2020).  

4.2 Advantages 

Usage data-driven product planning offers a variety of advantages which are listed in a taxonomy in 

Table 1 and explained below. The advantages apply on three levels: Analysis, Process and Business.  

Table 1. Taxonomy of the advantages of usage data-driven product planning 

Level 1: Analysis Level 2: Process Level 3: Business 

(1.1) Finding hidden 

information 

(2.1) Improved customer- and 

user-involvement 

(3.1) Improved decision-making 

processes 

(1.2) Better product 

understanding 

(2.2) Continuous requirements 

analysis 

(3.2) Usage-centric product 

portfolio 

(1.3) Better understanding of 

customer and user needs  

(2.3) Reduction of hardware-

prototyping and field-testing 

(3.3) Higher delivery frequency 

of functionality 

(1.4) Contextualize and 

evaluate qualitative and 

subjective data 

(2.4) Faster product 

development 

(3.4) Higher innovative strength  

 

Analysis-Level: (1.1) The utilization of analytics approaches like data mining makes it possible to 

find hidden information within the data that would be impossible to find manually (Menon et al., 

2005). This is especially true when comparing many products and thousands of sensor-readings over 

time (Porter and Heppelmann, 2015). (1.2) The data lead to an improved understanding of the product 

in operation (Menon et al., 2005; Holmström Olsson and Bosch, 2013). Usage data-driven product 

planning uses these insights to improve product design and thus eliminate failures instead of using 

data to predict them (Holler et al., 2016a). (1.3) Analyzing usage data leads to a better understanding 

of customer and user needs and is likely to deliver better results than traditional approaches 

(Timoshenko and Hauser, 2019; Porter and Heppelmann, 2014). The data can be used to analyze 

customer behavior and preferences (Hou and Jiao, 2020; Porter and Heppelmann, 2015) and derive 

customer segments (Cantamessa et al., 2020). For these, individual (Hou and Jiao, 2020; Holler et al., 

2016b), future (Holmström Olsson and Bosch, 2013), unspoken (Li et al., 2015; Timoshenko and 

Hauser, 2019) and latent needs (Hou and Jiao, 2020; van Horn et al., 2012) can be identified. (1.4) 

Furthermore, quantitative product usage data helps to contextualize and evaluate qualitative and 

subjective data (Holler et al., 2016b).  

Process-Level: (2.1) By building on usage data, the customer and user involvement in the 

development process is markedly improved (Hou and Jiao, 2020), leading to better collaboration 
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(Holler et al., 2016b). (2.2) Feedback data enable a continuous requirements analysis (Timoshenko 

and Hauser, 2019) (e. g. through the continuous live elicitation of customer needs (Cantamessa et al., 

2020)) eliminating momentary biases. (2.3) As the feedback of usage data promotes a usage-centric 

and fact-based decision-making process, hardware-prototyping and field-testing necessities can be 

reduced significantly (Holler et al., 2016b; Holler et al., 2017). (2.4) Consequently, usage data-driven 

product planning allows for a faster product development process (Menon et al., 2005).  

Business-Level: (3.1) The integration of data analytics methods into product planning enables data- 

and fact-based decisions (Wuest et al., 2014; Holler et al., 2016a) while reducing assumption- and 

experience-based ones (Holler et al., 2017; Holler et al., 2016a), thus improving decision-making 

processes (Xu et al., 2016; Menon et al., 2005). (3.2) Analyzing usage data promotes a usage-centric 

product portfolio (Holler et al., 2016a; Holler et al., 2017; Holmström Olsson and Bosch, 2013). 

(3.3) The continuous requirement analysis and the faster development process help companies to 

increase their delivery frequency of functionality (Holmström Olsson and Bosch, 2013; Jun et al., 

2007) and thus react on insights not anticipated by the previous design (Cantamessa et al., 2020). (3.4) 

Lastly, analyzing usage data enables companies to create high-quality innovations (Li et al., 2015; 

Kiron et al., 2014) as it pushes them towards new ideas at a higher speed (Erevelles et al., 2016) and 

facilitates their acceptance by keeping the companies open-minded (Kiron et al., 2014).  

4.3 Success Factors 

To exploit the advantages mentioned, the factors contributing significantly to the success of usage data-

driven product planning must be identified. Table 2 shows a taxonomy of these success factors within four 

classes: Organization, Product, Data Analysis and Evaluation. The factors are described below. 

 Table 2. Taxonomy of the success factors for usage data-driven product planning 

Class 1: Organization Class 2: Product Class 3: Data Analysis Class 4: Evaluation 

(1.1) Data strategy (2.1) High number of 

intelligent components 

(3.1) Standardized data 

and systems 

(4.1) Comprehensible 

data analysis results 

(1.2) Use cases (2.2) Long operating 

times 

(3.2) Effective data col-

lection and feedback 

(4.2) Decision support 

systems 

(1.3) Ignorance-b. 

view & induct. 

reasoning  

(2.3) High similarity 

with other products 

(3.3) Proactive data 

collection and analysis 

 

(1.4) Cooperation of 

product & data experts 

(2.4) Data access (3.4) Joint analysis of 

heterogeneous data 

(1.5) Integration of DA 

with tradition. methods 

 (3.5) Complex data 

analyses 

(1.6) Turning consu-

mers into prosumers 

(3.6) Considering the 

product context 

 

Organization: (1.1) A data strategy is critical for success (Wilberg et al., 2017a; Erwin et al., 2015). 

It is the result of (a) an in-depth analysis of the product under consideration, the corporate strategy etc. 

and (b) a conceptional phase (Wilberg et al., 2017b) which includes the definition of use cases among 

others (Wilberg et al., 2017a). (1.2) Use cases create value by e. g. defining the analysis goal, asking 

open questions, outlining its potential benefits and deriving the data that need to be collected (Menon 

et al., 2005; Wilberg et al., 2017a; Wilberg et al., 2017b). In order to identify opportunities and 

limitations, all relevant stakeholders must be involved (Wilberg et al., 2017b). (1.3) An ignorance-

based view and inductive reasoning promote the definition of a successful use case (Erevelles et al., 

2016). The ignorance-based view triggers questions with a high potential for hidden insights while 

inductive reasoning will create a greater understanding of the investigated object (Erevelles et 

al., 2016). (1.4) As use cases require product knowledge, a close cooperation of product and 

data experts is crucial (Shahbaz et al., 2006; Fathi et al., 2011; Li et al., 2015; Cantamessa et al., 

2020). Especially at the start of common projects, interaction points between product and data 

experts are numerous, making a direct communication and a common language a necessity (Li et 

al., 2019). In the evaluation phase, multiple perspectives from a heterogeneous team may capture more 
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valuable insights from within the data (van Horn et al., 2012). Hence, this so-called knowledge fusion is 

critical when evaluating use cases and analysis results (Xu et al., 2016). (1.5) The integration of data 

analytics with traditional methods promises the highest new product success and knowledge fusion (Xu 

et al., 2016; Hou and Jiao, 2020). (1.6) Lastly, for data feedback, companies need to renew their 

customer relationships by turning consumers into prosumers (Cantamessa et al., 2020).  

Product: (2.1) Products with a high number of intelligent components are especially suited for 

usage data-driven product planning as these generate the data necessary for a large scale data 

analysis (Holler et al., 2016a; Jun et al., 2007). (2.2) In order to generate enough data for the 

algorithms to work properly, long operating times are a prerequisite (Holler et al., 2016a). (2.3) 

When comparing the data of multiple products, a high similarity between these products is essential 

(Holler et al., 2016a). Due to this, usage data-driven product planning works best in product 

generation planning (Holler et al., 2017) and when using the principles of design modularity and 

platforms (Cantamessa et al., 2020). (2.4) Finally, data access must be achieved through providing 

customers transparency concerning data usage and incentives in form of a clear value proposition 

for sharing their data (Porter and Heppelmann, 2014; Wilberg et al., 2017a). 

Data Analysis: (3.1) Standardized data and ecosystems facilitate data exchange and analysis (Wilberg et 

al., 2017a; Holler et al., 2016a). For qualitative data, formal taxonomies and standardized information 

structures improve reuse (Goh and McMahon, 2009). (3.2) An effective data collection and feedback 

process is mandatory for usage data-driven product planning to work. It can be achieved through (a) 

smart sensing and advanced data-collection methods (Hou and Jiao, 2020) and through (b) clearly 

defined points of data capture and reuse as well as incentives within the people’s work processes (Goh 

and McMahon, 2009; Menon et al., 2005). The data must be mapped to concrete product instances as 

well as the product type (Abramovici et al., 2017). (3.3) In general, a proactive data collection and 

analysis promises to deliver the most value (Holler et al., 2016b). (3.4) In order to achieve valuable 

analysis results, heterogeneous data (e. g. structured and unstructured data) need to be jointly analysed 

(Porter and Heppelmann, 2015; Igba et al., 2015; Abramovici et al., 2017) in (3.5) sophisticated data 

analyses as these promise to achieve deeper insights and more satisfied users (Porter and Heppelmann, 

2015; Erwin et al., 2015; Cantamessa et al., 2020). (3.6) Before analyzing data, it is important to 

consider the context of the product and its data: These contextual information need to be evaluated when 

deciding about the data analysis approach (Shahbaz et al., 2006). Furthermore, they help to understand 

the analysis results, potentially leading to deeper insights (Wilberg et al., 2017a).  

Evaluation: (4.1) The results of the data analysis must be easily comprehensible as decision-makers are 

not involved in all analysis steps (Li et al., 2015). Managers and product developers need to be presented 

aggregated and accurate knowledge instead of vast amounts of data (Abramovici et al., 2017). 

(4.2) Furthermore, they need decision support systems which give them suitable advice (Jun et al., 2007) 

and help them make deliberate decisions based on the information available. 

4.4 Challenges 

While the success factors help companies to exploit the advantages of usage data-driven product planning, 

they will still face numerous challenges. Table 3 shows a taxonomy of challenges using the four classes 

Organization, Product, Data Analysis and Evaluation. The challenges are described below.  

Table 3: Taxonomy of the challenges of usage data-driven product planning 

Class 1: Organization Class 2: Product Class 3: Data Analysis Class 4: Evaluation 

(1.1) Definition of a 

data-strategy 

(2.1) Highly individual 

products 

(3.1) Selection of the 

data to be collected 

(4.1) Validity-check of 

the analysis results 

(1.2) Definition and 

selection of use cases 

(2.2) Short-cyclical 

product improvements 

(3.2) Overviewing data 

availability and usage  

(4.2) Interpretation of 

data analysis results  

(1.3) Positive cost-

benefit-ratio 

(2.3) Capturing of the 

product context 

(3.3) Data pre-

processing 

(4.3) Creation of new 

ideas 

(1.4) Integr. of DA into 

traditional processes 

(2.4) Missing sensors (3.4) Analysis of large, 

multimodal data 

 

 (2.5) Prohibition of data 

access 

(3.5) Choice of analysis 

methods 
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Organization: (1.1) Defining a data-strategy is a major challenge many companies struggle with (Erwin 

et al., 2015; Wilberg et al., 2017b). (1.2) This includes the definition and selection of promising use 

cases as initially it is often difficult to define use cases at all and later there may be too many to 

implement (Wilberg et al., 2017a; Wilberg et al., 2017b). (1.3) Use cases must offer a positive cost-

benefit-ratio (Holler et al., 2016a; Wilberg et al., 2017b), remain within a company’s capacities (Wilberg 

et al., 2017a) and show their usefulness (Holmström Olsson and Bosch, 2013; van Horn et al., 2012). 

(1.4) Another challenge is the integration of data analytics into traditional product creation and 

decision-making processes (Hou and Jiao, 2020; Wilberg et al., 2017b), both technically and 

organizationally (Wilberg et al., 2017a).  

Product: (2.1) Highly individual products represent an obstacle as data analysis insights may not 

apply to other instances in the product class and thus may not be transferable (Holler et al., 2016a; 

Holler et al., 2017; Cantamessa et al., 2020). (2.2) Furthermore, short-cyclical product improvements 

contradict the necessity of long operating times within a given configuration (Holler et al., 2016a). 

(2.3) Facing these challenges and the reduced comparability of products, capturing the product usage 

context becomes even more important for data reuse (Igba et al., 2015), but it is a major challenge 

(Hou and Jiao, 2020; Menon et al., 2005). (2.4) Due to the added costs, products may also miss 

sensors and thus be unable to collect the data necessary (Wilberg et al., 2017a). When retrofitting 

sensors, functional and economic aspects must be considered (van Horn et al., 2012). (2.5) Moreover, 

customers may prohibit data access (Wilberg et al., 2017a), especially to sensitive data (van Horn et 

al., 2012), exposing companies to additional complexity and costs to obtain rights to the data (Porter 

and Heppelmann, 2014).  

Data Analysis: (3.1) While sensors generate lots of data, user-generated data are also extensive for 

complex products (Timoshenko and Hauser, 2019). But as more collected data do not necessarily lead 

to better results (Hou and Jiao, 2020), the selection of the data to be collected must be consistent with 

the strategy (Porter and Heppelmann, 2014) and carefully planned (Menon et al., 2005; Hou and Jiao, 

2020). (3.2) Here, another challenge arises: Companies often lack an overview of data availability and 

usage (Holmström Olsson and Bosch, 2013; Wilberg et al., 2017b) which prevents information reuse 

(Goh and McMahon, 2009). (3.3) Once the data are collected, pre-processing confronts companies 

with multiple obstacles. Data validity must be checked (Wilberg et al., 2017a) and multimodal data, 

structured and unstructured, must be transformed and integrated (Porter and Heppelmann, 2015; Hou 

and Jiao, 2020; Shahbaz et al., 2006; Abramovici et al., 2017) which can be overwhelming for 

companies (Kiron et al., 2014). Here, especially textual data are difficult to work with because of their 

heterogeneity (Menon et al., 2005). (3.4) In complex industries, analyzing large, multimodal data is 

necessary to investigate the product from diverse perspectives (Xu et al., 2016; Hou and Jiao, 2020). 

However, companies struggle with a substantial lack of experience (Wilberg et al., 2017b) and seldom 

use complex analyses (Erwin et al., 2015). (3.5) Lastly, the choice and appropriateness of data 

analysis methods largely affect the quality of the solutions (Cantamessa et al., 2020).  

Evaluation: (4.1) Analyzed data forms the basis for product improvement. But before impactful decisions 

are made, the validity of the data analysis results must be checked (van Horn et al., 2012) as the data 

samples analyzed are typically limited (e. g. due to small sample sizes) (Hou and Jiao, 2020). Here, even 

small errors could lead to major mistakes in the solution (Hou and Jiao, 2020). Therefore, it is necessary 

that product experts verify data quality and analysis results (Li et al., 2019). (4.2) The interpretation of the 

data analysis results shall turn data into valuable insights. However, as inverse problems do not have a 

unique solution (Hou and Jiao, 2020), the correct interpretation represents a major challenge (Hou and Jiao, 

2020; Xu et al., 2016). To extract valuable insights, knowledge in both engineering and data analytics are 

required. Also, contextual information needs to be considered to avoid wrong interpretations (Wilberg et 

al., 2017a). (4.3) Lastly, the creation of new ideas based on the analysis and interpretation of existing data 

is not trivial (Wu et al., 2020). Also, the derivation of improvements for a whole product class from 

(partially) subjective information about one instance is difficult (Abramovici et al., 2017).  

5 DISCUSSION AND CONCLUSION 

5.1 Key Insights 

1. Usage data-driven product planning consists of six main concepts (see section 4.1). (1) The 

captured user-generated, product operating and environmental data (2) are fed back into product 
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planning and (3) analyzed with statistical analysis, data mining and machine learning techniques. 

(4) The results enable fact-based decisions (5) to improve existing and future products. (6) The 

feedback process represents an inverse design approach and forms a reinforcing loop with 

traditional forward design.  

2. Usage data-driven product planning offers advantages on three levels (see section 4.2). On the 

analysis-level, the analysis of products, customers and users is improved. On the process-level, 

planning and development processes are enhanced while reducing time and costs. On the business-

level, fact-based decisions enable a usage-centric product portfolio and a higher innovative strength.  

3. Success factors and challenges can be structured using taxonomies with the classes organization, 

product, data analysis and evaluation (see sections 4.3 and 4.4). While some success factors and 

challenges are independent of each other, a significant number of success factors correspond 

directly with challenges: data strategy, use cases, integration of data analytics with traditional 

methods, long operating times, high similarity with other products, data access, effective data 

collection and feedback, joint analysis of heterogeneous data and complex data analyses. Their 

realization is decisive for the successful implementation of usage data-driven product planning.  

5.2 Limitations 

The limitations of our study are related to our research design. First, our journal selection process may 

have excluded further journals with relevant articles. Yet, we believe that by conducting a thorough 

backward and forward search, we found the most relevant articles. Second, due to high number of 

related concepts, the construction of our search string may not be optimal. We tested multiple options 

on a sample basis, but we did not investigate all papers for every option. Search strings including 

different concepts (like product planning, data mining) may yield results not found with our search 

string. Third, we searched only within the Google Scholar Database, setting up our dataset based on 

titles, abstracts, and keywords. Fourth, the selection of relevant articles as well as the clustering 

process were subjective. Other scholars might have included different articles and clustered the 

elements in another way.  

5.3 Implications for Managers and Future Research 

Managers can use the six main concepts to create a better understanding of the topic within their 

companies. Likewise, the listed advantages can be utilized to achieve a high level of acceptance and 

promote future projects. Using the success factors taxonomy, managers can assess the current and 

needed maturity of their companies for usage data-driven product planning (e. g. with a capability 

maturity model). Lastly, managers should analyze the challenges and create plans to overcome them.  

As usage data-driven product planning is a new research area, various future research is needed. 

From our results, three research needs stand out: (1) The creation of a data strategy with promising use 

cases is crucial as it guides all following steps. Here, the data strategy as well as the use cases must 

align with the companies’ corporate strategy and its current situation. (2) The integration of data 

analytics into traditional forward design processes is also critical as usage data-driven product 

planning as a form of inverse design will not replace but complement traditional forward design. (3) 

The utilization of data analytics must be made accessible to small and medium-sized enterprises. In 

contrast to large companies, they mostly lack resources to build up their own sophisticated solutions.  

Finally, as our research focuses on product usage data only, the integration of non-usage data should 

be analysed, e.g., how can data from sources like customer reviews complement the usage phase data? 

Especially for the identification of customer needs, there is already a high number of approaches using 

text mining techniques on social media and online reviews (Bertoni, 2020).  
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