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ON THE DECOMPOSITION OF INTEGRAL LATTICES

THoMAs BIER

The purpose of this note is to record a few formulas relating
the indices of various lattices and sublattices all arising
from the decomposition of a euclidean space E into three

mutually orthogonal subspaces F = EO L El 1 EZ which are

rational with respect to a given lattice A ¢ F . 1In the case
that A is unimodular these formulas simplify to give very

simple identities between various intersection lattices.

We use the following notation: FE denotes a euclidean space, A ¢ E

any integral lattice with rank(A) = dim E . Ei c E is a rational
subspace if and only if rank(AnEi) = dim £ . Let
E = EO 1 El 1...1 Eﬁ be a decomposition of E into mutually

orthogonal euclidean rational subspaces. For any set I < {0,1,...,n} we

dendte by EI = 1 Ei the orthogonal sum of the spaces Ei , 1 eI . We
iel

let

(1) AI =AnE;, FI = PI(A) ’
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be the lattice in EI obtaining by intersecting A with EI or
projecting A orthogonally into EI via the map PI : E > EI
respectively. Obviously we have PI(AI) = AI , and therefore AI = FI .

We consider only n =1 and n = 2 .

At first we let 7 = 1 and recall some well-known results (for the

proofs see [1]). Let A' ¢ A ¢ E be sublattices with rank{A') = dim E :

(2) T;/Tp = MM + 8, for {i,5} = {0,1} .

(3) To/Bg = A8y L 8y =T./8, .

(4) [rg:8,] = [A:818,] = [ry:4,] .

(5) det(T)det(4;) = det(h) = det(T,)det(d,)

(6) [A:A*] = [ri:r%] . [Aj:A3] for {z,7} = {0,1} .

For any lattice A 1in a fixed euclidean space we denote by A# the

reciprocal of A , that is A" = {eeE|<e,z> ¢ Z for all xe A} . We have
(7 tf-a*nE -0 1,

i 1
(8) r. c af i=0, 1.

=%

Applying (7) in the reciprocal case we obtain
#

#.0# _ #. _
9) Pi(A ) o= Ai ' Pi(A ) = Ai ’
and combining this with (6) in the case A' = A , A = A# we get
# # _ ¥,
(10) [Ao.Fo] . [Al:F1] = [A":A]

In the case that A is unimodular, that is A# = A we obtain from (10)

_ . # _ B
(11) T; =08, 8, =T;,
az2) det(Fl) = det(Fz) , det(Al) = det(Az) .
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3.
We now consider the case n = 2 . Then we find
r. .) =r. 7,5} < {0,1,2} ,
(13) PJ( ,L'J) r‘7 for {z,5} < {
(14) ri’j nE, = Pi(Ai’k) for {Z,7,k} = {0,1,2} ,
(15) P.(A# ) = A*f for {Z,§} < {0,1,2}
7 7:“7 Z ’ r+s .

LEMMA 1. For any lattice A we have

# ;e _
(16) Pj(Ai'J.) 2P, (A‘7 k) for {Z,7,k} = {0,1,2} .

In the case where A\ is wnimodular we have

#
7 LA, . = P.(A. .
(17) Ph(Ai,J) Pb( J,k)
Proof. P.(A. .)# = A*f .nE. by (7).,
Jd 1. 1.4 J
2T. .nkFE b 8) ,
i, p y (8)
with equality in the unimodular case
by (11),
=P.(A. by (14).
J( J,k) y (14) 0

We now apply (6) in the case where A' = Aj k' A= Fj A and use (14) to
14 ’

get

(18) [Fj,k:Aj,k] [F P, (AJ k)] [Pk(Ai’k):Ak] '

for {Z,7.,k} = {0,1,2} .

We obviously have the following inclusions

# #
19 . (b, ",
(19) by < Pilbs ) < Pilay " < b

which yield

# # #
A.: . = - . - . . : .
C ¥ AJ] [A‘7 PJ(A,P .7) ] [PJ(A,L j P (A k)] [PJ(AJ,k).AJ]
- - - - . - #.
= [Pﬁ(Ai,j)’Aj] [Pﬁ(Aj,k)'AJ] [Pﬁ(Ai,J)'Fﬁ(Aj,k)]
_ . ] . #
= [P (A 'J) A ] [Pk(Aj,k)'Ak] [Pj(Ai,j) P (A k)]
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where the last equality follows from (4). This implies the following

"product formula with correction term":

# . A7 -
(20) Cas:0.1 = [Pp@a; :8;] - [P (85 20ty ] - [PL(8;

#
P (A k)] '

where {7,j,k} = {0,1,2} . 1In the case that A is unimodular this implies
by (17)

# - -
(21) [Aj:AjJ = [Pi(Ai,j)'AiJ [P (A k) AkJ ‘

for {Z,7,k} = {0,1,2} .
On the other hand we have the inclusions

. (A, r.,
(22) 8; CPJ(A’L,J) <T;

which can be used as above, together with (18), to give

[Fi:Ai] [P‘I:(Ai,k) :A‘l:]

(23) for {Z,j,k} = {0,1,2} .

Using (10) with A = A. . we find

1.d
(24) i a1 =ateawl 01 - tatiela, 03
1,0 T.d 1711, d dTd Tt

By using (24) and (23) we fing

Az j:Ai j] [Fj:Aj]
(25) (P, (8, ‘Pi(Ai,k)] Tt g
A k" k

which we can substitute into (20) to obtain

# #
[Ai:Ai][Aj:Aj] ) [I‘k:Ak]

(26) LPE(Ai,j):Aj] . E%(Ai,k):Ak] =

#
h,5:%,41  LT5:85]

Note that in the unimodular case (26) reduces to (21).

. N . .
By (6) with A = Ai,j , A" = Ai,j we obtain
iaf a1 =t E.a. BT (7 (A PPy 0]
O R A 1,J 1 1. T 7,d 7,d ’
so we get
en af a1 =tra, atald - [a} + (B 00 Pl by, @
A R 11,5 71 i,5°%,4 b4 ’ :
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o 4

But for the expression [A i A, J+(E Ly j)] we have the following
' 1’ l
product formula
(28) [A% ] = [A +(E nA )][A Y .+(E.nA% )1,
i:J 1r :J 1:3 J IJ 1:J 1 1.d

which combined with (27) gives

29 r[af +E nA? )]

#
‘L,J i, = [P.(A. ) :Pi(Ai,k)][Pi(Ai,k):Ai] .

3 11,
Equation (29) together with the following equation

# #
[P.(a, ) :Pi(Ai,k)] Ca;:r;]

(30) i t.g , - — ,
:P.(A. AL:T.,
[P (o, 7ePi(as ] [A%eT.]

which easily follows from (25), implies

" Lo #

Analogously to (23) we find

B 8 #
[a7:0,]  [a7 peby g+ (Epnat )]

(32) # T # #
[Aj:Aj] [Aj’k:Aj'k+(EknAj’k)]

Finally we note

[A 4 ][A Al
J J _ . 2 _ . 2
(33) ——Ezﬁr—i;;——?r-— [Pi(Ai,j)'Ai] = [PE(Ai,j)'Aj] .
1,5 1,

We now assume that A is unimodular. Then we have (11) and (17) and
all the above computations simplify. We let

¢0 = [Al 2:A1.LA2] ,

1

(34) ¢l = [AO e AolAz] ,

0, = [8g,1:8548,1

and by (4), (11), (17), (29), (31) we find
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(35) ¢i = [Pj(Aj'k):Aj] = [Pk(Ajlk):Ak] ’
(36) ¢i = [rj:Pj(Ai,j)] = [Fk:Pk(Ai,k)] ’
(37) o, = [Fi,j:Ai,j”Ei“Fi,j” = [Fi,k’Ai,k”Ei“Fi,k”

The product formulas all become equal to

. B4, o
(38) [Ai:Ai] = ¢j ¢k for {ilJrk} {01112}

In the case that EO is spanned by the vector (1,...,1) € R'-E , (38)

gives a set of three formulas, one of which was previously proved in [1].
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