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1. Introduction. In [4] Goryunov found the simple map-germs f : ðC3; 0Þ !
ðC3; 0Þ. In [13] Marar and Tari calculated invariants associated to these maps. In
particular they wished to find a relationship between the discriminant Milnor num-
ber, (this is the number of vanishing cycles in a local stabilisation of the map-germ)
and the invariants they calculated. This paper grew out of finding the required rela-
tionship which is given in Remark 3.4.

In addition to discriminant Milnor number, one can investigate image Milnor
numbers. Mond and others (see [3], [11], [16]), have generalised the notion of Milnor
number to the case of the discriminant of a finitely A-determined map-germ
f : ðCn; 0Þ ! ðCp; 0Þ. For n � p this is called the discriminant Milnor number; and
for n < p, as the discriminant is the image of f, the number is called the image
Milnor number.

One can also generalise by looking at the multiple point spaces in the target of
the disentanglement map. It has been shown in [8] that these spaces are homo-
topically equivalent to a bouquet of spheres of dimension equal to the complex
dimension of the space. Thus we can define what is called the kth image Milnor
number. To calculate these in the corank 1 case, we have Theorem 2.7 in the case
f : ðC2; 0Þ ! ðC3; 0Þ and Theorem 2.8 for f : ðC3; 0Þ ! ðC4; 0Þ.

One effect of defining these is that we get conditions on the source multiple
point spaces. For example, in the case of finitely A-determined f : ðC3; 0Þ !
ðC4; 0Þ, if D3ð f Þ is non-empty then �ðD3ð f ÞÞ ¼ 3mþ 1 for some m, see Remark
2.9.

Formulae for calculating the invariants when the map is quasihomogeneous are
given in Section 4.

2. Generalised Image Milnor Numbers. We will first make the necessary defi-
nitions and notations.

Let f : X! Y be a continuous map.

Definition 2.1. The kth multiple point space, denoted by Dkð f Þ, is defined to be

Dkð f Þ :¼ closurefðx1; 	 	 	 ; xkÞ 2 X
kj fðx1Þ ¼ 	 	 	 ¼ fðxkÞ; xi 6¼ xj; for i 6¼ jg:
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There are continuous mappings "i;k : Dkð f Þ ! Dk�1ð f Þ defined by

"i;kððx1; 	 	 	 ; xkÞÞ ¼ ðx1; 	 	 	 x̂xi; 	 	 	 ; xkÞ

for 1 � i � k.
The group of permutations on k objects, denoted by Sk, acts on D

k through its
obvious permutation action on Xk.

Definition 2.2. Suppose that M is a Q-vector space upon which Sk acts. Then
the alternating part of M, denoted by Altk M, is defined to be

Altk M :¼ fm 2Mj�ðmÞ ¼ signð�Þm for all � 2 Skg:

Definition 2.3. Let g : X! Y be a map. The kth image multiple point space of
g, denoted by MkðgÞ, is the closure in Y of the set of points of Y with k or more
preimages.

Assume that f : ðCn; 0Þ ! ðCnþ1; 0Þ is a finitely A-determined corank 1 map-
germ, (we will abuse notation and also use f to denote a representative of the germ
f ). Let ft : Ut ! Cnþ1 be a stabilisation of f, where Ut is an open domain in Cn. That
is, ft is A-stable at every point.

Definition 2.4. The kth disentanglement of f is the closure of the set of points in
the image of ft \ B" (for some small ball B" centred at zero) that have k or more
preimages. We denote this space by Diskð f Þ.

One of the main theorems of [8] says that if f : ðCn; 0Þ ! ðCnþ1; 0Þ is corank 1
and finitely A-determined then Diskð f Þ is empty or is a bouquet of spheres of
dimension n� kþ 1.

Definition 2.5. For f : ðCn; 0Þ ! ðCnþ1; 0Þ corank 1 and finitely A-determined
the kth image Milnor number is the number of spheres in the bouquet of spheres of
Diskð f Þ. The number is denoted by �Ik . We shall write �I1ð f Þ simply as �Ið f Þ.

This definition gives us a sequence of analytic invariants for the map f.
For a map the corank 1 hypothesis implies that the multiple point spaces of ft

are Milnor fibres of the multiple point spaces of f which are isolated complete
intersection singularities (see [11]).

We denote by �altk ð f Þ the dimension of the alternating cohomology group
Altk H

dimDkð ftÞðDkð ftÞ;QÞ. Techniques for calculating this number from the Milnor
numbers of the Dkð f Þ and its restriction to reflecting hyperplanes are given in [9]
(following [6] which contained an error). In particular we have

�alt2 ð f Þ ¼
1

2
ð�ðD2ð f ÞÞ þ �ðD2ð f ÞjHÞÞ;

where H is the reflecting hyperplane given by permutation of coordinates in the
ambient space, X� X, for D2ð f Þ.
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Consider the spaces Dkj ð
~ff Þ in [6, p. 55] for the map ~ff. These are defined as the

reduced image of Dkð ~ff Þ in Djð ~ff Þ under any of the Cartesian projections. For
example, Dkj ð

~ff Þ is the image of

"1; jþ1 � "1; jþ2 � 	 	 	 � "1;k�1 � "1;k:

By Theorem 2.8 of the same paper these spaces have rational cohomology only in
dimension equal to their complex dimension.

Denote by ��k the dimension of Hn�kþ1ðDk1ð ftÞÞ for 2 � k � nþ 1. Note that
��k 6¼ �ðDk1ð f ÞÞ in general.

2.1. Calculating �Ik in terms of invariants of multiple point spaces. Suppose f is
of corank 1. Using the Milnor numbers of the multiple point spaces and the
restrictions to the fixed point sets we can give formulae for �Ik . We shall do this for
the cases n ¼ 2 and n ¼ 3 but first a general result relating �I2 and �I.

Lemma 2.6 If n � 2, then �I2 ¼ ��2
� �I.

Proof. Consider the maps ft and ftjD
2
1ð ftÞ. The multiple point spaces for these

maps differ only in that their sources are different, the other multiple point spaces
are the same by the explanation at the top of page 56 in [6]. Let g : X! Y be a finite
continuous map and gp denote the map gjD

p
1ðgÞ. Then, we have

DjðgpÞ ¼
D
p
j ðgÞ for j < p

DjðgÞ for j � p:

�

Thus, the first page of each of the image computing spectral sequences of [6,
Proposition 2.3] differ only in the first column, the cohomology of the sources.

Down the pþ q ¼ nþ 1 anti-diagonal of both sequences we have the non-trivial
alternating cohomology groups, (except E0;n�1

1 ). The sum of the dimensions of these
groups in the sequence is equal to �I since E

0;q
1 ð f Þ ffi Q for q ¼ 0 and trivial other-

wise. The only other non-trivial terms for the sequence associated to ftjD
2
1ð ftÞ are

E0;0
1 ffi Q and E0;n�1

1 which has dimension ��2
by [6, Theorem 2.8]. Thus,

1þ ð�1Þn�1�I2 ¼ �ðDis2ð ftÞÞ ¼ �ðE�;�1 ð ftjD
2
1ð ftÞÞÞ ¼ 1þ ð�1Þn�1��2

þ ð�1Þn�I:

&

2.1.1. The case n ¼ 2. In the case n ¼ 2 there are three image Milnor numbers,
�I ¼ �I1 , �I2 and �I3 . Since �I has been studied in [6] and [17], and when D3ð f Þ is
non-empty then �I3 is just T� 1, the number of triple points in the image minus 1,
only the image Milnor number �I2 has not been studied thoroughly before.

Theorem 2.7. For f : ðC2; 0Þ ! ðC3; 0Þ a corank 1 finitely A-determined map-
germ, �I2 ¼ �ðD2ð f Þ=S2Þ þ 2T, where S2 is the group of permutations on two objects.

Proof. The space D2
1ð ftÞ is the image of the projection from D2ð ftÞ to the source

of ft and the double point space of this mapping is homeomorphic to D3ð ftÞ, a set of
6T points. Thus, ��2

¼ �ðD2ð f ÞÞ þ 3T.
Let us note that as the group HdimðD2ÞðD2ð ftÞ;QÞ decomposes into an alternating

and symmetric part we get �ðD2Þ ¼ �altðD2Þ þ �ðD2=S2Þ.
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By Lemma 2.6 we have

�I2 ¼ ��2
� �I

¼ �ðD2Þ þ 3T
� �

� �alt2 þ �alt3
� �

¼ �alt2 þ �ðD2=S2Þ þ 3T
� �

� ð�alt2 þ TÞ

¼ �ðD2=S2Þ þ 2T: &

2.1.2. Case n ¼ 3. The topology of the map-germs from three-space to four-
space has been studied in [9] where �I has been calculated for all simple germs and
germs of low codimension.

The group of permutations on k objects acts on the ambient space, Xk, for
Dkð f Þ and this allows us to define reflecting hyperplanes in the ambient space. We
shall denote a reflecting hyperplane in D3ð f Þ by H1, (it is irrelevant which hyper-
plane we choose). Again the precise details can be found in [6].

Theorem 2.8. For f : ðC3; 0Þ ! ðC4; 0Þ a corank 1 finitely A-determined map-
germ, the complete list of generalised image Milnor numbers is calculated in terms of
invariants of multiple point spaces by the following.

(i) (cf. [6], [9] and [10]), �I ¼
1
2 ð�ðD

2Þ þ �ðD2jHÞÞ þ 1
6 ð�ðD

3Þ þ 3�ðD3jH1Þ þ 2Þ
þQ,

(ii) �I2 ¼ �ðD2=S2Þ þ
1
3 ð�ðD

3Þ � 1Þ þ 3Q,
(iii) �I3 ¼

1
6 �ðD3Þ � 3�ðD3jH1Þ þ 2
� �

þ 3Q,
(iv) �I4 ¼ Q� 1, (when D4ð f Þ is non-empty),

where Q is the number of quadruple points appearing in a stabilisation of f.

Proof. Part (i) is proved in the form above in [9] and in a different form in [10].
Part (iv) is trivial. For (ii) we will use Lemma 2.6. We have to calculate ��2

, the
second Betti number of D2

1ð ftÞ. This space is the image of the projection
"2t :¼ "1;2ð ftÞ : D

2ð ftÞ ! Ut, (define "2 to be "20 ). It is shown in [6, p. 55], that
Dkð"2t Þ ¼ D

kþ1ð ftÞ for k � 1. Therefore using the image computing spectral sequence
for "2t and [9, Theorem 2.6] we find,

��2
¼ �ðD1ð"2ÞÞ þ

1

2
�ðD2ð"2ÞÞ þ �ðD2ð"2ÞjHÞ
� �

þ Tð"2Þ

¼ �ðD2ð f ÞÞ þ
1

2
�ðD3ð f ÞÞ þ �ðD3ð f ÞjH1Þ
� �

þ 4Q:

The calculation of �I2 is then straightforward:

�I2 ¼ ��2
� �I

¼
1

2
ð�ðD2Þ � �ðD2jHÞÞ þ

1

3
ð�ðD3Þ � 1Þ þ 3Q

¼ �ðD2=S2Þ þ
1

3
ð�ðD3Þ � 1Þ þ 3Q:

For part (iii) we use the image computing spectral sequence for the map
h1 ¼ ftjD

3
1. Then D

2ðh1Þ ¼ D
3
2ð ftÞ and D

kðh1Þ ¼ D
kð ftÞ for k � 3, (top of page 56 of
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[6] again). From the image computing spectral sequence for h1, [6, Theorem 2.8], we
deduce that

�I3 ¼ ��3
� dimAlt2H

1ðD3
2ð ftÞ;QÞ þ �alt3 þ �alt4 :

The value of �alt3 is shown to be 1
6 ð�ðD

3Þ þ 3�ðD3jH1Þ þ 2Þ in [9], and �alt4 is equal to
Q.

To calculate the alternating cohomology of D3
2ð ftÞ we need its first Betti num-

ber, b1ðD
3
2ð ftÞÞ, and the number of points in the space D3

2ð ftÞjH as the following
shows. The alternating cohomology of D3

2ð ftÞ is calculated using [9, Theorem 2.7],
where �ðZÞ denotes the Euler Characteristic of the space Z and �alt denotes the
alternating version:

�altðZÞ ¼
1

2
�ðZÞ � �ðZjH Þð Þ

�2balt1 ðD3
2ð ftÞÞ ¼ 1� b1ðD

3
2ð ftÞÞ � b0ðD

3
2ð ftÞjH Þ

¼ 1� b1ðD
3
2ð ftÞÞ � ð�ðD3

2ð ftÞjH Þ þ 1Þ

balt1 ðD3
2ð ftÞÞ ¼

1

2
b1ðD

3
2ð ftÞÞ þ �ðD3

2ð ftÞjH Þ
� �

:

The 0th alternating homology group in the above is zero since D3
2ð ftÞ is connected

and contains elements in the diagonal, hence any zero-cycle is homologous to a cycle
in the diagonal and these are not alternating.

The set D3
2ð ftÞ is the image of the map h2 : D

3ð ftÞ ! D
2ð ftÞ. Thus

D1ðh2Þ ¼ D
3ð ftÞ and D2ðh2Þ ¼ D

4ð ftÞ. Hence, b1ðD
3
2ð ftÞÞ ¼ �ðD3Þ þ 12Q. The set

D3
2ð ftÞjH has the same number of points as D3ð ftÞjH1. Thus,

dimAlt2H
1ðD3

2ð ftÞ;QÞ ¼
1

2
ð�ðD3Þ þ �ðD3ÞjH1Þ þ 6Q:

To calculate ��3
we note that D3

1ð ftÞ is the image of the map h3 : D
3
2ð ftÞ ! Ut and

that Dkðh3Þ ¼ D
kþ1ð ftÞ for k � 2. From the spectral sequence for this map we deduce

that

��3
¼ b1ðD

3
2ð ftÞÞ � dimAlt2H

1ðD3ð ftÞ;QÞ � dimAlt3H
0ðD4ð ftÞ;QÞ

¼ �ðD3Þ þ 12Q�
1

2
ð�ðD3Þ þ �ðD3jH1ÞÞ �

24

6
Q

¼
1

2
ð�ðD3Þ � �ðD3jH1ÞÞ þ 8Q:

Part (iii) then follows from this as a straightforward calculation. &

Remark 2.9. Part (ii) proves, for a corank 1 finitely A-determined
f : ðC3; 0Þ ! ðC4; 0Þ, the intriguing observation made in [9], in the case of simple and
low codimension germs, that �ðD3ð f ÞÞ ¼ 3mþ 1, for some m. Thus in particular
D3ð f Þ is either empty or singular for such maps.

Remark 2.10. In both cases, n ¼ 2 and n ¼ 3, the alternating sum,
P
kð�1Þk�Ik

is a function of �ðD2ð f ÞjHÞ. This may or may not be significant.
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Table 1 shows the generalised image Milnor numbers for the simple germs
f : ðC3; 0Þ ! ðC4; 0Þ and those in families of Ae-codimension less than or equal to 4.

3. Map-germs F : ðC3; 0Þ ! ðC3; 0Þ. In [13] Marar and Tari classify the corank
1 simple map-germs from R3 to R3. By complexifying a real germ in the Marar and
Tari list we can get a complex germ and hence can define the discriminant Milnor
number as described in [3].

They pose the question of how the invariants arising from the multiple point
spaces are related to the discrimimant Milnor number, i.e. the number of vanishing
cycles in the stabilisation of the discriminant. The relation they require is described
in our Remark 3.4. In order to relate the discriminant Milnor number to the invar-
iants in [13, Table 1], we need to study two more invariants not in [13].

The first is the number of A1A2 points that appear in the discriminant under
deformation of the original map. (An A1A2 point is the intersection of a plane and a
cuspidal edge). For more general germs, i.e. non-simple ones, a further invariant is
needed: the number of triple points that appear under deformation. As none of the
simple germs produce triple points all the germs in [13, Table 1] have this number
equal to zero.

3.1. Discriminant Milnor Numbers. Let F : ðC3; 0Þ ! ðC3; 0Þ be a corank 1
finitely A-determined map-germ. The critical point space of F, denoted � , is then a

Table 1: Generalised Image Milnor Numbers

Singularity Name �I �I2 �I3 Q

ðx; y; z2; zðz2 � x2 � ykþ1ÞÞ Ak k 0 0 0

ðx; y; z2; zðz2 þ x2y� yk�1ÞÞ Dk k 0 0 0

ðx; y; z2; zðz2 þ x3 � y4ÞÞ E6 k 0 0 0

ðx; y; z2; zðz2 þ x3 þ xy3ÞÞ E7 k 0 0 0

ðx; y; z2; zðz2 þ x3 þ y5ÞÞ E8 k 0 0 0

ðx; y; z2; zðx2 � y2 � z2kÞÞ Bk k k� 1 0 0

ðx; y; z2; zðx2 þ yz2 � ykÞÞ Ck k 1 0 0

ðx; y; z2; zðx2 þ y3 � z4ÞÞ F4 4 2 0 0

ðx; y; yzþ z4; xzþ z3Þ P1;1 1 0 0 0

ðx; y; yzþ z5; xzþ z3Þ P1;2 2 1 0 0

ðx; y; yzþ z6 � z3kþ2; xzþ z3Þ Pk2;0 kþ 2 2k k� 1 0

ðz; y; yzþ z7 þ z8; xzþ z3Þ P12;1 5 5 1 0

ðx; y; yzþ z7; xzþ z3Þ P2;1 5 5 1 0

ðx; y; xzþ yz2; z3 � ykzÞ Qk k 0 0 0

ðx; y; xzþ z3; yz2 þ z4 þ z2k�1Þ Rk kþ 1 k� 1 0 0

ðx; y; xzþ y2z2 � z3jþ2; z3 � ykzÞ Sj;k kþ jþ 1 2j j� 1 0

ðx; y; yzþ xz3 � z5 þ az7;xzþ z4 þ bz6Þ I 6 7 3 1

ðx; y; yzþ xz3 þ az6 þ z7 þ bz8 þ cz9;xzþ z4Þ II 9 11 4 1

ðx; y; yzþ z5 þ z6 þ az7; xzþ z4Þ III 6 7 3 1

ðx; y; yzþ z5 þ az7;xzþ z4 � z6Þ IV 6 7 3 1

ðx; y; xzþ z5 þ ay3z2 þ y4z2; z3 � y2zÞ V 6 4 0 0

ðx; y; xzþ z3; yz2 þ z5 þ z6 þ az7Þ VI 6 5 1 0

ðx; y; xzþ z3; y2zþ xz2 þ az4 � z5Þ VII 6 3 0 0

ðx; y; xzþ z4 þ az6 þ bz7; yz2 þ z4 þ z5Þ VIII 8 8 3 1
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hypersurface. Since F is stable outside the origin � has an isolated singularity at the
origin. (This includes the case where � is non-singular!)

Let f be the restriction of F to � . Then � :¼ fð�Þ is the discriminant of F. We
shall be interested in the change of the local topology of this space (and certain
subspaces of it) under stabilisation of F. So suppose Ft is a stabilisation of F. Then
we can define � t as the critical point set of Ft and define ft ¼ Ftj� t and �t ¼ ftð� tÞ.

3.1.1. The spaces of interest. As in the case ofmaps from surfaces to three-space a
good source of invariants is the set of invariants associated to the multiple point spaces
of the map. We shall now describe these spaces and invariants carefully as there are
a number of different meanings to the phrase ‘double point space’ in the literature.

The multiple point spaces we shall be interested are those defined by Goryunov
in [5, Section 4]; they are also denoted by Dkð f Þ. In Mond’s earlier definition of
multiple point spaces, [15], a curve arising from the cuspidal edge in the image of f
would be included in D2ð f Þ. This is because the cuspidal edge points are of multi-
plicity 2, and so if one perturbs f to make it A-stable then a curve of double points
appears. (Note that, in general, when F is A-stabilised ft is not even finitely A-
determined; this is due to the presence of the cuspidal edge in the image of f ). Gor-
yunov’s definition of multiple point spaces allows one to remove this unwanted
curve component.

We can also study the double point space in the source (this is the double point
space that Marar and Tari study). Let D ¼ D2

1ð f Þ and Dt ¼ D
2
1ð ftÞ denote the rele-

vant spaces. The invariant �ðdÞ of [13] is the Milnor number of D.
One can also study the multiple point spaces in the image. Let Mkð ftÞ be the

image of Dkð ftÞ in C3. We get M2ð ftÞ ¼ ftðDtÞ, which is a connected complex curve
by [2, Theorem 4.2.2].

Another space of interest is the preimage under ft of the cuspidal edge in the
image. The invariant associated to this, �ðcÞ, is studied in [13] but we shall be less
interested in the cuspidal edge as it does not affect the topology of the discriminant,
though note that it is useful in classification problems.

3.1.2. Invariants arising from stabilisation. As Ft is stable the set � t is non-sin-
gular and so it is the Milnor fibre of � .

By [5, Theorem 5.3.2] D2ð ftÞ is the Milnor fibre of the isolated complete inter-
section curve singularity D2ð f Þ, and D3ð ftÞ is the Milnor fibre of the zero dimen-
sional complete intersection singularity D3ð f Þ.

On each Dkð f Þ there is an action of Sk (the permutation group on k objects).
The fixed point set of D2ð f Þ under the action of S2, is a zero dimensional complete
intersection. The fixed points of D2ð ftÞ under the action of S2 correspond to swal-
lowtails in the image. These are also known as A3 points in the image. The orbits of
D3ð ftÞ correspond to triple points in the image, i.e. the transverse crossing of three
planes, denoted A3

1. There is a third zero dimensional singularity, the transverse
intersection of a cuspidal edge and a plane, an A1A2 point.

The double point set Dt is in general a singular curve. The singularities arise
from the triple points and the A1A2 points in the image. A triple point in the image
produces three nodes on Dt and an A1A2 produces a cusp.

3.1.3. The Invariants. The set �t ¼M1ð ftÞ is homotopically equivalent to a
wedge of 2-spheres and the number of spheres is called the discriminant Milnor
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number, denoted ��ðF Þ (see [3]). As the setM2ð ftÞ is a connected complex curve we
can define ��2

ðF Þ to be the number of circles in its homotopy type. We define
��3

ðF Þ to be the number of points in M3ð ftÞ. We view these numbers as generalised
discriminant Milnor numbers of F.

The invariants of the map and its stabilisation we wish to relate are
� ��ðFÞ,��2

ðFÞ, and��3
ðFÞ, the three generalised discriminantMilnor numbers,

� the Milnor numbers of � , D2ð f Þ, D2ð f ÞjH, D2ð f Þ=S2, D
3ð f Þ and D,

� #A3, the number of swallowtails,
� #A1A2, the number of intersections of planes and cuspidal edges, and
� #A3

1, the number of transverse crossings of three planes.

3.1.4. Relations between the invariants. The trivial relations between the invar-
iants are #A3 ¼ �ðD2ð f ÞjHÞ þ 1 and ��3

¼ #A3
1 ¼

1
6 ð�ðD

3ð f ÞÞ þ 1Þ.
Now, the main theorem for calculating the discriminant Milnor numbers is the

following.

Theorem 3.1. For a corank 1 finitely A-determined map-germ F : ðC3; 0Þ !
ðC3; 0Þ we have

(i) ��ðFÞ ¼ �ð�Þ þ 1
2 ð�ðD

2ð f ÞÞ þ �ðD2ð f ÞjHÞÞ þ #A3
1;

(ii) ��2
ðFÞ ¼ �ðD2ð f Þ=S2Þ þ 2#A3

1.

Proof. (i) The proof is the same as in the case of finitely A-determined maps
from surfaces to three-space but in this case we have a source with possibly non-
trivial cohomology. See also [17].

(ii) We need to study the topology of ftjDt. The multiple point spaces of this
map are the same as ft for k � 2. In a similar way to Lemma 2.6 we find that

��2
¼ dimH1ðD;CÞ �

1

2
�ðD2Þ þ �ðD2jHÞ
� �

� #A3
1:

Since the projection of D2ð ftÞ to Dt is injective except at the double points of the
projection, of which there are 3#A3

1, we deduce that dimCH
1ðDt;CÞ ¼

�ðD2ð f ÞÞ þ 3#A3
1. From these two equations the equality of the theorem follows. &

Table 2 shows the generalised discriminant Milnor numbers and the invariants
not included in [13, Table 1].

Remark 3.2. One entry in [13, Table 1] is incorrect. The Milnor number of D
for 4k2 is claimed to be 3kþ 1, however it is really 2k� 1. The error occurs in that the

Table 2: Invariants for simple germs F : ðC3; 0Þ ! ðC3; 0Þ

Name Normal Form �� ��2
��3

�ðD2Þ #A1A2

A1 ðx; y; z2Þ 0 0 0 � 0

* ðx; y; z3 þ Pðx; yÞzÞ �ðPÞ 0 0 � 0

4k1 ðx; y; z4 þ xz� ykz2Þ k � 1 k� 1 0 0 k� 1 0

4k2 ðx; y; z4 þ ðy2 � xkÞzþ xz2Þ k � 2 kþ 1 k� 1 0 2k� 1 0

51 ðx; y; z5 þ xzþ yz2Þ 1 0 0 1 2

52 ðx; y; z5 þ xzþ y2z2 þ yz3Þ 3 1 0 4 3

53 ðx; y; z5 þ xzþ yz3Þ 3 1 0 4 3
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authors have the set defined by z ¼ 0 and y2 þ xk ¼ 0 as a subset of D. The equation
z ¼ 0 makes the third component of the map equal to zero and this means that the
points are not double points. If we remove this extraneous plane then we find that D
is defined in C3 by 2z2 þ x ¼ 0 and y2 þ xk and so the value of �ðDÞ is 2k� 1.

We now investigate the topology of the double point space in the source.

Lemma 3.3. For a map-germ as in the theorem above,

�ðDÞ ¼ �ðD2Þ þ 2#A1A2 þ 6#A3
1:

Proof. As Dt is a family of curves we can use [2, Theorem 4.2.2, part 2]. This
gives that

�ðDÞ � �ðDtÞ ¼ dimCH
1ðDt;CÞ;

where �ðDtÞ is the sum of the Milnor numbers of the singularities of Dt. But
�ðDtÞ ¼ 3#A3

1 þ 2#A1A2 as each A
3
1 point gives 3 nodes and each A1A2 point gives a

cusp in Dt.
The equality of the lemma follows from the description of dimCH

1ðDt;CÞ given
in the proof of the theorem. &

Remark 3.4. Using Lemma 3.3 and Theorem 3.1 we deduce that the relation
required by Marar and Tari in [13] is

��ðFÞ ¼ �ð�Þ þ
1

2
�ðDÞ þ #A3 � 1ð Þ � #A1A2 � 2#A3

1:

Remark 3.5. According to [5, Section 3.2] using the third coordinate function
of F and the defining equation of � we can define the triple point space D3ðFj�Þ in
another way, using 5 equations in C5. Since only swallowtails, A1A2 points and tri-
ple points produce any points in this version of D3 then the finite determinacy of F
means that D3ðFj�Þ, if it is non-empty, is an isolated complete intersection singu-
larity of dimension zero.

Under stabilisation of F, D3ðFj�Þ will split up so that swallowtails give fixed
points, A1A2 points give orbits with 3 points and A3

1 give free orbits, each orbit
consisting of 6 points of course.

This means that

#D3ðFj�Þ

6
¼ #A3 þ #A2A1 þ #A3

1:

This can provide a useful verification of calculations of the three invariants on the
right hand side.

4. Quasihomogeneous maps. When the map F is quasihomogeneous we can
calculate the invariants using the map’s weights and degrees. Formulae for calcu-
lating #A3, #A1A2 and #A3

1 this way are given in [12]. The formula for �ð�Þ is easy
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to deduce as � is an isolated hypersurface singularity (see [14]). Since
�ðD2jHÞ ¼ #A3 � 1 the only other formula needed to calculate �� is for �ðD2Þ and
this is given in the next theorem. We also give a formula for calculating the degree of
D3ðFj�Þ.

Theorem 4.1. Suppose F is a finitely A-determined map-germ of the form
Fðx; y; zÞ ¼ ðx; y; gðx; y; zÞÞ and g is quasihomogeneous of degree d with weights
ðw1;w2;w0Þ. Let f be the restriction of F to � , (this is the critical point space of F).
Then

�ðD2ð f ÞÞ ¼ 1þ
ðd� w0Þðd� 2w0Þðd� 3w0Þ

w20w1w2

�
3d� ð8w0 þ w1 þ w2Þ

�
:

Proof. By [5], D2ð f Þ is defined in C5 by equations of degree d, d� w0, d� 2w0
and d� 3w0, where the weights are w0, w0, w1, w2 and d. The last arises from the
equation 	1 ¼ gðx; y; zÞ in Goryunov’s notation.

As D2ð f Þ is a quasihomogeneous curve the Milnor number is easy to calculate
from the weights and degrees (see [1, p. 36]). &

Theorem 4.2. Suppose F is as in Theorem 4.1. Let d1 denote the degree of g and
d2 denote the degree of the equation defining � . Then

#A3 þ #A3
1 þ #A1A2 ¼

ðd1 � w0Þðd1 � 2w0Þd2ðd2 � w0Þðd2 � 2w0Þ

w30w1w2
:

Proof. This follows from Remark 3.5 and an analysis of the weights and degrees
of the equations defining D3ðFj�Þ (see [5]).
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