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Abstract. Let R be a commutative Noetherian local ring. This paper deals

with the problem asking whether R is Gorenstein if the nth syzygy module

of the residue class field of R has a non-trivial direct summand of finite G-

dimension for some n. It is proved that if n is at most two then it is true, and

moreover, the structure of the ring R is determined essentially uniquely.

§1. Introduction

Throughout the present paper, we assume that all rings are commuta-
tive Noetherian local rings and all modules are finitely generated modules.

G-dimension is a homological invariant of a module which has been
introduced by Auslander [1]. This invariant is an analogue of projective
dimension. Whereas the finiteness of projective dimension characterizes the
regular property of the base ring, the finiteness of G-dimension characterizes
the Gorenstein property of the base ring. To be precise, any module over a
Gorenstein local ring has finite G-dimension, and a local ring with residue
class field of finite G-dimension is Gorenstein. G-dimension shares a lot
of properties with projective dimension. For example, it also satisfies an
Auslander-Buchsbaum-type equality, which is called the Auslander-Bridger
formula.

Dutta [9] proved the following theorem in his research into the homo-
logical conjectures:

Theorem 1.0.1. (Dutta) Let (R,m, k) be a local ring. Suppose that the

nth syzygy module of k has a non-zero direct summand of finite projective

dimension for some n ≥ 0. Then R is regular.
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2 R. TAKAHASHI

Since G-dimension is similar to projective dimension, this theorem nat-
urally leads us to the following question:

Question 1.0.2. Let (R,m, k) be a local ring. Suppose that the nth

syzygy module of k has a non-zero direct summand of finite G-dimension

for some n ≥ 0. Then is R Gorenstein?

It is obviously seen from the indecomposability of k that this question
is true if n = 0. Hence this question is worth considering just in the case
where n ≥ 1.

We are able to answer in this paper that the above question is true if
n ≤ 2. Furthermore, as the theorems below say, we can even determine
the structure of a ring satisfying the assumption of the above question for
n = 1, 2.

The organization of this paper is as follows. In Section 2, we will prepare
some notions and results for later use. The definition and properties of G-
dimension will be given in this section. In Section 3, we shall state the main
theorems of this paper. Firstly, we will consider a local ring such that the
first syzygy module of the residue class field, namely, the maximal ideal, is
decomposable. We will obtain the following result:

Theorem A. Let (R,m) be a complete local ring. The following con-

ditions are equivalent :

(1) There is an R-module M with G-dimR M < ∞ = pdR M , and m is

decomposable;

(2) R is Gorenstein, and m is decomposable;

(3) There are a complete regular local ring S of dimension two and a

regular system of parameters x, y of S such that R ∼= S/(xy).

Secondly, we will investigate a local ring such that the second syzygy
module of the residue class field is decomposable, and obtain the following
result:

Theorem B. Let (R,m, k) be a complete local ring. (Denote by Ω2
Rk

the second syzygy module of k.) Suppose that m is indecomposable. Then

the following conditions are equivalent :

(1) There is a non-trivial direct summand M of Ω2
Rk with G-dimR M <

∞;
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(2) R is Gorenstein, and Ω2
Rk is decomposable;

(3) There are a complete regular local ring (S, n) of dimension three, a

regular system of parameters x, y, z of S, and f ∈ n such that R ∼=
S/(xy − zf).

Theorems A and B especially say that a complete Gorenstein local ring
such that the first or second syzygy module of the residue class field is
decomposable is a hypersurface, and moreover, its ring structure can be
determined concretely. We will actually prove in Section 3 more general
results than the above two theorems.

§2. Preliminaries

Throughout this section, let (R,m, k) be a local ring. In this section,
we will recall several basic notions and state related results to explain and
prove the main theorems of this paper.

2.1. (Pre)covers and (pre)envelopes

We begin by recalling the notions of a (pre)cover and a (pre)envelope of
a module. Let modR denote the category of finitely generated R-modules.

Definition 2.1.1. Let C be a full subcategory of modR.

(1) Let φ : X → M be a homomorphism from X ∈ C to M ∈ modR.

(i) We call φ or X a C-precover of M if for any homomorphism φ′ :

X ′ → M with X ′ ∈ C there exists a homomorphism f : X ′ → X

such that φ′ = φf .

(ii) Assume that φ is a C-precover of M . We call φ or X a C-cover of

M if any endomorphism f of X with φ = φf is an automorphism.

(2) Let φ : M → X be a homomorphism from M ∈ modR to X ∈ C.

(i) We call φ or X a C-preenvelope of M if for any homomorphism

φ′ : M → X ′ with X ′ ∈ C there exists a homomorphism f : X →

X ′ such that φ′ = fφ.

(ii) Assume that φ is a C-preenvelope of M . We call φ or X a C-

envelope of M if any endomorphism f of X with φ = fφ is an

automorphism.

A C-precover (resp. C-cover, C-preenvelope, C-envelope) is also called a
right C-approximation (resp. right minimal C-approximation, left C-approxi-

mation, left minimal C-approximation). A C-cover (resp. C-envelope) is
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uniquely determined up to isomorphism whenever it exists. In general, it is
uncertain whether the existence of a C-precover (resp. C-preenvelope) implies
the existence of a C-cover (resp. C-envelope). However, it is true under a
few assumptions: if R is Henselian and C is closed under direct summands,
then for a given C-precover (resp. C-preenvelope), we can extract a C-cover
(resp. C-envelope) from it, as follows.

Proposition 2.1.2. Let C be a full subcategory of modR which is

closed under direct summands. Suppose that R is Henselian.

(1) Let 0 → N → X
φ
→ M be an exact sequence of R-modules where φ is

a C-precover of M . Then there exists a commutative diagram

0 0




y





y

L L




y





y

0 −−−−→ N −−−−→ X
φ

−−−−→ M




y





y

∥

∥

∥

0 −−−−→ N ′ −−−−→ X ′
φ′

−−−−→ M




y





y

0 0

of R-modules with exact rows and split exact columns such that φ′ is

a C-cover of M .

(2) Let M
φ
→ X → N → 0 be an exact sequence of R-modules where φ is

a C-preenvelope of N . Then there exists a commutative diagram

0 0




y





y

M
φ′

−−−−→ X ′ −−−−→ N ′ −−−−→ 0
∥

∥

∥





y





y

M
φ

−−−−→ X −−−−→ N −−−−→ 0




y





y

L L




y





y

0 0
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of R-modules with exact rows and split exact columns such that φ′ is

a C-envelope of M .

For the proof of the statement (1), we refer to [13, Remark 2.6]. The
statement (2) can be shown dually.

2.2. The subcategory of free modules

We denote by F(R) the full subcategory of modR consisting of all free
R-modules. Recall that a homomorphism f : M → N of R-modules is said
to be minimal if the induced homomorphism f⊗Rk : M⊗Rk → N⊗Rk is an
isomorphism. (Note from Nakayama’s lemma that every minimal homomor-
phism is surjective.) Let νR(M) denote the minimal number of generators
of an R-module M , i.e., νR(M) = dimk(M ⊗R k). Set (−)∗ = HomR(−, R).
Every R-module admits an F(R)-cover and an F(R)-envelope, as follows.

Proposition 2.2.1. Let M be an R-module.

(1) A homomorphism φ : Rn → M is an F(R)-cover of M if and only if

φ is surjective and n = νR(M).

(2) Let f1, f2, . . . , fn be a minimal system of generators of M ∗. Then the

homomorphism f = t(f1, . . . , fn) : M → Rn is an F(R)-envelope of

M .

An R-module M is said to be torsionless (resp. reflexive) if the natural
homomorphism M → M ∗∗ is injective (resp. bijective). We easily obtain
the following.

Corollary 2.2.2. Let M be an R-module.

(1) Let σ : M → M ∗∗ be the natural homomorphism and φ : F → M ∗

an F(R)-cover. Then the composite map φ∗σ : M → F ∗ is an F(R)-

envelope.

(2) The R-module M is torsionless if and only if the F(R)-envelope of M

is an injective homomorphism.

We especially see from this corollary that an F(R)-envelope is not nec-
essarily an injective homomorphism.

Let M be an R-module. Take its F(R)-cover π : F → M . The first

syzygy module ΩRM = Ω1
RM of M is defined to be the kernel of the homo-

morphism π, and the nth syzygy module Ωn
RM of M is defined inductively:

Ωn
RM = ΩR(Ωn−1

R M) for n ≥ 2. Dually to this, we can define the cosyzygy
modules of any module.
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6 R. TAKAHASHI

Definition 2.2.3. Let M be an R-module.

(1) Take the F(R)-envelope θ : M → F of M . We set Ω−1
R M = Coker θ,

and call it the first cosyzygy module of M .

(2) Let n ≥ 2. Assume that the (n − 1)th cosyzygy module Ω
−(n−1)
R M

is defined. Then we set Ω−n
R M = Ω−1

R (Ω
−(n−1)
R M) and call it the nth

cosyzygy module of M .

A module is said to be stable if it has no non-zero free summand. The
following is a property which is peculiar to cosyzygy modules.

Proposition 2.2.4. For any M ∈ modR and any n ≥ 1, the module

Ω−n
R M is stable.

2.3. G-dimension

Now, we recall the definition of G-dimension.

Definition 2.3.1. (1) We denote by G(R) the full subcategory of

modR consisting of all R-modules M satisfying the following three

conditions:

(i) M is reflexive,

(ii) Exti
R(M,R) = 0 for every i > 0,

(iii) Exti
R(M∗, R) = 0 for every i > 0.

(2) Let M be an R-module. If n is a non-negative integer such that there

is an exact sequence 0 → Gn → Gn−1 → · · · → G1 → G0 → M → 0

of R-modules with Gi ∈ G(R) for every i, then we say that M has

G-dimension at most n, and write G-dimR M ≤ n. If such an integer

n does not exist, then we say that M has infinite G-dimension, and

write G-dimR M = ∞.

If an R-module M has G-dimension at most n but does not have G-

dimension at most n−1, then we say that M has G-dimension n, and write
G-dimR M = n. Note that for an R-module M we have G-dimR M = 0

if and only if M ∈ G(R), and that all free R-modules belong to G(R).
For basic properties of G-dimension, we should refer to [3, Chapter 3, 4],

[8, Chapter 1] and [6, Section 8]. We write down some properties of the

category G(R).
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Proposition 2.3.2. (1) If R is a Gorenstein local ring, then the cat-

egory G(R) coincides with the full subcategory of modR consisting of

all maximal Cohen-Macaulay modules.

(2) There exists a non-free R-module in G(R) if and only if there exists

an R-module of finite G-dimension and infinite projective dimension.

(3) The following statements hold :

(i) If an R-module M belongs to G(R), then so do M ∗, ΩM , Ω−1M ;

(ii) Let M , N be R-modules. Then M , N belong to G(R) if and only

if so does M ⊕ N ;

(iii) Let 0 → L → M → N → 0 be an exact sequence of R-modules.

If L, N belong to G(R), then so does M ;

(iv) If an R-module M belongs to G(R), the R/(x)-module M/xM

belongs to G(R/(x)) for any element x ∈ m which is R- and

M -regular.

If R is Gorenstein and non-regular, then the latter condition in (2) of
the above proposition holds. In fact, the R-module k has finite G-dimension
and infinite projective dimension.

We denote by G(R) the full subcategory of G(R) consisting of all stable
modules in G(R). The dual functor (−)∗ and the syzygy functor Ω(−) make
good correspondences between the category G(R) and itself.

Proposition 2.3.3. (1) We have an anti-equivalence of categories

G(R) −→ G(R), M 7−→ M ∗

with the functor being its own quasi-inverse.

(2) We have an equivalence of categories

G(R) −→ G(R), M 7−→ ΩM

having as quasi-inverse functor the functor G(R) → G(R), M 7→

Ω−1M .

This proposition yields the following corollary.

Corollary 2.3.4. For an R-module M , the following are equivalent :

(1) M is a non-free indecomposable module in G(R);

(2) M∗ is a non-free indecomposable module in G(R);

(3) ΩM is a non-free indecomposable module in G(R);

(4) Ω−1M is a non-free indecomposable module in G(R).
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2.4. The fundamental module

Here we introduce the concept of the fundamental module.

Definition 2.4.1. Let (R,m, k) be a Cohen-Macaulay local ring of

dimension two with canonical module K. Then since Ext1
R(m,K) ∼=

Ext2R(k,K) ∼= k, there exists a non-split exact sequence σ : 0 → K →

E → m → 0 which is unique up to equivalence. This sequence σ is called

the fundamental sequence of R and the intermediate module E is called the

fundamental module of R.

We recall a numerical invariant of a module, which was invented by
Auslander.

Definition 2.4.2. Let R be a Gorenstein local ring. For an R-module

M , we denote by δR(M) the maximal rank of free summands of the G(R)-

cover of M , and set δi
R(M) = δR(Ωi

RM), which is called the ith Auslander’s

δ-invariant of M .

Lemma 2.4.3. (Auslander) Let R be a Gorenstein non-regular local ring

with residue class field k. Then δi
R(k) = 0 for every i ≥ 0. In other words,

every syzygy module of k admits a stable G(R)-cover.

This lemma was proved by Auslander in the unpublished paper [2].
For the proof, we can refer to [11, Theorem 6], [4, Proposition 5.7], or [16,
Theorem (4.8)].

Now, we can investigate several properties of the fundamental module
of a Gorenstein local ring of dimension two.

Proposition 2.4.4. Let R be a Henselian Gorenstein non-regular local

ring of dimension two, and let σ : 0 → R → E
φ
→ m → 0 be the fundamental

sequence of R. Then

(1) φ is the G(R)-cover of m,

(2) E is stable,

(3) E ∼= Ω−1
R (Ω2

Rk),

(4) E is indecomposable if and only if so is Ω2
Rk.

Proof. (1) Since R is Gorenstein, G(R) coincides with the category

of maximal Cohen-Macaulay R-modules, and the assertion is a well-known

fact on the fundamental sequence.
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(2) This assertion follows from (1) and Lemma 2.4.3.

(3) Set M = Ω2
Rk. Note that the module M belongs to G(R). There

is also an exact sequence 0 → M
α
→ Re → m → 0. Take a minimal

homomorphism β : Rr → M∗. Then Coker(β∗) is isomorphic to Ω−1
R M by

definition. The dual homomorphism α∗ : (Re)∗ → M∗ factors through β,

i.e., there exists a homomorphism γ : (Re)∗ → Rr such that α∗ = βγ. Hence

we have α = α∗∗ = γ∗β∗. Since R ∼= R∗ and M ∼= M∗∗, we see that there is

a commutative diagram

0 −−−−→ M
β∗

−−−−→ Rr ε
−−−−→ Ω−1

R M −−−−→ 0
∥

∥

∥

γ∗





y





y

0 −−−−→ M
α

−−−−→ Re −−−−→ m −−−−→ 0

with exact rows. Take a minimal homomorphism ζ : Rs → Coker(γ∗) and

let η : Re → Coker(γ∗) be the natural surjection. Then there is a homomor-

phism θ : Rs → Re such that ζ = ηθ. We easily see that the homomorphism

(γ∗, θ) : Rr ⊕ Rs → Re is surjective, and obtain a commutative diagram

0 0




y





y

Rt Rt





y





y

0 −−−−→ M

“

β∗

0

”

−−−−→ Rr ⊕ Rs
( ε 0
0 1 )

−−−−→ Ω−1
R M ⊕ Rs −−−−→ 0

∥

∥

∥

( γ∗ θ )





y

κ





y

0 −−−−→ M
α

−−−−→ Re −−−−→ m −−−−→ 0




y





y

0 0

with exact rows and columns, where t = r+s−e. Hence the homomorphism

κ is a G(R)-precover of m. It follows from (1) that there is an isomorphism

Ω−1
R M ⊕ Rs ∼= E ⊕ Rt−1. Since both E and Ω−1

R M are stable by (2), we

conclude from the Krull-Schmidt theorem that the module E is isomorphic

to Ω−1
R M , as desired.

(4) This assertion is proved by (3).
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§3. Main results

In this section, using the results given in the previous section, we shall
state and prove our main theorems.

3.1. Idealizations

First of all, we consider an idealization possessing a non-free reflexive
module. We begin with making an easy lemma, which will often be used
later.

Lemma 3.1.1. Let (R,m) be a local ring, θ : m → R the natural inclu-

sion map, and M a stable R-module. Then the induced injective homomor-

phism

HomR(M, θ) : HomR(M,m) −→ M ∗

is an isomorphism.

Proof. If there is a homomorphism from M to R which does not factor

through θ, then it is a surjection, hence is a split-epimorphism, contrary to

the stability of M .

Now we can prove the following result.

Proposition 3.1.2. Let (S, n, k) be a local ring, V 6= 0 a finite-

dimensional k-vector space, and R = S n V the idealization of V over S.

Let M be a non-free indecomposable reflexive R-module. Then

(1) M ∼= SocR ∼= V ∼= k,

(2) If depthS = 0, then S = k, hence R ∼= k[[X]]/(X2).

Proof. (1) Denote by m the unique maximal ideal of R, and set I =

n n 0 = {(s, v) ∈ R | s ∈ n, v = 0}, and J = 0 n V = {(s, v) ∈ R | s = 0}.

These are ideals of R, and it is easy to see that m = I ⊕ J . By virtue of

Lemma 3.1.1, we have isomorphisms M ∗ ∼= HomR(M,m) ∼= HomR(M, I ⊕

J) ∼= HomR(M, I) ⊕ HomR(M,J). Since M ∗ is also indecomposable, we

have either HomR(M, I) = 0 or HomR(M,J) = 0. However J is isomorphic

to ke as an R-module where e = dimk V , hence HomR(M,J) ∼= kne 6= 0

where n = νR(M). It follows that

(3.1.2.1) HomR(M, I) = 0

and M∗ ∼= kne. The indecomposability of M ∗ again implies that M ∗ ∼= k

and ne = 1, hence e = 1. Therefore V ∼= k. Also, we have isomorphisms
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M ∼= M∗∗ ∼= k∗ ∼= kr where r = dimk(Soc R). The indecomposability of M

implies that M ∼= k and r = 1. Hence SocR ∼= k.

(2) Note from (3.1.2.1) and (1) that HomR(k, I) = 0. Suppose that

I 6= 0. Then there exists an I-regular element (s, v) ∈ m (cf. [7, Proposi-

tion 1.2.3]). It is easy to observe that the element s ∈ n is S-regular, contrary

to the assumption that depthS = 0. Therefore we have I = 0, equivalently,

S = k. By (1) again, we obtain isomorphisms R ∼= k n k ∼= k[[X]]/(X2).

The structure of an idealization of the form in the above proposition
is uniquely determined if it has at least a non-free module of G-dimension
zero.

Corollary 3.1.3. Let (S, n, k) be a local ring, V 6= 0 a finite-dimen-

sional k-vector space, and R = S n V the idealization of V over S. Then

the following are equivalent :

(1) There is a non-free R-module in G(R);

(2) R is Gorenstein;

(3) R ∼= k[[X]]/(X2).

Proof. (3) ⇒ (2): This implication is obvious.

(2) ⇒ (1): Note that dimR = depthR = min{depthS,depthS V } = 0,

namely, R is an Artinian local ring. Hence k belongs to G(R). Suppose that

the R-module k is free. Then R is regular, and hence R is a field. However,

there is a non-zero element v ∈ V , and the element (0, v) ∈ R is non-zero

and nilpotent, which is a contradiction. Thus k is a non-free R-module in

G(R).

(1) ⇒ (2): Then, we see that there exists a non-free indecomposable

R-module M in G(R). By definition it is reflexive. Proposition 3.1.2(1) says

that M is isomorphic to k. It follows that R is Gorenstein.

(2) ⇒ (3): Suppose that depthS > 0. Then we especially have dimR =

dimS > 0. Since depthR = 0, the local ring R is not Cohen-Macaulay, and

hence R is not Gorenstein, which is a contradiction. Therefore depthS = 0,

and Proposition 3.1.2(2) implies that R ∼= k[[X]]/(X2).

3.2. The first syzygy of the residue field (i.e. the maximal

ideal)

The decomposability of the maximal ideal and the existence of a non-
free module of G-dimension zero played essential roles in the achievement
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12 R. TAKAHASHI

of Corollary 3.1.3. From now on, we consider a local ring satisfying these
conditions in more general settings. First of all, let us describe the minimal
free resolution of the residue class field of such a local ring.

Proposition 3.2.1. Let (R,m, k) be a local ring. Suppose that there

is a direct sum decomposition m = I ⊕ J where I, J are non-zero ideals of

R. Let M be a non-free indecomposable module in G(R). Then there exist

x, y ∈ m such that

(1) I = (x) and J = (y),

(2) (0 : x) = (y) and (0 : y) = (x),

(3) M is isomorphic to either (x) or (y).

Hence the minimal free resolution of k is as follows:

· · ·

“

y 0
0 x

”

−−−−→ R2

“

x 0
0 y

”

−−−−→ R2

“

y 0
0 x

”

−−−−→ R2 ( x y )
−−−−→ R −−−−→ k −−−−→ 0.

Proof. Both M ∗ and ΩM are also non-free indecomposable modules

in G(R). By virtue of Lemma 3.1.1, there are isomorphisms M ∗ ∼=
HomR(M,m) = HomR(M, I ⊕ J) ∼= HomR(M, I)⊕HomR(M,J). The inde-

composability of M ∗ implies that either HomR(M, I) = 0 or HomR(M,J) =

0. We may assume that

(3.2.1.1) HomR(M,J) = 0.

There is an exact sequence

(3.2.1.2) 0 −→ ΩM −→ Rn −→ M −→ 0.

Dualizing this by J , we obtain another exact sequence HomR(M,J) →

Jn → HomR(ΩM,J). We have HomR(ΩM,J) 6= 0 by (3.2.1.1). Applying

the above argument to the module ΩM yields

(3.2.1.3) HomR(ΩM, I) = 0.

Also, dualizing (3.2.1.2) by I, we get an exact sequence 0 → HomR(M, I) →

In → HomR(ΩM, I), and hence M ∗ ∼= HomR(M, I) ∼= In. The indecom-

posability of M ∗ implies that n = 1 (i.e. M is cyclic), and M ∗ ∼= I. Let

α : M∗ → I denote this isomorphism, and write M = Rz for some z ∈ M .

Then it is easy to check that α is a map defined by α(σ) = σ(z) for σ ∈ M ∗.
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We also have M ∼= M∗∗ ∼= HomR(M∗,m) ∼= HomR(M∗, I) ⊕

HomR(M∗, J). Note that HomR(M∗, I) is isomorphic to HomR(I, I), which

contains the identity map of I. Hence HomR(M∗, I) 6= 0 and therefore

HomR(M∗, J) = 0. Applying the above argument to the module M ∗, we

see that M ∗ is also cyclic and M ∼= M∗∗ ∼= I. Thus, we have shown that

M ∼= M∗ ∼= I and these modules are cyclic. Noting (3.2.1.3) and applying

the above argument to the module ΩM , we see that ΩM ∼= (ΩM)∗ ∼= J and

these modules are cyclic.

Write I = (x) and J = (y). Then M is isomorphic to the principal

ideal (x). Apply the above argument to (x) instead of M , and we have an

isomorphism α : (x)∗ → (x) which is defined by α(σ) = σ(x) for σ ∈ (x)∗.

Consider a composite map (0 : (0 : x))
γ
→ (R/(0 : x))∗

β
→ (x)∗

α
→ (x),

where β, γ are natural isomorphisms. We easily see that this composite

map is the identity map. Hence (0 : (0 : x)) = (x). Similarly, we also

have (0 : (0 : y)) = (y). Since (0 : x) = Ω(x) ∼= ΩM ∼= (y), we have

(x) = (0 : (0 : x)) = AnnR(0 : x) = AnnR(y) = (0 : y), and therefore

(0 : x) = AnnR(x) = AnnR(0 : y) = (0 : (0 : y)) = (y). Thus we obtain the

minimal free resolutions of (x) and (y):

{

· · ·
y

−→ R
x

−→ R
y

−→ R −→ (x) −→ 0,

· · ·
x

−→ R
y

−→ R
x

−→ R −→ (y) −→ 0.

Taking the direct sum of these exact sequence, we get

· · ·

“

y 0
0 x

”

−−−−→ R2

“

x 0
0 y

”

−−−−→ R2

“

y 0
0 x

”

−−−−→ R2 −−−−→ m −−−−→ 0.

Joining this to the natural exact sequence 0 → m → R → k → 0 constructs

the minimal free resolution of k in the assertion.

We denote by edimR the embedding dimension of a local ring R. When
a homomorphic image of a regular local ring is given, we can choose a
minimal presentation of the ring in the following sense:

Proposition 3.2.2. Let R be a homomorphic image of a regular local

ring. Then there exist a regular local ring (S, n) and an ideal I of S contained

in n
2 such that R ∼= S/I.

Here we introduce a famous result due to Tate [14, Theorem 6]. See
also [5, Remarks 8.1.1(3)].
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Lemma 3.2.3. (Tate) Let (S, n, k) be a regular local ring, I an ideal of

S contained in n
2, and R = S/I a residue class ring. Suppose that the

complexity of k over R is at most one. (In other words, the set of all the

Betti numbers of the R-module k is bounded.) Then I is a principal ideal.

We denote by βR
i (M) the ith Betti number of a module M over a local

ring R. Handling the above results, we can determine the structure of a
local ring with decomposable maximal ideal having a non-free module of
G-dimension zero, as follows:

Theorem 3.2.4. Let (S, n, k) be a regular local ring, I an ideal of S

contained in n
2, and R = S/I a residue class ring. Suppose that there exists

a non-free R-module in G(R). Then the following conditions are equivalent :

(1) The maximal ideal of R is decomposable;

(2) dimS = 2 and I = (xy) for some regular system of parameter x, y of

S.

Proof. Let m = n/I be the maximal ideal of R.

(2) ⇒ (1): It is easy to see that m = xR ⊕ yR and that xR, yR are

non-zero.

(1) ⇒ (2): First of all, note from the condition (1) that R is not an

integral domain, hence is not a regular local ring. Proposition 3.2.1 says that

m = xR⊕yR for some x, y ∈ n, and that βR
i (k) = 2 for every i ≥ 2. It follows

from Lemma 3.2.3 that I is a principal ideal. Hence R is a hypersurface.

We write I = (f) for some f ∈ n
2. Since m is decomposable, the local ring

R is not Artinian. (Over an Artinian Gorenstein local ring, the intersection

of non-zero ideals is also non-zero; cf. [7, Exercise 3.2.15].) Hence we have

0 < dimR < edimR = 2, which says that dimR = 1 and dimS = 2.

Note that n = (x, y, f). Because edimS = dimS = 2, one of the

elements x, y, f belongs to the ideal generated by the other two elements.

Noting that the images of elements x, y in m form a minimal system of

generators of m, we see that f ∈ (x, y), and hence x, y is a regular system

of parameters of S. On the other hand, noting xR ∩ yR = 0, we get

xy ∈ I = (f). Write xy = cf for some c ∈ S. Since the associated graded

ring gr
n
(S) is a polynomial ring over k in two variables x, y ∈ n/n2, we

especially have xy 6= 0 in n
2/n3, namely, xy 6∈ n

3. It follows that c 6∈ n

because f ∈ n
2. Therefore the element c is a unit of S, and thus I = (xy).
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Using Theorem 3.2.4 and Cohen’s structure theorem, we obtain the
following corollary.

Corollary 3.2.5. Let (R,m) be a complete local ring. The following

conditions are equivalent :

(1) There is a non-free module in G(R), and m is decomposable;

(2) R is Gorenstein, and m is decomposable;

(3) There are a complete regular local ring S of dimension two and a

regular system of parameters x, y of S such that R ∼= S/(xy).

Note that the finiteness of G-dimension is independent of completion.
Thus, Corollary 3.2.5 not only gives birth to a generalization of [13, Propo-
sition 2.3] but also guarantees that Question 1.0.2 is true if n = 1.

3.3. The second syzygy of the residue field

As far as here, we have observed a local ring whose maximal ideal
is decomposable. From here to the end of this paper, we will observe a
local ring such that the second syzygy module of the residue class field is
decomposable. We begin with the following theorem, which implies that
Question 1.0.2 is true if n = 2.

Theorem 3.3.1. Let (R,m, k) be a local ring. Suppose that m is inde-

composable and that Ω2
Rk has a non-zero proper direct summand of finite

G-dimension. Then R is a Gorenstein ring of dimension two.

Proof. Replacing R with its m-adic completion, we may assume that

R is a complete local ring. In particular, note that R is Henselian. We have

Ω2
Rk = M⊕N for some non-zero R-modules M and N with G-dimR M < ∞.

There is an exact sequence 0 → M ⊕ N
(f,g)
−→ Re → m → 0 of R-modules,

where e = edimR. Setting A = Coker f and B = Coker g, we get exact

sequences

(3.3.1.1)







0 −→ M
f

−→ Re α
−→ A −→ 0,

0 −→ N
g

−→ Re β
−→ B −→ 0.

It is easily observed that there are exact sequences

(3.3.1.2) 0 −→ Re
(α

β)
−→ A ⊕ B −→ m −→ 0
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and

(3.3.1.3)







0 −→ M
βf
−→ B −→ m −→ 0,

0 −→ N
αg
−→ A −→ m −→ 0.

Claim 1. We have Ext2R(k,R) 6= 0. (Hence depthR ≤ 2.)

Proof. Suppose that Ext2R(k,R) = 0. Then Ext1R(m, Re) ∼= Ext2R(k,Re)

= 0. Hence the exact sequence (3.3.1.2) splits, and therefore we have an

isomorphism A⊕B ∼= Re⊕m. Since the maximal ideal m is indecomposable,

it follows from the Krull-Schmidt theorem that m is isomorphic to a direct

summand of A or B. If m is isomorphic to a direct summand of A, then

B is isomorphic to a direct summand of Re. Hence B is a free R-module

of rank at most e. Denote by b the rank of B. Since the second sequence

in (3.3.1.1) splits, the R-module N is a free module of rank e − b. Noting

that there is a surjective homomorphism from B to m by (3.3.1.3), we have

b = νR(B) ≥ νR(m) = e. This means that b = e, and hence N = 0, which

is a contradiction. We can get a contradiction along the same lines in the

case where m is isomorphic to a direct summand of B. Thus, we obtain

Ext2R(k,R) 6= 0.

Fix a non-free indecomposable module X ∈ G(R). Applying the functor

HomR(X,−) to (3.3.1.2) gives an exact sequence 0 → (X ∗)e → HomR(X,A)

⊕ HomR(X,B) → HomR(X,m) → 0 and an isomorphism

(3.3.1.4) Ext1R(X,A) ⊕ Ext1R(X,B) ∼= Ext1R(X,m).

We have (X∗)e ∈ G(R) and HomR(X,m) ∈ G(R) by Lemma 3.1.1, hence

HomR(X,A) ∈ G(R).

Take the first syzygy module of X; we have an exact sequence 0 →

ΩX → Rn → X → 0. Dualizing this sequence by A, we obtain an exact

sequence 0 → HomR(X,A) → An → HomR(ΩX,A) → Ext1R(X,A) → 0.

Divide this into two short exact sequences

(3.3.1.5)

{

0 −→ HomR(X,A) −→ An −→ C −→ 0,

0 −→ C −→ HomR(ΩX,A) −→ Ext1R(X,A) −→ 0

of R-modules. Since ΩX is also a non-free indecomposable module in G(R),

applying the above argument to ΩX instead of X shows that the module
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HomR(ΩX,A) also belongs to G(R). We have G-dimR(An) < ∞ by the first

sequence in (3.3.1.1). Hence it follows from (3.3.1.5) that G-dimR C < ∞,

and

(3.3.1.6) G-dimR(Ext1R(X,A)) < ∞.

On the other hand, applying the functor HomR(X,−) to the natural

exact sequence 0 → m → R → k → 0, we get an exact sequence 0 →

HomR(X,m) → X∗ → HomR(X, k) → Ext1R(X,m) → 0. Lemma 3.1.1

implies that HomR(X, k) ∼= Ext1R(X,m), hence Ext1R(X,m) is a k-vector

space. Since Ext1R(X,A) is contained in Ext1R(X,m) by (3.3.1.4),

(3.3.1.7) Ext1R(X,A) is a k-vector space.

Claim 2. The local ring R is Gorenstein.

Proof. Suppose that R is not Gorenstein. Then we must have

Ext1R(G,A) = 0 for any G ∈ G(R) by (3.3.1.6) and (3.3.1.7). We have

an exact sequence

(3.3.1.8) 0 −→ X −→ Rm −→ Ω−1X −→ 0,

and note that Ω−1X belongs to G(R). The exact sequences (3.3.1.8) and

(3.3.1.1) yield isomorphisms

Ext1R(X,M) ∼= Ext2R(Ω−1X,M) ∼= Ext1R(Ω−1X,A) = 0.

This means that

(3.3.1.9) Ext1R(G,M) = 0

for any G ∈ G(R). On the other hand, since depthR M ≥ depthR(Ω2k) ≥

min{2,depthR} = depthR by [7, Exercise 1.3.7] and Claim 1, M belongs

to G(R). Hence there is an exact sequence of the form 0 → M → Rl →

Ω−1M → 0, and this splits because Ext1
R(Ω−1M,M) = 0 by (3.3.1.9). Thus

the R-module M is free. Theorem 1.0.1 implies that R is regular, which

contradicts our assumption that R is not Gorenstein. This contradiction

proves the claim.

Since the only number i such that Exti
R(k,R) 6= 0 is the Krull dimension

of R if R is Gorenstein, it follows from the above two claims that R is a

Gorenstein local ring of dimension two, which completes the proof of the

theorem.
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The above theorem interests us in the investigation of a Gorenstein local
ring of dimension two such that the second syzygy module of the residue
class field is decomposable. Our result concerning this is stated as follows.

Theorem 3.3.2. Let (S, n, k) be a regular local ring, I an ideal of S

contained in n
2, and R = S/I a residue class ring. Suppose that R is a

Henselian Gorenstein ring of dimension two. Then the following are equiv-

alent :

(1) Ω2
Rk is decomposable;

(2) dimS = 3 and I = (xy − zf) for some regular system of parameters

x, y, z of S and f ∈ n.

It is necessary to prepare three elementary lemmas to prove this theo-
rem. The first and third ones are both well-known and easy to check, and
we omit the proofs.

Lemma 3.3.3. Let (S, n, k) be a regular local ring of dimension three

and R = S/(f) a hypersurface with f ∈ n
2. Then f = xfx + yfy + zfz

for some fx, fy, fz ∈ n, and the minimal free resolution of k over R is as

follows:

· · ·
C
−→ R4 D

−→ R4 C
−→ R4 D

−→ R4 C
−→ R4 B

−→ R3 A
−→ R −→ k −→ 0,

where

A = ( x y z ) , B =

(

0 −z y fx

z 0 −x fy

−y x 0 fz

)

,

C =

(

0 −fz fy x
fz 0 −fx y
−fy fx 0 z
−x −y −z 0

)

, D =

(

0 −z y fx

z 0 −x fy

−y x 0 fz

−fx −fy −fz 0

)

.

Lemma 3.3.4. Let (R,m, k) be a local ring and x ∈ m−m
2 an R-regular

element. Then we have a split exact sequence 0 → k
θ
→ m/xm

π
→ m/xR → 0,

where θ is defined by θ(a) = xa for a ∈ R/m = k and π is the natural

surjection.

Proof. Let x1, x2, . . . , xn be a minimal system of generators of m with

x1 = x. Define a homomorphism ε : m/xm → k by ε
(
∑n

i=1 xiai

)

= a1. We

easily see that the composite map εθ is the identity map of k, which means

that θ is a split-monomorphism.
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Lemma 3.3.5. Let (R,m, k) be a Cohen-Macaulay local ring of dimen-

sion one. Then R is a discrete valuation ring if and only if m
∗ is a cyclic

R-module.

Now let us prove Theorem 3.3.2.

Proof of Theorem 3.3.2. (2) ⇒ (1): We have xy− zf = x · 0+ y ·x+ z ·

(−f). Lemma 3.3.3 gives a finite free presentation R4 C
−→ R4 → Ω2

Rk → 0

of the R-module Ω2
Rk, where C =

(

0 f x x
−f 0 0 y
−x 0 0 z
−x −y −z 0

)

. Putting P =

(

1 0 0 0
0 0 1 −1
0 0 1 0
0 1 0 0

)

and Q =

(

0 0 −1 0
0 1 0 0
1 0 0 −1
0 0 0 1

)

, we obtain PCQ =

(

U 0
0 tU

)

, where U =
(

x f
z y

)

. It

is easily seen that the matrices P , Q are invertible. Denoting by M (resp.

N) the cokernel of the homomorphism defined by the matrix U (resp. tU),

we get an isomorphism Ω2
Rk ∼= M ⊕ N .

(1) ⇒ (2): First of all, note that the local ring R is not regular. We

denote by m the maximal ideal n/I of R.

Suppose that there exists an element z ∈ n − n
2 whose image in m is

an R-regular element such that the module m/zR is decomposable. Then

the assertion (2) follows. Indeed, put (−) = (−) ⊗S S/(z). Note that S

is also a regular local ring because z is a minimal generator of the maxi-

mal ideal n of S (see the proof of Proposition 3.2.2). Since the maximal

ideal mR of R is decomposable, we can apply Theorem 3.2.4 and see that

dimS = 2 and IS = xyS for some x, y ∈ n whose images in S form a

regular system of parameter of S. Hence R = S/xyS is a hypersurface,

in particular a complete intersection, of dimension one. Therefore R is a

complete intersection of dimension two by [7, Theorem 2.3.4(a)]. Since S

is a regular local ring of dimension three with regular system of parameter

x, y, z, the ideal I is generated by an S-sequence by [7, Theorem 2.3.3(c)].

Noting ht I = dimS − dimR = 1, we see that I is a principal ideal. Write

I = (l) for some l ∈ I. There is an element f ∈ S such that l = xy−zf . As-

sume that f 6∈ n. Then f is a unit of S, and we see that zR ⊆ xyR. Hence

m = (x, y)R, and edimR = dimR = 2. This implies that R is regular,

which is a contradiction. It follows that f ∈ n.

On the other hand, if z ∈ n is an element whose image in m is R-regular

such that m/zR is decomposable, then z 6∈ n
2. Indeed, assume z ∈ n

2. Then

we have I+(z) ⊆ n
2. Since R/zR = S/I+(z), it follows from Theorem 3.2.4
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that dimS = 2. Since dimR = 2, we have I = 0, equivalently R = S. In

particular R is regular, which is a contradiction.

Thus, it suffices to show the existence of an R-regular element w ∈ m

such that m/(w) is decomposable. Let E denote the fundamental module

of R. Proposition 2.4.4(4) says that we can write E = M ⊕ N for some

non-zero R-modules M and N . Hence the fundamental sequence of R is as

follows:

(a) 0 −→ R
(σ

τ)
−→ M ⊕ N

(f,g)
−→ m −→ 0.

Take an R-regular element w ∈ m − m
2, and set (−) = (−) ⊗R R/(w).

If mR is decomposable, then our aim is attained. Hence let mR be inde-

composable. The sequence (a) induces another exact sequence 0 → R
(σ

τ)
−→

M ⊕ N
(f,g)
−→ m → 0. (Here, the injectivity of the map

(

σ
τ

)

follows from

the fact that w is an m-regular element.) According to Lemma 3.3.4, the

natural surjection π : m → mR is a split-epimorphism with kernel isomor-

phic to k. Hence there exists a split-monomorphism ρ : mR → m such that

πρ = 1. Then note that the cokernel of ρ is isomorphic to k. On the other

hand (cf. Proposition 2.4.4), the homomorphism (f, g) is a G(R)-precover

of m. Therefore there exists a homomorphism
(

α
β

)

: mR → M ⊕N such that

ρ = (f, g)
(

α
β

)

= fα + gβ. Set e = edimR, m = νR(M), and n = νR(N).

Claim 1. We have either (m,n) = (e − 1, 2) or (m,n) = (2, e − 1).

Proof. Since ρ is a split-monomorphism, so is the homomorphism
(

α
β

)

.

There is a commutative diagram

0 0




y





y

mR mR

(α
β )




y

ρ





y

0 −−−−→ R
( σ

τ )
−−−−→ M ⊕ N

( f g )
−−−−→ m −−−−→ 0

∥

∥

∥





y





y

0 −−−−→ R −−−−→ C −−−−→ k −−−−→ 0




y





y

0 0
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of R-modules with exact rows and columns, and we have an isomorphism

M ⊕ N ∼= mR ⊕ C. The indecomposability of mR and the Krull-Schmidt

theorem yield that mR is isomorphic to a direct summand of either M or

N .

Let us consider the case where mR is isomorphic to a direct summand

of M . There is an R-module L such that M ∼= mR⊕L. The Krull-Schmidt

theorem again yields an isomorphism

(b) C ∼= N ⊕ L.

Note that N and L are isomorphic to direct summands of E. Proposi-

tion 2.4.4 implies that the R-module E belongs to G(R). The R-modules

N , L also belong to G(R), and so does C by (b). Therefore the exact

sequence

(c) 0 −→ R −→ C −→ k −→ 0

in the above diagram does not split because depthC = 1 > 0. On the other

hand, noting that R is a Gorenstein local ring of dimension one, we have

HomR(k,R) = 0 and Ext1
R
(k,R) ∼= k. Dualizing the natural exact sequence

0 → mR → R → k → 0, we have another exact sequence

(d) 0 −→ R −→ HomR(mR,R) −→ k −→ 0.

Note that the maximal ideal mR of R belongs to G(R), hence so does

HomR(mR,R). Therefore the exact sequence (d) does not split because

depthHomR(mR,R) = 1 > 0.

Thus, we have obtained two non-split exact sequences (c) and (d) of

R-modules. Since Ext1
R
(k,R) ∼= k, we obtain an isomorphism

(e) C ∼= HomR(mR,R).

The isomorphisms (b) and (e) give other isomorphisms mR ∼= HomR(HomR

(mR,R), R) ∼= HomR(N ⊕ L,R) ∼= HomR(N,R) ⊕ HomR(L,R). Note that

N 6= 0 and L are reflexive R-modules, hence HomR(N,R) 6= 0. Since mR

is indecomposable, we have HomR(L,R) = 0, and hence L = 0. Thus

we get two isomorphisms M ∼= mR and N ∼= HomR(mR,R). Therefore

m = νR(M ) = edimR = e − 1 because w 6∈ m
2, and n = νR(N) =

νR(HomR(mR,R)). Lemma 3.3.5 implies that n ≥ 2. On the other hand,
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it follows from the fundamental sequence (a) that m + n = νR(M ⊕ N) ≤

νR(R) + νR(m) = 1 + e. Hence we see that n = 2.

In the case where mR is isomorphic to a direct summand of N , a similar

argument yields m = 2 and n = e − 1.

On the other hand, we have 1 = πρ = πfα + πgβ in EndR(mR). Since

mR is indecomposable, the endomorphism ring EndR(mR) is a local ring

(cf. [15, Proposition (1.18)]), and hence either πfα or πgβ is a unit of this

ring, in other words, is an automorphism. Put a = Im f and b = Im g.

Claim 2. If πfα (resp. πgβ) is an automorphism, then m = a + (w)

(resp. m = b + (w)) and grade a > 0 (resp. grade b > 0).

Proof. Suppose that πfα is an automorphism. Then πf is a split-

epimorphism, and so in particular a surjection. Hence mR = aR, and

therefore m = a + (w). There exists an R-regular element in mR = aR. We

can choose an element v ∈ a whose image in mR is R-regular. Since w, v

is an R-regular sequence, so is the sequence v, w. Thus v is an R-regular

element. The proof of the other case is similar.

Claim 3. We have both grade a > 0 and grade b > 0.

Proof. It is enough to show the claim only in the case where πfα is

an automorphism. Then Claim 2 says that m = a + (w) and grade a > 0.

Take an R-regular element v ∈ a−m
2. Applying the above argument to the

element v instead of w, we see that either of the following holds:

(i) m = a + (v) and grade a > 0;

(ii) m = b + (v) and grade b > 0.

However, if the statement (i) holds, then we have m = a, which means

that the homomorphism f : M → m is surjective. Hence m = νR(M) ≥

νR(m) = e. It follows from Claim 1 that m = 2, and hence e ≤ 2. But

this can not happen because R is a non-regular local ring of dimension two.

Consequently the statement (ii) must hold, and we obtain grade b > 0, as

desired.

Put x = σ(1) and y = τ(1). Then f(x) + g(y) = (f, g)
(

σ
τ

)

(1) = 0. Set

v = f(x) = −g(y) ∈ a ∩ b. Take an element a ∈ a ∩ b. Then we have

a = f(p) = g(q) for some p ∈ M and q ∈ N . Hence
(

p
−q

)

∈ Ker(f, g) =
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Im
(

σ
τ

)

, and therefore
(

p
−q

)

= b
(

x
y

)

for some b ∈ R. Thus p = bx, and we get

a = f(p) = f(bx) = bv ∈ (v). It follows that a ∩ b = (v). Since grade(v) =

grade(a ∩ b) = inf{grade a, grade b} > 0 by [7, Proposition 1.2.10(c)] and

Claim 3, the element v is an R-regular element.

Set (−) = (−) ⊗R R/(v). Since a + b = m and a ∩ b = (v), there is a

natural exact sequence ω : 0 → R → R/a ⊕ R/b → k → 0 of R-modules.

Suppose that this exact sequence splits. Then we have an isomorphism

R/a⊕R/b ∼= R⊕k, and it is seen from the Krull-Schmidt theorem that k is

isomorphic to either R/a or R/b. Hence we have either m = a or m = b, and

the same argument as the end of the proof of Claim 3 yields a contradiction.

Thus the exact sequence ω does not split.

On the other hand, dualizing the natural exact sequence 0 → mR →

R → k → 0, we have a non-split exact sequence 0 → R → HomR(mR,R) →

k → 0. Since Ext1
R
(k,R) ∼= k, we obtain an isomorphism R/a ⊕ R/b ∼=

HomR(mR,R), and HomR(mR,R) belongs to G(R). It follows that both

R/a and R/b belong to G(R), hence they are reflexive over R. Therefore

the R-dual modules HomR(R/a, R) and HomR(R/b, R) are non-zero, which

proves that mR is decomposable. This completes the proof of our theorem.

Combining Theorem 3.3.1 with Theorem 3.3.2 gives birth to the follow-
ing corollary. Compare it with Corollary 3.2.5.

Corollary 3.3.6. Let (R,m, k) be a complete local ring. Suppose that

m is indecomposable. Then the following conditions are equivalent :

(1) Ω2
Rk has a non-zero proper direct summand of finite G-dimension;

(2) R is Gorenstein, and Ω2
Rk is decomposable;

(3) There are a complete regular local ring (S, n) of dimension three, a

regular system of parameters x, y, z of S, and f ∈ n such that R ∼=
S/(xy − zf).

Lastly, we recall a result of Yoshino and Kawamoto, which is related
to Theorem 3.3.2. A homomorphic image of a convergent power series ring
over a field k is called an analytic ring over k. Any complete local ring
containing a field is an analytic ring over its coefficient field, and it is known
that any analytic local ring is Henselian; see [12, Chapter VII]. Yoshino and
Kawamoto observed the decomposability of the fundamental module of an
analytic normal domain.
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Theorem 3.3.7. (Yoshino-Kawamoto) Let R be an analytic normal lo-

cal domain of dimension two. Suppose that the residue class field of R is

algebraically closed and has characteristic zero. Then the following condi-

tions are equivalent :

(1) The fundamental module of R is decomposable;

(2) R is an invariant subring of a regular local ring by a cyclic group. (In

other words, R is a cyclic quotient singularity.)

For the details of this theorem, see [17, Theorem (2.1)] or [15, Theo-
rem (11.12)]. With the notation of the above theorem, suppose in addition
that R is a complete Gorenstein ring such that Ω2

Rk is decomposable. Then
it is seen from Proposition 2.4.4(4) that R satisfies the condition (1) in the
above theorem. Hence the proof of the above theorem shows that R is of
finite Cohen-Macaulay type; see [17] or [15]. It follows from a theorem of
Herzog [10] that R is a hypersurface. Therefore the local ring R is a rational
double point of type (An) for some n ≥ 1 by [17, Proposition (4.1)], namely,
R ∼= k[[X,Y,Z]]/(XY −Zn+1). Thus, the second condition of Theorem 3.3.2
holds.
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