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1. Introduction. In following a suggestion of S. Chowla to apply
a method of C. Hooley [3] to obtain an asymptotic formula for the sum
2~ r(n)r(nt+a), where r(n) denotes the number of representations of
n<x
n as the sum of two squares and a is a positive integer, we have had
to obtain non-trivial estimates for the error term in the asymptotic
expansion of

= r(n).
(1) n< x
n = b(mod k)

In this paper, we devote most of our attention to this sum, and in a
paper to follow, we shall obtain the asymptotic formula for

= r(n)r(n+a). In fact, Hooley's method allows us to obtain the
n<x
asymptotic formula for X r(pn)r(gnta), where p and q are

n<x

positive integers. We remark that T. Estermann obtained the
asymptotic expansion for this sum in 1932 [1] for p = q = 1, using
elementary methods.

In this paper, we use a technique used by Estermann [2] to
obtain the functional equation of R(s;e(p/q)) and its meromorphic part.
As an application of our asymptotic formula for (1), we ''generalize"

a problem of Mordell [4] on the least solution of a quadratic congruence,
and slightly improve upon his result.

The author wishes to thank Professor Chowla for his encouragement
and suggestions during the development of this paper, and J.H.H. Chalk
for bringing Mordell's work to his attention.

2. Definitions and Notation. Throughout this paper, we shall
adopt the following conventions. x is always the non-principal
character modulo 4, and r(n) = X x(d). We shall reserve the

d ]n
asterisk to mean: for each ordered pair of positive integers a and q,
define a* and { such that 4a =¢q + a*, where 1< a* < q. The
prime on the summation sign X' will be reserved to mean that, in
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case the index of summation begins with zero, the zero term is to be
deleted if it is not defined; also, if g is defined as a series whose
summation index begins at zero, then we shall write g' to mean that
a prime appears on the summation sign defining g. For brevity, we
shall write X instead of Z . If q is an integer, we shall

h<k 1<h<k
write p(q) to mean that p runs through a set of reduced residues
modulo q. a,b,c,d,h,k,4,m,n,p,q,u,v,x,y,M, N, Q,R are always
non-negative integers. B, C,X are positive real numbers and s = ¢ + it

2i
is an arbitrary complex number, as usual. Also define e(s) = e s
Let S
g(s) = X a n
n
n>1

be any Dirichlet series. We define the following related series:

g(s;e(h/k)) = Z a, e(nh/k) n—S;
n>1
-3
g(s;b, k) = Z a n
n
n>1
n =b(mod k)
g(s, w) = X a (n+w)—s, O<w<1.
n+1 —
n>0
In particular,
t(s) = = =n °
n>1
which is the Riemann Zeta Function;
Lﬂ(s) = Z X(n—ﬂ)n—s,

n>1
which reduces to the ordinary L-function of the non-principal

character modulo 4 if £ = 0 (mod 4), in which case we write
L(s) = LO(S); and

R(s) = X r(n) n®
n>1

Finally, we shall adopt the following definitions throughout this
paper.

(1) Whenever we write m = ZuM, it shall be understood that
(2, M) = 1.
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(2) ¥° (m) = x(M), where m = 2"M.

(3) E_(n) =
0 if m,i’n
1 if u<sv
(4) em(n) =
0 if u>v,

where m = ZuM and n = ZVN.

(5) & = Kronecker's Delta.

(6) ¢ (b) = Z e(-pb/q),
p(q)

which is the Ramanujan Sum.

(7)  c (bsx) = Z x(p) e(-pb/q).
4 p(q)
(8) h (b)) = = x(n)e(nb/q).
4 n<q
-1
(99 H () = = x(qdc((b)g .
K qlk 4

(10) H, (b) [1+x°(b) e, (k)] H, (b).

3. Some Lemmas. We now give three lemmas which will be
needed in the development of this paper. We omit the proofs, since
standard arguments give the results.

LEMMA 1. Let q=2"Q, n>2, and p =2 P. Then

hq(p) =(1/2)iax" (P EGpPB .

LEMMA 2. Under the assumption of Lemma 1,

. _ .,n-1 o
Cq(p,x) = -i2" Ty (pq)én_m’2 clp)-
LEMMA 3. If

g(s) = = a n o,
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then

(i) g(s;e(h/k)) = Z e(ah/k) g(s;a, k);
a<k
(ii) g(s:b, k) = k' = e(-ab/k) g(s;e(a/k));
a<k
(iii) g(s;b, k) -t o= e(-bp/q) g(s;e(p/q)).
qlk plq)

4. The Functional Equation of R(s;e(p/q)) .

THEOREM 1. For ¢<0 and 1<h<k,
L(s;e(h/k)) = ('1/2)('rr/2)s_1r(1‘5)[6(5/4) L'_E_i(i—s;i—h*/k)
+e(-s/4)Lﬂ(1—s;h*/k)]_

Proof. This follows directly from the functional equation of

=' e(nx) (nt+y)” S
n>0

(see [5], pages 269 and 280). Here, x and y need not be integers.

THEOREM 2. If (p,q) = 1 with 1<p<q and pp =1 (mod q), and
if o>1, then

(i) Rf(sse(p/q)) = = e(abp/q) t(s;a, q) L(s;b, q);
a,b<q
(1) R(sielp/aq) = q & = e(-abp/q)t (s;e(a/q)) Lisse(b/q)).
a,b<q

Proof. (i) follows immediately from the definition of the left side.
To prove (ii), apply Lemma 3(ii) to each term on the right side of (i),
which gives:

R(s;e(p/q)) = q = t(s;e(c/q)) L(s;e(d/q)) =  e((abp-ac-bd)/q).
c,dgq a,bf_q

But the inner sum has value qe(-cdp/q), from which the result follows.

THEOREM 3. If (p,q) =1 with 1<p<q and pp = 1(mod q), and
if 0<0, then we have the following functional equation:
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R(s;e(p/q)) Kq(S)x(q) R(1-s;e(-4p/q)) if g = 1(mod 2) and 44 = 1 (mod q);

= ZSKq(s)R(1—s;e(13R/q);X) if q=2Qand 2R =Q - 1;

i
i

—Zqu(S)x(p)R(i—S;e(—fJ/q)) if g = 0(mod 4),

where
R(s;e(p/a);x) = = x(n)r(n)e(p/q)n °
n>1
and
Kq(s) = TrZs—Z qi—Zs I‘Z(i—s) sinws.

Proof. Theorem 2(ii), together with Theorem 41 and the functional
equation of ¢(s;e(b/q)) (see [5], page 269), gives the following functional
equation:

1

(2) R(s;e(p/q)) = Kq(s)q“" e(-abp /q) L, (1-s;a%/q)t (1-8;b, q)

z
a,b<q
where 4a = fq +a% with 1< a* < q.

Case 1. For q odd,

1-
Lﬁ(i—s;a*/q) = q SX(q) L(1-s;4a, q),

so that, by (2), we have

R(s;e(p/q)) = K (s)x(q) =  e(-abdp/q) L(1-s;a, q)¢ (1-s;b, q).
4 a,b<q

Now compare this result with Theorem 2(i).

Case 2. For q=2Q, Qodd,

o - 1-s Qe
Lﬁ(i—s,afr/q) = x(Q) Q LZa(i s;2a, Q),

so that, by (2), we have

R(s;e(p/a) = K_(s12°7'x(Q) = e(-abp/a) L, (1-s;2a, QL(1-s5b, q)
4 a,b<q

1

= Kq(s)Zs_ x(Q) = LZa(i-s;Za, Q)¢ (1-s;e(-ap/q))

a<q

- Kq(s)23_1X(Q) s oty
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where
Zn = X e(-anp/q) Lza(1—s;2a, Q).
agq

Now split the last sum into two parts, the first part with 1< a< Q
and Q41 < a< 2Q for the second part. In the second sum, replace a
by Q+a, and note that

L, (1-5:22,Q) = (-1)* L(1-s;2a, Q)
and

12 (1) = 2¢%n).

Then

™
I

sz(n) T e(-anp/q) (-1) L(1-s;2a, Q)
a<Q

2x%(n) = e(anpR/Q) L(1-s;2a, Q),
a<Q

1

a
since (-1) = e(-anp/2) for n odd, and 2R = -1, where R is an
integer. Hence

= = 2 (ax(QLU- s;e(nbR/q)),
so that
R(aje(p/q)) = 2°K (s) = xz(n)ns—1L(1-s;e(nf)R/q)),
n>1

from which the result follows.
Case 3. For g = 0(mod 4),

L(s;b, q) = x(b)(s;b, q),

so that, by Theorem 2(i), we have

)

(3) R(s;e(p/q)) e(abp/q)x(b)t(s;a, q)¢(s;b, q)

=
a,b<q

q_ix(p) Z  x(a) e(-abp/q)t(s;e(a/q))t(s;e(b/q)).
a,b<q

(4)

In (3), we apply the functional equation of ¢ (s;w), and after expanding,
we replace a by g-a and b by g-b in the appropriate sums, noting
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that in replacing b by g-b, x(b) becomes -y(b). Consequently, two
of the sums cancel and we are left with

R(s;e(p/q)) = —iq—1K (s) = e(abp/q)x (a)t(1-s;e(a/q))t(1-s;5e(b/q)).
1 a,b<q

The result follows upon comparing this with (4).

5. The Meromorphic Part of R(s;b, k).

THEOREM 4. L(s;c,q) is analytic in the entire finite plane if
q $ O(mod 4). I q = O(mod 4), then L(s;c, q) = x(c) ¢ (s;c,q), and so has
a simple pole at s =1 if c is odd, and is identically zero if c'is even.

Proof. The second part of the Theorem is obvious. For
q a’ 0(mod 4), L(s;b, q) is essentially the difference of two {-functions
of the form {(s;w), each of which has the meromorphic part

1
(s-1) ~, so that the difference of two such functions is analytic
everywhere in the s-plane.

THEOREM 5. If q # O(mod 4) and (p,q) =1, then R(s;e(p/q))
has the same meromorphic part as

qi_zsx(q)é(S)L(s)-

Proof. From Theorem 2(i),

R(s;e(p/q)) - t(s;q,q) = e(acp/q) L(s;c, q)
a,c<q

= ~  e(acp/q) [t(s;a, q) - t(s;q, q)] L(s;c, q).
a, Ciq

Since {(s;a,q) - ¢(s;q,q) is analytic in the entire s-plane, and also

L(s;c, q) by Theorem 4, then R(S;e(p/q)) has the same meromorphic
part as:

t(s;iqyq) T  elacp/q) L(s;c,q)
a,c<q

= g1 "¢ (s) Lis;q q),

from which the result follows.

THEOREM 6. If q = O(mod 4) and (p,q) =1, then R(s;e(p/q))
has the same meromorphic part as:

ix(p) (q/2)1'zsg(s) L(s).
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Proof. From Theorems 2(i) and 4,

R(s;e(p/q)) = =  x(c)elacp/q)[t(s;q,q)-Z(s;a,q)][¢(s5q, q) - Z(s;c, q)],
a,c<q

where
Z(s;a,q) = t(s;q,q) - ¢(s;a,q),

which is analytic everywhere. Therefore

(5) R(s;e(p/q)) = q'zsz;z(s)z1 - q “tls) T,z
where
=, = = xle)efacp/a),
a,c2q
Z, =z xlc)elacp/q)[Z(s;a, q) + Z(s;c, )l
a,c<q
and
23 = Z  x(c) e(acp/q) Z(s;a, q) Z(s;c, q) .

a,c<q
One easily shows that Zi = gx(g) =0. Since both ZZ and 23 are.
analytic, the only possible singularity of R(s;e(p/q)) must arise from
the second term of (5) so that we only need to evaluate ZZ.

22 = - T x(c)elacp/q) [t(s;c,q) +¢(s;a,q)]
a,c<q
= -agx(@¢(siq,q) - = x(c) T e(mep/g)m °

a,c<q m>1
using Lemma 3(i),
-3
= - X h (mp)m
m>1 4
-8
= - i °
= [/2) qx°(pgm) EQ(mp)Bu_V, , m
m>1
by Lemma 1, where q = ZuQ, u>2, and for each m>1, we write
m = ZVM,

. .28-1 1-8
= -12 q x(p) L(s).
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THEOREM 7. R(s;b, k) has the same meromorphic part as:

Kl Lte) [ 30 e, 00 @I 2 x(ge b) o'

qlk
where b = ZVM.

Proof. From Lemma 3(iii) and Theorems 5 and 6, R(s;b, k)
has the same meromorphic part as:

Klel) Lis)[ = x(@) g’ 2" ORI (q/2)%% c (b30]

qlk
4tq 4]q
To complete the proof, use Lemma 2.
6. The Sum = r(n). Finally, we state the main
n<X
n = b(mod k)

results of this paper. We shall not give the proofs of Theorems 8 and 9,
since the arguments run parallel to those given in Hooley's paper [3].
As in Hooley's paper, our results depend upon Weil's estimates for

the Kloosterman sum.

THEOREM 8. If k = O(X2/3) and 0 < B< 1/3, then

(1/2)

2+Bk(1/2)(1-313)(b’k) a(K)).

b (X-n)% r(n) = fz ﬁk(b) +0(X
n<X
n =b(mod k)

Remark. In applying Theorem 8 to Zr(n)r(nt+a), we want B =0,
in which case the error term becomes

0x%k™ 12 1ogk+1) (b, 10012 aq)).

To obtain this result, we proceed as in [3], except that in estimating
S(1)

we move the line of integration to ¢ = 0 instead of to ¢ =8,

noting that we must be careful at the origin.

THEOREM 9. Under the hypothesis of Theorem 8,

(1/2)

(273)48, - (12)(A438) | (112510,

T ~
> r(n) = 4 Hk(b) k
n< X

1= b(mod k)

+0(X
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7. A Problem of Mordell. In [4], Mordell proved that if p is a
3/

4
prime, then there exist non-negative integers x,y<Bp log p
(B is a positive absolute constant) such that

ax2 +by'2 = c(mod p),

provided abc ,L_O(rnod p).

In Theorem 9, let X = Bk3/2, where B is a suitable positive

constant. Then it follows that if k is odd and contains only a

bounded number of factors, then there exist non-negative integers

3/4
x,y< B1 k / , not both zero, such that

(6) xz +y2 = b(mod k),

provided (b,k) =1, say. This follows since, under the conditions on
k, and for some positive constant C< 1, we have

") = H(p) = 1 g x®) e
plk i

(6) is slightly sharper than Mordell's result when a=b =1 and k = p.

To lower the exponent in (6) below 3/4 would be of great interest,
but seems very difficult.
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