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ON THE OPTIMAL STOPPING PROBLEMS
WITH MONOTONE THRESHOLDS
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Abstract

As a class of optimal stopping problems with monotone thresholds, we define the
candidate-choice problem (CCP) and derive two formulae for calculating its expected
payoff. We apply the first formula to a particular CCP, i.e. the best-choice duration
problem treated by Ferguson et al. (1992). The recall case is also examined as a
comparison. We also derive the distribution of the stopping time of the CCP and find, as
a by-product, that the best-choice problem has a remarkable feature in that the optimal
probability of choosing the best is just the expected value of the (proportional) stopping
time. The similarity between the best-choice duration problem and the best-choice
problem with uniform freeze studied by Samuel-Cahn (1996) is recognized.
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1. Introduction

As a typical optimal stopping problem with monotone thresholds, we first review the (full­
information) best-choice problem originally studied by Gilbert and Mosteller (1966, Section 3)
as a variation of the secretary problem. A known number, n, of objects appear one at a time.
Let Xk, 1 ::s k ::s n, denote the value of the kth object and suppose that Xl, X2, ... , K;
are independent and identically distributed random variables with a known continuous distribu­
tion F. Since F (Xk) is uniformly distributed on the interval (0, 1) and order relationship among
XI, X2, ... , X n is preserved under this monotonic transformation, we can assume without loss
of generality that Xl, X2, ... ,Xn are uniformly distributed on the interval (0, 1). As each
object appears, we observe its value and decide either to select or reject it based on the values
observed so far. Once an object is chosen, the process terminates. The objective of the problem
is to find a stopping rule which maximizes the probability of choosing the best, i.e. stopping
with the largest of XI, X2, ... , Xn and compute the probability of choosing the best under an
optimal stopping rule (the term 'stopping' is usually identified with selection in the secretary
problem).

Let Lk = max(X1, ... , Xk), 1 ::s k ::s n, and call the kth object (or Xk) candidate if it
is a relative maximum, i.e. Xk = Li: Obviously an optimal stopping rule of the best-choice
problem only stops with a candidate except for the last stage (if we pass over the first n - 1
objects, we stop with the last object). Consider now a class of stopping rules of the form

(1.1)
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On the optimal stopping problems with monotone thresholds 927

where a = (ai, a2, , an) is a given sequence of thresholds satisfying the monotone condition
1 ~ al ~ a: ~ ~ an ~ O. This rule is simply referred to as a monotone rule (with
thresholds a).

Gilbert and Mosteller (1966, Theorem 4) showed that the probability of choosing the best
object under a monotone rule in (a) is calculated as

I n n-l [ j j j n n]- a l ak ak a j +1
v (a) = -- + - - --

n n ~ Lj(n-j) Ln(n-j) n
J=1 k=1 k=1

(1.2)

and that the optimal stopping rule is within the class of monotone rules and the particular
thresholds a* = (at, a1, ... , a~) specifies the optimal stopping rule if a~ = 0 and aZ, k < n,
is a unique root x E (0, 1) of the equation

n-k 1 .L -:(x-J - 1) = 1.
j=lJ

Taking this condition into consideration, Sakaguchi (1973) gave a neat expression

1 [ n-l n-l ( *)j]
v~ = Vn (a") =;; 1+L L a~

k=1 j=k

(1.3)

(1.4)

for the optimal probability (to be exact, (1.3) was obtained by Sakaguchi as a simpler form of
the equivalent equation first obtained by Gilbert and Mosteller). As will be shown in Section 2,
the best-choice problem has a remarkable feature in that the optimal probability is just the
expected value of the optimal (proportional) stopping time, i.e.

(1.5)

where i; = in (a"), To the best of the author's knowledge, this result is new.
If we introduce the exponential-integral functions

/

00 -cx
/(c) = _e- dx,

1 X i
1 eCx - 1

J(c) = --dx
o x

and define c*(~ 0.804 35) as a solution c to the equation J (c) = 1, the limiting optimal
probability is given by Samuels (1982) as

v* = lim v~ = e-c* + (ec* - c" - l)/(c*) ~ 0.580164.
n---+oo

Thus far we have shown the various aspects of the best-choice problem. Besides the best­
choice problem, there are many optimal stopping problems having the property that the selection
is restricted to a candidate except for the last stage and the optimal rule falls within the class of
monotone rules. The problem having such a property is henceforth referred to as a candidate­
choice problem (CCP). See Section 2 for more details of the CCP. For a given CCP, we denote
the state of the process by (k, x), if we have just observed the kth object to be a candidate having
value x, i.e, Xk = Lk = x, 1 :s k :s n, 0 < x < 1. The problem is specified by the functions
Pk(X) defined as the payoff earned by stopping in state (k, x). For the best-choice problem, we
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l~k<n

can give Pk(X) = x n-k (payoff is now the probability of choosing the best), because, for the
current candidate to be the best among all, each of the remaining observations Xk+l, ... , X;
must be less than x. The version of the best-choice problem considered in Tamaki (2010,
Section 4) is also a CCP with complicated Pk(X); see Example 2.4 in Section 2. For the CCP,
we use the same notation as used in the best-choice problem so long as no confusion occurs. For
example, vn(a) represents the expected payoff under a monotone rule t; (a). One of the aims
of this paper is to give two simple formulae for calculating Vn (a) of the CCP; one is a formula
related to the stopping time Tn (formula of type 1) and the other a formula related to the time
at which the largest value observed so far initially exceeds the threshold (formula of type 2).
Ferguson et al. (1992, Sections 3.1 and 3.2) showed that both the duration problem and the
best-choice duration problem are CCPs. The duration problem is concerned with maximizing
the expected duration of holding a candidate. That is, if we stop with a candidate, we receive
a payoff of 1 plus the number of future observations before a new candidate appears or until
the final stage n is reached. The best-choice duration problem is concerned with maximizing
the expected duration of holding the best object (i.e. the last candidate). Hence, we have
Pk(X) = Ej:~xj In for the former and Pk(X) = (n - k + l)xn- kl n for the latter (note
that, as is usual with them, the payoffs are divided by n for normalization). Ferguson et al.
(1992) mainly studied the optimal stopping rules for these two problems, but gave neither their
expected payoffs nor their asymptotics.

As for the duration problem, the detailed analysis was made by Samuels (2004), Gnedin
(2004), and Mazalov and Tamaki (2006) (see also Kurushima and Ano (2009) and Pearce
et al. (2012)). However, the corresponding results for the best-choice duration problem have
yet to be obtained. This is our motivation for studying this problem in Section 3. We derive
the optimal expected payoff and show that it converges to the limiting value of 0.310965 as n
tends to 00. Interestingly, this value can be obtained directly from the existing result of Samuel­
Cabn (1996) if we recognize the equivalence between the best-choice duration problem and the
Samuel-Cabn best-choice problem with uniform freeze. The same result can be also obtained
via the planar Poisson process (PPP) model developed by Gnedin (1996), (2004), and Samuels
(2004), which is known to be an appropriate setting in which we can define the infinite version of
the corresponding finite problems (see also Bruss and Rogers (1991)). When recall is allowed,
in which case any of the previously observed objects may be selected, the limiting payoff is
shown to increase up to 0.335 360.

2. Calculating the expected payoff of the CCP

2.1. Formula related to Tn

We start with deriving the distribution of the stopping time Tn (a) defined in (1.1).

Lemma 2.1. Assume that n ~ 2 and define, for a given monotone sequence of thresholds
a = (aI, a2, ... , an),

1 k

Ada) = k La~,
i=1

with Ao(a) == 1 and An(a) == Ofor convention. We have the following:

(i) P{Tn (a) > k} = Ak(a), 0 ~ k ~ n;

(ii) lP'{rn(a) = k} = Ak-1(a) - Ak(a), 1 ~ k ~ n;

(iii) lE[Tn(a)] = E~:J Ak(a).
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(2.1)

ProofofLemma 2.1(i). An important observation is that, since a j is nonincreasing in j by
definition while L j is nondecreasing in j by nature, Tn (a) > k occurs if and only if the largest
of the first k observations is less than the corresponding threshold. More specifically, if we
let T be the time index for which Lk = XT, then

JP>{Tn(a) > k} = JP>{XT < aT}.

Since T is uniform on {I, 2, ... , k}, by conditioning on T, we have

k k 1
](D{XT < ad = L](D{XT < aT I T = i}](D{T = i} = L(ad

k,
i=1 i=1

which proves Lemma 2.1(i) for 1 :s k < n. The results for k = 0 and n are evident.
Lemmas 2.1(ii) and 2.1(iii) are immediate from Lemma 2.1(i), because lP'{Tn(a) = k} =
JP>{Tn(a) > k - I} -lP'{Tn(a) > k} and lE[Tn(a)] = L~:J JP>{Tn(a) > k}. Thus the proof is
complete.

From Lemma 2.1(iii) we obtain (1.5), because (1.4) can be expressed as

v: = (~)~Ak(a*).
n k=O

This coincidence was pointed out in Mazalov and Tamaki (2006, Remark 3.3) in the limiting
case.

We turn to the derivation of a formula for calculating vn(a) of the CCP. Before doing so,
remember the well known result that, if ZI, Z2, ... , Zm are m independent random variables
each uniformly distributed on (0, t) for a given t > 0, then maxlZj , Z2, ... , Zm} has a density
given by

g(m)(z It) = 7(~)m-l, 0 < Z< t,

Theorem 2.1. (Formula of type 1.) Let Pk(X) be the payoffearned by stopping in state (k, x).
Then the expected payoff Vn(a) under the monotone rule Tn = Tn (a) is calculated from, for
n ~ 2,

11 n k-l 1
1 [min(x, a o)]k-l

vn(a) = Pl(x)dx +LL Pk(X) _ ~ dx.
at k=2j=1 ~ k

Proof. Let p(k, x) = p(Tn = k, L rn = x) be the joint probability density of (Tn, L rn) .

Then
n 1

vn(a) = L 1Pk(x)p(k, x) dx.
k=1 ak

Obviously, p(l, x) == 1. So, to prove (2.1), it suffices to show that, for k ~ 2,

[
k- l 1 l mi n(x ,aj ) ] 1

p(k, x) = L -- g(k-l)(y I x) dy _g(k)(x I 1).
j=1 k - 10k

(2.2)

Considering that the event (Tn = k, L rn = X) can be equivalently described as (XT < ar, Lk =
Xk = x), where T is the time index for which Lk-l = XT, because, to be Tn = k, the largest
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of the first k - 1 observations must be less than the corresponding threshold (see the proof of
Lemma 2.1), we can write

p(Tn = k, L rn = x) = p(XT < aT, Lk = Xk = x)

= JP>{XT < ar I Lk = Xk = X}p(Lk = Xk = x). (2.3)

We easily see that

(2.4)

because g(k)(x I 1) is the density of Lk and 1/ k is the probability that the kth observation is
just the largest of the first k observations. On the other hand, by conditioning on T, we have

JP>{XT <at I Lk=Xk=X}

k-l

= LlP'{XT < ar I T = j, Lk = X; = x}lP'{T = j ILk = Xk = x}
j=l

k-l [ rmiO(x,aj ) ] ( 1 )
=~ 10 g(k-l)(y I x)dy k _ 1 '

J=l

(2.5)

where the last equality follows because T is uniform on {I, 2, ... , k - I} independent of
Lk = Xk = x, and because, given Lk = Xk = x and T = j, Lk-l(= XT) can be viewed as
the maximum of k - 1 independent random variables each uniformly distributed on (0, x) and
the corresponding threshold is ai- Applying (2.4) and (2.5) to (2.3) yields (2.2). This completes
the proof.

Suppose that we are in state (k, x) of a CCP with Pk(X), 1 ::s k ::s n. If we stop with the
current candidate, we receive Pk(x), while if we leave this state and stop with the next candidate,
if any, we can expect to receive the payoff

n 1

qk(X) = L r:'! Pj(y) dy,
j=k+l x

where the vacuous sum is assumed to be 0, i.e. qn(x) = O.
Now let

n

(2.6)

G = U{(k, x): Pk(X) ::: qk(X)}.
k=l

Hence, G represents the set of states for which stopping immediately is at least as good as
waiting for the next candidate to appear and then stopping. The stopping rule which stops as
soon as the state enters the set G is called one-stage look-ahead rule (l-sla rule). It is well
known (see, e.g. Ferguson (2006) or Chow et al. (1971» that the stopping rule Tn (a"), which
is also I-sla, is optimal if there exists a monotone sequence a" = (at, ai, ... , a~) such that G
can be expressed as G = U~=l {(k, x): x ::: ak}. Thus, we refer to the stopping problem as a
CCP when it has an optimal I-sla rule.

Let
r = min{k: Pk(X) ::: qk(X), 0 ::s x ::s I}.
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When the Pk(X)S are continuous in x, a; is clearly given as a root x of Pk(X) = qk(X), i.e.
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(2.7)

1 ~ k < r.

1 ~ k < r.

n (I
Pk(X) = L xj-k-1lx pj(y)dy

j=k+l x

for k < rand aZ = 0 for r ~ k ~ n. Once we have obtained a; inductively as a unique root
x E (aZ+1, 1) of (2.7), the optimal (expected) payoff is given as v: = Vn(a*) by substituting
a" for a in (2.1). We give some examples and comments.

Example 2.1. (Best-choice problem: Pk(X) = xn-k and r = n.) Straightforward calculations
from (2.1) yields

1 [ ~~ 1 j ~{~ 1 j n} nJvn(a)=- 1+~~-;ak+~ ~--.ak-(I+hn-k)ak -an'
n k=1 j=k J k=1 j=k n - J

where hk = L~=I l/j, k 2: 1 with ho = O. It is easy to check that this agrees with (1.2). From
(1.3), a; satisfies

n-I
~ 1 *j *n
~ --. (ak) = (1 + hn-k)(ak) ,
j=k n - J

Applying these to the above, combined with a: = 0, immediately yields (1.4).

Example 2.2. (Duration problem: Pk(x) = Lj:~ xj / nand r = n - 1.) We obtain from
(2.1), after tedious calculations,

1 [ n n 1 oJ
vn(a)=;; hn+LLy(hn-j-hj-k-l)ai.

k=l j=k

Mazalov and Tamaki (2006) obtained this expression, not from (2.1), but from an alternative
formula (2.8) given below in Theorem 2.2. From (2.7), aZ satisfies

n

L(hn-j - hj-k - 1)(aZ)j = 0,
j=k

Example 2.3. (Best-choice duration problem: Pk(x) = (n - k + 1)xn-k/ nand r = n.) See
Lemma 3.1 for vn(a) and {aZ}.

Example 2.4. (Version ofthe best-choice problem.) The problem considered in Tamaki (2010,
Section 4) is concerned with maximizing the probability of stopping with any of the last m
candidates, where m is a predetermined positive integer. When m = 1, this problem reduces
to the best-choice problem. Let rj(k), 1 ~ k ~ i. be defined recursively as

Tj(k) = ]Tj-l(k - 1) + (1 -] )Tj-l(k), 1 ::::: k ::::: j, 2::::: j

with rl (1) = 1 and rj(k) = 0 for k = 0 or k > j, and define dj = Lr:/ rj(k) for j 2: m and
dj = 1 for j < m. Then we have, for k < r = n + 1 - m,

https://doi.org/10.1239/jap/1450802744 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1450802744


932 M. TAMAKI

The expected payoff vn(a) is given as P:,m in Tamaki (2010, Theorem 4.1(b)) if bj(m) is
replaced by an- j for each j.

2.2. Formula related to Un

Besides (2.1), we can obtain another expression for Vn(a). Let an(a) be the time at which
the largest value observed so far initially exceeds the threshold, i.e.

an = an(a) = min{k: Lk ~ ak} /\ n.

By definition, JP>{an(a) :::; Tn(a)} = 1. It is easy to see that an(a) > k is equivalent to Lk < ak
due to the monotonicity of a. Hence, we immediately have the following results concerning
the distribution of an(a).

Lemma 2.2. Assume that n ~ 2. Then, for a given monotone sequence a = (aI, a2, ... , an),
we have the following:

(i) P{an(a) > k} = a:, 0 :::; k :::; n;

(ii) Plan (a) = k} = ai=~ - a:, 1 :::; k :::; n;

(iii) lE[an (a)] = L~:6 a:,

where ao = 1 and a~ = 0 for convention.

Another expression for Vn (a) is given as follows.

Theorem 2.2. (Formula of type 2.) Let qk(X) be as defined in (2.6). Then, we have

vn(a) = t[1 1

pk(x)[min(x, ak_I)]k-1 dx + (k -1)t Qk(X)xk-1dX]. (2.8)
k=1 ak ak

Proof. Let p(k, x) = p(an = k, Lan = x) be the joint probability density of (an, Lan).
To obtain p(k, x), we distinguish two cases according to whether Lan = Xan (case 1), or
Lan> Xan (case 2), and denote p(k, x) by PI (k, x) for case 1 and by p2(k, x) for case 2. Then
we obtain, for k ~ 2,

PI (k, x) = [imiU(X,ak
-

d
g(k-I)(y I x) dY] ~g(k)(X I 1), ak .s x ::s 1,

k-l
p2(k, x) = -k-g(k)(x I 1), ak :::; x < ak-I,

in a similar way to that used to derive (2.2) in the proof of Theorem 2.1. For k = 1, clearly
PI (k, x) == 1 and p2(k, x) == O. Note that the inside of the bracket of PI (k, x) is the probability
thatthelargestofthefirstk-l observations must be less thanak-l conditional on L, = Xk = x.
On the event (an = k, Lan = x), we stop with the current candidate and receive the payoff
Pk(X) for case 1, whereas we continue observations and stop with the next candidate, if any,
and receive the payoff qk(x) for case 2. Hence, we have

vn(a) =t[11

pk(X)PI(k,x)dx +l ak

-

1

Qk(X)P2(k,X)dx],
k=l ak ak

which yields (2.8), completing the proof.

Remark 2.1. Formula of type 2 is applicable to some problems with recall. See Section 3.2
and Mazalov and Tamaki (2006, Section 2.2).
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2.3. Limiting expected values of Tn / n and Un / n
To make explicit the dependence onn, we sometimes writea(n) = (al (n), a2(n), ... , an(n)

instead of a = (ai, a2, ... , an). Let {bk}~O be an infinite sequence such that

o~ bo ~ bl ~ b2 ~ ... ~ 1, lim n(1 - bn ) = C < 00
n--.+oo

(2.9)

and define ak(n) = bn-k, 1 :s k :s n, i.e, a(n) = (bn-I, bn-2, ... , bo), n ~ 1. Then we have
the following limiting results.

Lemma 2.3. For a(n) satisfying (2.9),

(i) it holds that

(ii) and

lim IE[ Tn (a(n»] = e-c + (e" - c - 1)1 (C),
n--.+oo n

(2.10)

lim IE[an (a (n ))] = 1 _ cecI(c) . (2.11)
n--.+oo n

Proof ofLemma 2.3(i). Let Cj = j(1 - bj), j ~ O. Then, from Lemma 2.1(iii), we have

lE[
Tn(a (n» ] _ 1 [ ~~ 1 k]- - 1 + L...J L...J -(bn-i)

n n k=1 i=1 k

1 [ n-I j 1 ]
r ; 1 + 2::2:: n _/bjt-r

j=lr=1

1 [ n-l j 1 ( c.)n-r]
=- 1+2::2::- 1--+ .

n j=l r=l n - r ]

Since cj ---* c as j ---* 00, it is easy to see that, as n ---* 00,

IE[Tn(a(n»] ~ {I t" _1_(e-c )(1 - V)/u dv du .
n 10 10 1 - v

(2.12)

For the transformation from the bivariate integral of (2.12) to the right-hand side of (2.10), see
Tamaki (2009, Appendix).

Proof ofLemma 2.3(ii). From Lemma 2.2(iii), we similarly have

Let v = l/u. Then

11 /00 e-cv
e-c/ u du = -2- dv = e-c - cI(c),

o 1 v
(2.14)

where the second equality follows from integration by parts. Substituting (2.14) into (2.13)
gives (2.11).

https://doi.org/10.1239/jap/1450802744 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1450802744


934 M. TAMAKI

Remark 2.2. It is noted that the bivariate integral of (2.12) with c ~ 1.3450 appeared in
Mazalov and Tamaki (2006, Equation (1.2» as the limiting optimal payoff of the duration
problem with recall.

The threshold sequence a(n) considered in Lemma 2.3 assumes that the threshold value
ak(n) depends on k only through the number of remaining observations n - k. This is the case
with the optimal threshold sequence of the problems given in the following examples. The
corresponding limiting value c is listed below for reference.

(i) Best-choice problem: c ~ 0.80435 is a solution t to the equation J (r) = 1; see Gilbert
and Mosteller (1966).

(ii) Duration problem: c ~ 2.1198 is a solution t to the equation et[1 + J(-t)] = 1 - J(t);
see Ferguson et ale (1992).

(iii) Best-choice duration problem: c ~ 1.25643 is a solution t to the equation et = 1 + 2t;
see Ferguson et al. (1992).

(iv) Version ofthe best-choice problem: c is a solution t to the equation L~m r; (m )t i Ii! = 1
for a given m; see Tamaki (2010).

3. Best-choice duration problem

The study on the best-choice duration problem in Ferguson et al. (1992, Section 3.2) was
quite preliminary. Here we reconsider this problem in detail both in the case where the most
recently observed object may be selected (i.e. the no recall case) and in the case where any of
the previously observed objects may be selected (i.e. recall case).

3.1. No recall case

This problem is a CCP and the next lemma yields the expected payoff.

Lemma 3.1. (Expected payoff in the no recall case.) (i) We have

vn(a) = ! [I +I:I: a~ - ! t(2(n - k) + I)ak]
n k=l j=k ] n k=l

(ii) and

V~ = ~[I +I:I:(} -~)(ak>jl
k=l J=k

where a~ = 0 (i.e. r = n) and aZ, k < n, is a unique solution x E (0, 1) of

n-l

(2(n - k) + l)xn = Lxi.
i=k

(3.1)

(3.2)

(3.3)

Proof We have Pk(X) = (n - k + l)xn- kIn, because, when we stop in state (k, x), the
payoff is (n - k + 1)ln or 0 depending on whether or not the current candidate is best overall.
Hence, (3.3) is obtained from (2.7) (for these, see also Ferguson et al. (1992), where time is
taken as the remaining time to the end).
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We now prove Lemma 3.1(i). Since

11 [min(x , aj)]k-l n - k + 1(l a j n-l k-11
1 n-k )

Pk(X) k dx= x dx+aj x dx
ak - 1 n (k - 1) ak a j

1[1 k-l 1 n n - k + 1 n]
=~ k_l aj -~aj- n(k_l)ak'

from (2.1), we have

935

1[1
1

n k-l( 1 1 n-k+l)]vn(a) = - nxn-1dx +~~ __a~-1 - -a~ - an
n L.J L.J k - 1 J n J n(k - 1) k

at k=2 j=l

1 [ n-l k lIn 1 n ]
=;; (1 - at') + L L kaj - ;; I)n - j)aj - ;; L(n - k + l)aZ '

k=1 j=1 j=1 k=2

which gives (3.1) after some arrangement.
We now prove Lemma 3.1(ii). We obtain (3.2) by applying to the second term on the

right-hand side of (3.1),

n-l n-ln-l
L(2(n - k) + 1)(ak)n = L L(ak)i,
k=l k=1 i=k

which follows from (3.3).

Moreover, the relation between the optimal payoff v~ and the first two moments of the
optimal proportional stopping time r;In is given as follows.

Lemma 3.2. We have

(3.4)

(3.5)

Proof. From (3.2),

1 [ n-l n-l 1 ] 1 n-l n-l
v~ = - 1+ LL -;(ak)j - 2 LL(ak)j·

n k=1 j=k ] n k=1 j=k

The first term on the right-hand side of (3.5) is E[r;In] as seen in (1.5). The double summation
of the second term can be written as, from Lemma 2.1(i),

n-l n-l n-l j

LL(aj;)j = L(L(aj;)j)
k=lj=k j=1 k=1

n-l
= LjAj(a*)

j=1
n-l

= L jIP{r; > j}
j=1

= 1(E[(r;)2] - E[r;]),
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where the last equality follows from the well known fact that, for a nonnegative integer-valued
random variable X, 00 1

I>IP'{X > j} = 2: (IE[X2
] -1E[XD·

j=O

Applying the above results to (3.5) yields (3.4).

Samuel-Coon (1996) generalized the best-choice problem by introducing a random 'freeze­
time' variable N which makes it impossible to make a selection after time N. The goal of
stopping with the largest of XI, X2, ... , Xn remains unchanged. In the case of N uniform
on {I, 2, , n}, Samuel-Coon showed that the optimal rule is a monotone rule with a" =
(ar, ai, , a~), where aZ is determined from (3.3) and the optimal probability is given by
v« (a *), where Vn (a) is given by (3.1). That is, the best-choice duration problem (without recall)
is equivalent to the Samuel-Cahn best-choice problem with N uniform on {I, 2, ... , n}. From
this equivalence, we can obtain an integral expression for v*.

Lemma 3.3. (Limiting optimal payoff.) We have

v*=11
~[lX e-c*x/(I-Y)dY]dx-211 ye-c*/Ydy::::::O.310965, (3.6)

where c*(~ 1.25643) is a unique solution c(> 0) of

eC = 1 + 2c. (3.7)

Proof. See Samuel-Coon (1996, Section 4), where v* of (3.6) was derived in an ingenious
way, starting from the form of (3.1), combined with (3.3). See also Ferguson et al. (1992)
for (3.7).

Another simpler expression for v* in terms of / (c) is given as follows.

Lemma 3.4. Write c for c* for convenience. Then

v* = ce-C+ c(1 - c)/(c).

Proof. Let v = xj(1 - y). Then

1
x jX/(l-X) e-cv

e-cx/(l-y) dy = x -2- dv.
o x v

Interchanging the order of integration, the double integral of (3.6) becomes

(3.8)

(3.9)

11 [jx/(l-X) e-CV
] 11[lV ]e-CV /00[1 1 ]e-CV

-2- dv dx = dx -2- dv + dx -2- dv
o x v 0 v/(l+v) v 1 v/(l+v) V

11 v2 e-CV /00 1 e-cv
= ----dv+ ----dv

o 1 + v v2 1 1 + v v2

100 e-CV /00 e-CV. /00 e-CV
= --dv- --dv+ --dv

o 1+ v 1 v 1 v2

/

00 -cv
=eC!(c)-!(c)+ ~dv.

1 v
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As seen in (2.14), integration by parts gives

/

00 e-cv -c
-2- dv = e - c/(c).

1 v

937

(3.10)

(3.11)

Let 1/y = v. Then the integral of the second term of (3.6) is written as, again by integration
by parts,

/

00 e-cv e-c c /00 e-cv
--dv = - - - --dv.

1 v3 2 2 1 v2

Applying (3.9)-(3.11) to (3.6) yields (3.8).

The asymptotic result (3.8) is also obtained via the PPP model. According to Samuels
(2004), we use a Poisson process with unit rate on the semi-infinite strip [0, 1] x [0,00). This
turns the problem upside down, turning the 'best' into the 'smallest'. The process is scanned
from left to right by shifting a vertical detector and the scanning can be stopped each time a
point in the PPP, referred to as an atom henceforth, is detected. A link to the finite problem can
be established in a similar manner as given to the best-choice problem by Gnedin (1996).

Suppose that an atom is identified as a point (t, y) if the atom appears at time t as a candidate
(relatively best atom as in the finite problem) having value y in the PPP. Let P (t, y) denote the
expected payoff if we choose this point, i.e, stop on the point (t, y). Then

P(t, y) = (1 - t)e-Y(1 - t) , (3.12)

(3.13)

because e-y (1 - t ) is the probability that no atom appears in the box domain [t, 1] x [0, y] whose
area is y (1 - t). If we do not choose this point, but choose the point related to the next candidate,
if any, then, since its value is uniformly distributed on (0, y), we can expect to receive a payoff

o« y) =11
-

t (1Y
P(t + r, X)~ dx )ye-yr dr.

Substituting (3.12) into (3.13) yields

1
Q(t, y) = -(1 - e-Y(1 - t ) ) - (1 - t)e-Y(1 - t) .

y

Solving for the locus of point (t, y) at which P (t, y) = Q(t, y) yields y (1 - t) = c", where
c* ~ 1.25643 is as defined from (3.7). Since P(t, y) 2: Q(t, y) implies that P(t', y') 2:
o«. y') for t' > t, y' < y, we are in the monotone case of optimal stopping (see Ferguson
(2006) or Chow et al. (1971) for the monotone case) and can conclude that the optimal rule stops
with the first candidate, if any, that lies below the threshold curve y = c*/ (1 - t). Henceforth,
we again write c instead of c* for simplicity. Let T be the arrival time of the first (leftmost)
atom that lies below the threshold curve y = c/(l - t), and let S be the time when the value
of the best (lowest) atom above threshold is equal to the threshold. Then it is easy to see that
(see, e.g. Samuels (2004, Section 10.2)) the limiting optimal payoff is calculated from

v* = (I t' p(s, _c-)fs(S)fT(t) ds dt10 10 1 - s

t' r (1 t fc/(l-t) )
+ 10 10 -c- 10 r«. y) dy !r(t)!s(s) dt ds, (3.14)
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where iT(t) and is(s) are the densities of T and S given as

M. TAMAKI

iT(t) = e(1 - t)c-l, fs(s) = es e-cs/(l-s).
(1 - s)c+2

Applying (3.12) to (3.14) yields

v* = e-c r r (1 - s)!s(s)!T(t) ds dt + 1 - e-
c t' t (1 - t)!T(t)!s(s) dt ds. (3.15)

10 10 e 10 10
Moreover, the bivariate integrals can be simplified to

11it(1- s)!s(s)!T(t) ds dt = c[(1 + c)eC I(c) - 1],

11is (1 - t)!T (t) ! s (s) ds dt = c[ 1 - cec I (c) ],

respectively. Substituting (3.16) and (3.17) into (3.15), we obtain

v* = 1 - (1 + e)e-C+ e(2 + e - eC)I(e),

(3.16)

(3.17)

(3.18)

and so (3.18), combined with (3.7), is readily reduced to (3.8). We thus have shown that the
result (3.8) is obtained via the PPP approach.

Remark 3.1. The equivalence between the best-choice duration problem (without recall) and
the Samuel-Coon best-choice problem with uniform freeze is not surprising, because this is very
similar to the equivalence between the duration problem (without recall) and the Porosinski
(1987) best-choice problem with uniform horizon, to which Samuels (2004) and Gnedin (2004)
have given a good explanation. See also Gnedin (2005) for further generalization of the
equivalence.

3.2. Recall case

Ferguson et ale (1992) showed that, in the recall case, the optimal stopping rule is within the
class of stopping rules {an (a)} in the sense that it stops at time an with the current candidate
if Lan = Xan, but with the previous object, say, the jth object if Lan = X j > Xan.
Moreover, they showed that the optimal threshold a% = 2- 1/ (n - k ) is given as a solution x
of Pk(X) =XPk+l(X) + J} Pk+l(y)dy, k < n, where Pk(X) = (n - k + l)xn-kj n. Letun(a)
denote the expected payoff under an (a) and u~ = Un(a"). Then we have the following results.

Lemma 3.5. (Expected payoff in the recall case.) (i) We have

(3.19)

(ii) and
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ProofofLemma 3.5(i). A bit of consideration shows that Un (a) is obtained by simply re­
placing qk(X) by Pk(X) in (2.8), because the stopping payoff at time an is always Pan (Lan).
That is,

From straightforward calculation, we obtain

11 [ ]k-l l ak
-

1

Pk(X) min (x , ak-l) dx + (k - 1) Pk(X)xk- 1 dx
~ ~

l
a k

-
1 11= k Pk(X)xk- 1 dx + a:=I Pk(X) dx

ak ak-l

1 [(k - 1)(n - k) n ken - k - 1) n 2k n k-l]= - ak-l - ak - -ak + a _ .n n n n kl

(3.20)

(3.21)

Substituting (3.21) into (3.20) yields (3.19). The proof of Lemma 3.5(ii) follows from aZ =
2- 1/ (n - k ) .

Let u" = limn--+oo u~. Then we have the following limiting result.

Lemma 3.6. Let c= log 2. Then

u" = 1 ; c+ (c)2I (c) ~ 0.335 360.

Proof From Lemma 3.5(ii), u~ can be written as

which yields, by letting n ---+ 00,

u* =11
(1 - x)(e-c)x / ( 1- x ) dx.

(3.22)

(3.23)

Let v = 1/(1 - x). Then

11 - - /00 1 - 1 - c (c)2ec
(1 - x)(e-C)x/(l-x) dx = eC _e-cv dv = -- +--I (c),

o 1 v3 2 2

where the last equality follows from (3.11) and (3.10). Hence, (3.23) reduces to (3.22) through
eC = 2.

Remark 3.2. We can also obtain u" of (3.22) from the PPP model, i.e. u" is just the value of v*
of (3.15) when c(= c* ~ 1.25643) is replaced by c= log 2 ~ 0.693 15, because, as is easily
seen from the argument of the infinitesimal look-ahead stopping rule used for the duration
problem with recall in Mazalov and Tamaki (2006, Section 3.2), the optimal threshold curve
in the recall case is given by y = c/ (1 - t), in contrast to the curve y = c*/ (1 - t) in the no
recall case (c = log 2 was already suggested in Ferguson et al. (1992)).

https://doi.org/10.1239/jap/1450802744 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1450802744


940 M. TAMAKI

Let r;(an) be the optimal stopping time of the best-choice duration problem with recall (with­
out recall). Then, since the corresponding optimal thresholds aZ(,:) = b:_k(ak(n) = bn-k)
satisfy the property that limn --+oo n(l - b~) = c*(lim n --+oo n(l - bn ) = c), we immediately
have the following results from Lemma 2.3.

Lemma 3.7. Let c* ~ 1.25643 and c= log 2. Then

. [r*] * *11m JE -.E... = e-c + (eC
- c" - 1)/(c*) ~ 0.46678,

n--+oo n

lim JE[an
] = 1 - cec/ (c) ~ 0.47505.

n--+oo n
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