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Introduction. Unit-regular rings were introduced by Ehrlich [4]. They arose in the
search for conditions on a regular ring that are weaker than the ACC, DCC, or finite
Goldie dimension, which with von Neumann regularity imply semisimplicity. An account
of unit-regular rings, together with a good bibliography, is given by Goodearl [5].

The basic definition of unit-regularity is purely multiplicative; it is simply that for
each element x of a monoid S (initially a ring R with identity) there is a unit u of S for
which x = xux. The concept of a unit-regular semigroup is a natural one; for example, the
full transformation semigroup on a finite set, and the semigroup of endomorphisms of a
finite-dimensional vector space, are unit-regular semigroups [1]. Unit-regularity has been
studied by Chen and Hsieh [2], by Tirasupa [9], and by McAlister [6]. The connection
between unit-regularity and finiteness conditions has been considered by D'Alarcao [3].

The problem of describing the structure of an arbitrary unit-regular semigroup S is
difficult. It appears reasonable to attempt to provide such a description in terms of the
group of units of S and the set of idempotents of S, and in this direction Blyth and
McFadden did determine the structure of a narrow class of unit-regular semigroups.
Calling a semigroup S uniquely unit orthodox if it is orthodox and, for each x in S, there
exists a unique unit u of S for which x = xux, they proved that every such semigroup is a
semidirect product of a group (the group of units of S) and a band (the band of
idempotents of S).

In the present paper we shall show first that every unit-regular orthodox semigroup S
is an idempotent-separating homomorphic image of a uniquely unit orthodox semigroup
(determined by the idempotents of S and the units of S). The main result here is then the
determination of all idempotent-separating congruences on uniquely unit orthodox semi-
groups.

1. Unit-regular semigroups. Much of what follows depends on the following
elementary fact. If S is a monoid and g is a unit in S, then for each idempotent e of S,
geg"1 is an idempotent, and if / in S is also an idempotent then

DEFINITION 1.1. A monoid S is said to be unit-regular if for each x in S there exists a
unit u of S for which x = xux.

For the rest of this paper we shall deal with unit-regular semigroups; each such is, of
course, regular, though it is certainly not the case that x = xux implies that uxu = u. We
shall denote by E(=E(S)) the set of idempotents of S and by G(=G(S)) the group of
units of S.

Clearly x = xux implies that xu and ux are idempotent, and each element of S may
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be written in the form eg for e in E and g in G. This factorization is not unique, though e
is unique for unit-regular inverse semigroups [2].

If eg and fh, for e,f in E and g, h in G, are elements of S then

egfh = e(gfg"J)gh = jkgh

where e, gfg~\ j are idempotent and k, g, h are units. Here

j = j(e,gfg-l)eE and k = k(e, g/g-^e G.

Any useful description of the structure of S in terms of E and G would need to provide
more information about j and k than just the fact of their existence.

But there is one case in which / and k are obvious; if S is orthodox (E is a
subsemigroup of S) we can take / = eCgfg"1) and k = 1, so that

egfh = e(g/g"1)gh

with eCg/g"1) in E and gh in G.

DEFINITION 1.2. A monoid S is said to be unit orthodox if S is unit-regular and
orthodox [1].

When S is unit orthodox it is clear that G acts automorphically (in the sense that
there is a homomorphism from G into the group of automorphisms of £ ) on the band E
of idempotents of S under the action

g. e = geg"1 for g in G and e in E.

As yet there is no method for describing the structure of a unit orthodox semigroup S
directly in terms of E(S) and G(S), but a method does exist for a sub-class of unit
orthodox semigroups. Calling a monoid S uniquely unit orthodox if for each x in S there is
a unique unit u in S for which x = xux, Blyth and McFadden proved the following
theorem [1].

THEOREM 1.3. Let E be a band with identity 1 and let G be a group which acts
automorphically on E. Denoting by g. e the action of g e G on eeE, define a product on
T = ExG as follows:

(a,g)(b,h) = (a(g.b),gh).

Then T is a uniquely unit orthodox semigroup, which we shall denote by J2|x|G. Denoting
also by 1 the identity of G,

= {(e,l)\eeE}~E,

= {(l,g)|g6G}~G.

If x = (e, g) is an element of T then the unique unit u of Tfor which x = xux is u = (1, g"1).
Conversely, every uniquely unit orthodox semigroup arises in this way.

It is worth noting, as pointed out in the proof of Theorem 1.3, that 1. e = e for each e
in E, and g. 1 = 1 for each g in G.
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While the class of uniquely unit orthodox semigroups is not a large one, it plays a
decisive role in determining the structure of unit orthodox semigroups in general, as the
following theorem shows.

THEOREM 1.4. Let S be a unit orthodox semigroup with group of units G. For e in
E = E(S) and g in G = G(S) define g. e = geg"1. This action defines an automorphism of
E, and the map which assigns this automorphism to g is a homomorphism from G into the
group of automorphisms of E. If the uniquely unit orthodox semigroup T = E\ x \G is defined
as in Theorem 1.3, then the map 6:T-^S defined by {e,g)6 = eg is an idempotent-
separating epimorphism.

Proof. As noted above, it is obvious that G acts automorphically on E under
g. e = geg"1. For a in S choose a unit g in G such that a = ag-1a, so that e = ag-1 eE;
then

(e,

so 6 maps T onto S.

If (e, g) and (/, h) are elements of T then

(e, g)0(f, h)0 = egfh = e(gfg-')gh = e(g. f)gh = ((e, g)(f, h))0,

so 6 is a homomorphism.
Finally, each idempotent of T is of the form (c, 1) for some e in E, so if (e, 1) and

if, 1) are idempotents of T satisfying (e, 1)6 = {f, 1)6 then e = e l = / l = / ; therefore 6 is
idempotent-separating, and the proof is complete.

Now that we know that every unit orthodox semigroup is an idempotent-separating
homomorphic image of a uniquely unit orthodox semigroup, the question arises: What are
the congruence relations on a uniquely unit orthodox semigroup which are contained in
9£? We shall answer this question in Section 2.

2. The @-class structure of E|x|G. For any orthodox semigroup S the finest
inverse semigroup congruence <3/ on S is given b y x ^ w if and only if V(x) = V(w) where
V(x) denotes the set of inverses of x. Further, on any band E the °U-classes coincide with
the 3}-classes, and £ is a semilattice Y of rectangular bands; in particular, if x, y, and z
are 2)-equivalent elements of £ then xyz = xz. We shall write Dx for the 3} = "2/-class of x
in E, and similarly for 2ft, and S£.

Now let T be a uniquely unit orthodox semigroup. Since we need to know about
congruence relations on T contained in ffl, we proceed to determine Green's relations on
T. But while $? determines the "local" properties it is 2) which determines the "global"
properties of the congruences we are seeking.

By Theorem 1.3 we may assume that T = £ |x |G under the operation

(e,g)(f,h) = (e(g.f),gh),

where £ = £ ' is a band with identity and G is a group which acts automorphically on E.
Recall that 1. e = e and g. 1 = 1 for each e in £ and each g in G.
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LEMMA 2.1. Let (a, g) be an element of T. Then (x, u) is an inverse of (a, g) in T if
and only if u = g~" and g. x e D where D is the 3)-class of a in E.

Proof. First,

(a, g)(x, u)(a, g) = (a(g. (x(u. a))), gug) = (a, g)

if and only if u = g"1 and a(g. x)a = a, while

(x, g^Ha, g)(x, g"1) = (xCg"1 . (a(g. x))), g"1) = (x, g"1)

if and only if x(g-1 . a)x = x. Therefore (x, g"1) and (a, g) are mutually inverse if and only
if a(g. x)a = a and x(g- 1 . a)x = x. Since g acts as an automorphism, this is true if and
only if g. x is in D.

LEMMA 2.2. For each e in E and each g in G,

g. Le = Lg.e, g.Re = Rie, g-De = Dge.

Proof. This follows directly from the definition of Green's relations and the fact that
G acts automorphically.

LEMMA 2.3. Let (a, g), (b, h) be elements of T. Then
(i) (a, g) 2ft (b, h) if and only if a<3lb in E.

(ii) (a, g) 2 (b, h) if and only if g"1. aith'x. b in E.
(iii) (a, g) $f (b, h) if and only if hg"1 . a3)a and b = a(hg-1 . a).

Proof, (i) (a, g) 9? (b, h) if and only if there exist inverses (a, g)' of (a, g) and (b, h)' of
(b, h) respectively for which (a, g)(a, g)' = (b, h)(b, h)'. By Lemma 2.1 this is true if and
only if there exist a' in V(a) and b' in V(b) for which

(a, gXg-1. a', g-1) = (aa1,1) = (b, h^h'1. V, h~l) = (bb', 1);

in other words, if and only if a 2ft, b in E.
(ii) As in (i), (a, g) X (b, h) if and only if g"1. a'a = h"1. b'b for some a' in V(a) and

some b' in V(b). But a'aiBa and b'b$£b, while g"1 and n"1 preserve i?-classes by
Lemma 2.2, and therefore (a, g) J£ (b, h) implies

g-1. a£g-'. a'a = h'1. b'b^h'1. b.

Conversely, g"1 . a$£h~x . b implies

g"1. ((gfi"1. b)a) = (JT1. fcXg"1 . a) = h-1 . b,

and certainly n"1. bb = h~l. b, so with a' = gh"1 . b and b' = b we have g"1 . a'a =
h~l. b'b, so that (a, g) SB (b, h).

(iii) By parts (i) and (ii) we have

(a, g) W (b, h) if and only if aSftb and g"1. a <£ h~l . b in E

if and only if a 2ft b and b X hg~l. a in E

if and only if hg~1.a3ia and b = a(hg~x. a),
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COROLLARY. Let (a, 1) be an idempotent in T. Then (b, h) Vt (a, 1) if and only if
b = a(h. a) for h. a e Da.

The egg-box picture in E when (a, g) $? (b, h) in T is as follows.

1 . b

kg"1•a

LEMMA 2.4. Let D be a 3)-class of E, let aeD, and let heG. Then

h.aeD if and only if h.D = D.

Proof. Suppose h . a3> a and let b 2) a. Then since D is a rectangular band, b = bob
and a = aba. Applying h to these equations yields h.bSdh. a3)a; that is, h. D e D.

Also, a3)h. a implies that for some c in D we have a^kciEh .a, so
h~l .a0th~x .c£a\ that is, h~x .a2)a. By the first part of the proof, h~x .D-^D and
therefore D = 1. D £ h. D. Combining these inclusions yields the result.

DEFINITION 2.5. For a 2)-class D of E define

S D = { g e G | g . D = D}.

Clearly S is a subgroup of G, and by Lemma 2.4,

g e S D if and only if D D g . D ^ 0 .

For each element D of the semilattice of 3>-classes of E we now have a subgroup of
G which stabilizes D. These stabilizers are in fact intimately connected with the $f-classes,
in particular with the maximal subgroups, of T.

LEMMA 2.6. Let (a, g) be an element of T and let D be the 3)-class of a in E. Then the
dIC-class of (a, g) in T is {{a(k. a), kg) \ k e SD}.

Proof. By Lemma 2.3 we have

(a,g)%(b,h) if and only if a&b and g"1. a-Sffr1. fc

if and only if hg~x .a<£b§La and hg~1 = keSD

if and only if b = a(k . a) and k e SD.

Therefore {b, h) is in the $?-class of (a, g) precisely when (b, h) = (a{k. a), kg) for some fc
in SD.

LEMMA 2.7. Let (a, 1) be an idempotent in T. Then the maximal subgroup of T
containing (a, 1) is isomorphic to SD where D is the 3)-class of a in E.
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Proof. Let H denote the 3i?-class of (a, 1). Define the mapping 6 : H - > S by (b, k)6 =
k, for (b,k)eH. Clearly 0 is injective; it is also surjective, because if keS then
(a(fc . a), k) E H by Lemma 2.6. If (b, k), (c, h)eH then b = a(k. a), c = a(h. a), again by
Lemma 2.6, and so

(b, k)(c, h) = (a(k. a), k)(a(h. a), h) = (a(k. a)k. (a(h. a)), kh)

= (a(fc. a)(fc. a)(kh. a), kh) = (a(kh. a), kh),

the last equality following from the fact that D is a rectangular band of which a, k. a and
kh. a are each elements. Therefore 6 is a homomorphism, and the proof is complete.

3. Idempotent-separating congruences on E\x\G. Consider an arbitrary orthodox
semigroup S, and let p be an idempotent-separating congruence on S. If a and b are
elements of S for which apb then for any inverse a' of a there is an inverse b' of b for
which a' pb'. For certainly aa' &lb££a'a, so there exists an inverse b' of b in the $6 -class
of a' and since apb then aa' = bb' pab', whence a' pa'ab' = b'bb' = b'. This is, of course,
almost exactly the treatment provided by Meakin in [7], the only difference being that the
choice of a' is at our disposal, a fact we shall use below to some advantage. Precisely as
Meakin shows, the fact that p is idempotent-separating implies that:

for each x in E, a'xa = b'xb and axa' = bxb'.

Let us apply this to the uniquely unit orthodox semigroup T = E\x\G defined as in
Section 1. First, it is easy to verify that (g"1. a, g"1) is an inverse of the element (a, g) of
T. Therefore if p is an idempotent-separating congruence on T and (a, g) p (b, h) then
there exists an inverse (b, h)' of (b, h) such that (b, h)' p (g"1. a, g"1). By Lemma 2.1 we
can take (b, h)' = (h~l. b', h"1) for some b' 3) b. In fact, using Lemma 2.3(iii) and p<^H
we have the 2> -class picture

b' hg'1. a

and so b' = (hg J . a)a.
Applying to T the property of p noted above, it follows that for each (x, 1) in E(T),

or equivalently, for each element x of E,

(g"1. a, g^Xx, l)(a, g) = (h"1. b', h~l)(x, \){b, h)

(a, g)(x, lXg"1. a, g-1) = (b, h)(x, l)(h~l. b', h~l).

Evaluating these products and equating their first components yields:

If (a, g) p (b, h) then for each x in E, axa = gfT1. (b'xb) and a(g. x)a = b{h. x)b'
for some inverse b' of b.
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There is a dual condition based on the fact that (h~l. b, h~l) is an inverse of (b, h); it
is that:

If (a, g) p (b, h) then for each x in E, bxb = hg"1. (a'xa) and b(h. x)b = a(g. x)a'
for some inverse a' of a.

Any congruence relation p on T, when restricted to a group dK-class of T, determines
a normal subgroup of that maximal subgroup. Let (a, l )eE(T) and denote by D the
3)-class of E containing a. By Lemma 2.7 the ffl-class of (a, 1) is isomorphic to the
subgroup SD of G which stabilizes D, and when p is restricted to this maximal subgroup
of T it determines, by the second projection mapping, a normal subgroup Na of SD,
namely

Na={keSD|(a(k.a) ,k)p(a , l )} .

Given any two idempotents (a, 1) and (b, 1) of T, then since p is a congruence and
(a, l)(b, 1) = (ab, 1), it follows that

Since each Nx is a subgroup of G it is then the case that:

for each a, x in E, Na £ A/^ and Na £ JV
xa.

In particular, when a 3> b in E, so that a = aba and b = bab, we can conclude that
Na £ Nab £ Nbab = Nb, and similarly that Nb £ Na. Therefore a 3) b implies that Na = Nb =
ND, say, where D is the S-class of a and b. We have therefore:

(1) for any two elements D, D' of the semilattice % of ^-classes of E,

ND^NDD. (=ND,D).

Further, if D is any 3) -class of E, if aeD, if k is an arbitrary element of G, and
n e No, then (n(n. a), n) p (a, 1) implies

(1, k)(n(n . a), n)(l, k~l) = ( . . . , knk'1) p (1, fc)(a, 1)(1, k"1) = (k . a, 1);

that is,
(2) for each fc in G and for each D in !3/,

kNok'1 £ ND. where D ' is the 3-class of k . a.

We are now in a position to state and prove the main result of the paper.

THEOREM 3.1. Let T be a uniquely unit orthodox semigroup, say T = E\ x \G as defined
in Section 1. Suppose that for each element D of the semilattice <& of 3) -classes of E we have
a normal subgroup ND of the stabilizer SD of D, and that the collection of these normal
subgroups satisfies (1) and (2) above. Define the relation a on T by:

(a, g)a(b, h) if and only if hg~l e ND,

where D is the 3)-class of a (and of b), and there exist a' e V(a), b'e V{b) such that for
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each x in E,
(3)

axa = gh"1. (b'xb), a(g. x)a = b(h. x)b',

bxb = hg'1. (a'xa), b(h. x)b = a(g. x)a'.

Then a is an idempotent-separating congruence on T.
Conversely, every idempotent-separating congruence on a uniquely unit orthodox

semigroup arises in this way.

Proof. We begin by showing that cr £ $?. Suppose that (a, g)cr(fc, h) and that a'e V(a)
and b'eV(b) satisfy (3). Setting x = l in a(g. x)a = b(h. x)b' yields a = bb'9lbeD;
setting x = l in bxb = hg"1 . (a'xa) yields b = hg~l. (a'a)&hg"1 . a, and so
h~\bS6g~[ .a. It follows from Lemma 2.3(iii) that CTSH.

It is obvious that cr is reflexive and symmetric. For transitivity, suppose that
(a, g)<r(6, h) and (b, h)<r(c, k). Then there exist a'eV(a), b', b"e V(b), c'<=V(c) such that
for each x in E we have (3) and

bxb = hk~l. (c'xc), b(h. x)b = c(fc. x)c',

cxc = kh~x. (b"xb), c(k. x)c = b{h. x)b".

First, fc~Jg = (k"1h)(h~1g) e NDND = ND. Next, we require the existence of a" in V(a), c"
in V(c) such that for each x in E,

axa = gfc"1. (c"xc), a(g. x)a = c(k. x)c",

cxc = kg"1. (a"xa), c(k. x)c = a(g. x)a".

The following configuration holds in D.

a

gfr"1-

b'

g/c"1.

c"

b

c

b

a'

hg'1.

c'

hk~l.

a

c

c

kh~\

b"

a"

kg"1.

b

a
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Defining a" and c" by this configuration, for each x in E,

c(k. x)c" = c(k. jc)(fcg-' .a)a

= c{k . (x(g~x . a)))ca since a$kc

= b(h . (x(g-] . a))b"a using (b, h)a(c, k)

= b(h. x)(Jig~' . a)a since hg"1 . a, b", a are all in D

= b(h. x)b'= a(g. x)a using (a, g)a(b, h).

Similarly, a(g. x)a" = c(k . x)c. Also,

c"xc = c"axac since c"$£a<3lc

= c"(a(g. (g"1 . x))a)c = c"(c(k. (g"1. x))c")c

= c-cCkg"1 . x)c"c = (kg"1. aXfcg-1 . x)(kg-' . a) = kg"1 . (axa),

so axa = gk"1 . (c"xc) and, similarly, cxc = kg"1 . (a"xa). Therefore cr is an equivalence.
To show that a is compatible we show first that if (a, g)cr(fc, h) and (c, k)eT then

(c(fc. a), kg) $f (c(fc. b), fch), and dually for products on the right. Since a^tb implies
k.a&k.b, and 0t is a left congruence, c(k. a) $%c(fc. fe); by Lemma 2.3(i)

(c(k.a),kg)»(c(fc.6),kh).

For ^-equivalence, note that for each x in E,

xa = xaxa = xgh~x . (b'xb) using (a, g)<x(b, h)

in Dbx, because 3) is a congruence and, using (1), gh~^ e ND c. ND> ̂  SD' where D' is the
S-class of xb. Therefore g"1 . (xa) !£h~l. (xb), and in particular, setting x = k"1 . c, we
have g"1 . ((fc~' . c)a) 5£h~x . ((k-1 . c)b). By Lemma 2.3(iii) again, we obtain

(c,k){a,g)W(c,k)(b,h).

For the products on the right by (c, k),

(a(g.c))(b(fi.c)) = (a(g.c)a)(b(h.c)) since a&b

= b(h. c)b'b(h. c) using (a, g)cr(b, h)

= (b(h.c))((h.c)b')(b(h.c))

= b(h.c),

and similarly b(h. c)a(g. c) = a(g. c), so (a, g)(c, k) £% (fe, h)(c, k). Finally,

and so (a, g)(c, k) and (b, h)(c, k) are i?-equivalent, therefore ^-equivalent.
To prove that a is compatible with multiplication in T, let us continue to suppose that
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(a, g)(r(b, h) and (c, k)e T. We have the following D-class configurations.

a

gfc"1

b'

.b

b

a'

a

a(g.c)

gh-'.^h.c))

(b(h • c))'

b(h.c)

(aig.c))'

hg-'.(a(g.c))

Define (a(g. c))' and (b(h. c))' by the configuration on the right. Then

(a(g.c))'= (gh-l.(.Hh.c)))b(h.c)

= (gh'\b)a(g.c)ab(h.c) since gh~l.b^a0tb

= (gh~l .b)b(h.c)b'b(h.c) using (a,g)a(b,h)

= (gh-\b)b(h.c)(h.c)b'b(h.c)
= (gh'1 .b)b(h.c) = a'{h.c)

using b(h. c)3) (h. c)b'. In the same way, (b(h. c))' = b'(g. c). Now for each x in E,

(hfcXgfc)-1. (a(g. c))'xa(g. c) = (hg-1. (a'((h. c)x)a))(h. c)

= b(h.c)xbb(h.c),

and similarly (gk)(/xk)"1. ((b(h . c))'xb(h . c)) = a(g. c)xa(g. c). Further,

a(g. c)(gfc. x)a(g. c) = a(g. (c(k. x)))a(g. c) = b(h. (c(fc. x)))ft'(g. c)

and b(h. c)(hfc. x)b(h. c) = a(g. c)(gfc. x)(a(g. c))'.
This completes the proof of compatibility on the right. For left compatibility, we note

first that because kNDk~l
 SND* where k. aeD', we can multiply on the left by the units

(1, k) or (1, fc"1) respectively and observe that it is enough to prove

((/r1. c)a, gVflt"1. c)b, h).

Write d = k~x.c and note that hg~xeNOda because NDc.NDda by (1). Consider the
configurations below.

1.b

da

x .(db)

db

(da)'

b' gh"1.a (db)' 1.(da)
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Using these,

(da)' = (gh-l.d)(gh-1 .b)(ada)b since db = dab, ada<£da£ (gh~\ d)(gh~\b)

= (gh"' .(dbb'ddb))b using (a, g)cr(b.h)

= (gh"1 . (db))b calculating in D and in Dda

= (gh-'.d)a'.

Similarly (db)' = (hg"' . d)b'. It follows that for each x in E,

hg-x . ((da)'xda) = hg~l . ((g/T1 . d)a'xda) = dbxdb,

and that fig"1 . ((db)'xdb) = daxda. The other two equations in (3) of Theorem 3.1 also
follow from (da)' = (gh"1 . d)a' and (db)' = (hg~l . d)b'. Therefore <x is compatible, so is an
idempotent-separating congruence on T.

Conversely, suppose that p is an idempotent-separating congruence on T. We saw
above that p determines a collection of normal subgroups ND, for D in ty, satisfying (1)
and (2); let <j denote the congruence determined by this collection as in the first part of
the proof. If (a, g)a(b, h) then hg~leND implies that (a{hg^ . a), hg~')p(a, 1), and
therefore (b, hg~')p(a, 1) or, equivalently, (b, h)p(a, g); that is o-cp. The reverse inclu-
sion is obvious, so a = p. This completes the proof of the theorem.

4. Examples. Theorem 1.3 enables us to construct all uniquely unit orthodox
semigroups, Theorem 1.4 shows that every unit-regular orthodox semigroup is an
idempotent-separating homomorphic image of one of the former, and Theorem 3.1
provides a description of the appropriate congruences. In practice, starting with a given
group G that acts automorphically on a band E = EX, one would construct as above a
unit-regular orthodox semigroup T whose band is necessarily isomorphic to E, and usually
one would like the group of units of T to be isomorphic to G. To ensure isomorphism
between the two groups one only has to take 2VG ={1} (denoting by G the ©-class of 1 in
E) in (1) and (2), and to notice for (1) that G is the identity element of <2/, for (2) that
k . 1 = 1 for each k in G.

A unit-regular orthodox semigroup S constructed as in Section 3 by factoring via an

idempotent-separating congruence on T = E(S)|x|G(S) will be an inverse semigroup
precisely when E = E(S) is a semilattice. In this case the inverse semigroup T is the
semi-direct product of a semilattice and a group. Every factorizable inverse semigroup [2]
is of this sort [6], and may therefore be obtained by factoring T by a congruence of the
type described in Theorem 3.1. And when E is a semilattice its 2J-classes are singletons
and the groups SD are the stabilizers of individual elements of E. The idempotent-
separating congruences p in this case may be defined much more simply than in Theorem
3.1; it is easy to see that:

(a, g)p(b, h) if and only if a = b and Jig"1 e Nb.

Chen and Hsieh [2] proved that each element of a factorizable inverse semigroup S
may be written in the form x = eg for a unique e in E(S) and g in G. This does not hold in
general for unit-regular orthodox semigroups, as the example below shows. So while it is
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still true that each element is under a unit in the natural ordering, the uniqueness of e in
x = eg has gone. Further, the natural ordering on a regular monoid S is compatible with
multiplication only if S is an inverse semigroup [8].

EXAMPLE. Let S be the semigroup of all 3x3 real matrices of the form

"1

0

0

p
1
0

q"
r

s_

Then S is a unit-regular orthodox semigroup with E = E(S) consisting of the identity
matrix and those matrices of S for which p = s = 0, and G = G(S) those for which s^ 0.
The band of S consists of two ^-classes, namely {1} and one 01 -class D, say, consisting of
all the non-identity idempotents of S. By straightforward calculation, for each e in D the
subgroup N of units g satisfying ege = e [1] consists of those units whose (1, 2)-entry is
zero, and N is a normal subgroup of G. Each eSe except S itself is isomorphic to the
additive group of real numbers, and S is the union of its group of units and its kernel, a
single 9?-class consisting of the eSe, eeE-{l}. There is no uniqueness of e in x = eg
because ( £ - { l } ) N c £ - { l } .

By Theorem 1.4 the semigroup S is the idempotent-separating homomorphic image
of T = E|x |G under the mapping (e, g)»-»eg. Since the 3)-class D is a rectangular band
eTe = {(a(g. a), g) | ge G} = G for each idempotent e = (a, 1) with aeD. An element
(a(g.a), g) maps to

a(g. a)g = a(gag~1)g = aga.

Therefore (a(g. a), g) is congruent to e if and only if the (1, 2)-entry of g is zero; that is,
ND = N. Therefore the congruence <r defined in Theorem 3.1 is determined by just two
normal subgroups of G, namely Nc = {1} and ND = N.
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