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Introduction. Unit-regular rings were introduced by Ehrlich [4]. They arose in the
search for conditions on a regular ring that are weaker than the ACC, DCC, or finite
Goldie dimension, which with von Neumann regularity imply semisimplicity. An account
of unit-regular rings, together with a good bibliography, is given by Goodearl [5].

The basic definition of unit-regularity is purely multiplicative; it is simply that for
each element x of a monoid S (initially a ring R with identity) there is a unit u of S for
which x = xux. The concept of a unit-regular semigroup is a natural one; for example, the
full transformation semigroup on a finite set, and the semigroup of endomorphisms of a
finite-dimensional vector space, are unit-regular semigroups [1]. Unit-regularity has been
studied by Chen and Hsieh [2], by Tirasupa [9], and by McAlister [6]. The connection
between unit-regularity and finiteness conditions has been considered by D’Alarcao [3].

The problem of describing the structure of an arbitrary unit-regular semigroup $ is
difficult. It appears reasonable to attempt to provide such a description in terms of the
group of units of S and the set of idempotents of S, and in this direction Blyth and
McFadden did determine the structure of a narrow class of unit-regular semigroups.
Calling a semigroup S uniquely unit orthodox if it is orthodox and, for each x in S, there
exists a unique unit u of S for which x = xux, they proved that every such semigroup is a
semidirect product of a group (the group of units of S) and a band (the band of
idempotents of S).

In the present paper we shall show first that every unit-regular orthodox semigroup S
is an idempotent-separating homomorphic image of a uniquely unit orthodox semigroup
(determined by the idempotents of S and the units of S). The main result here is then the
determination of all idempotent-separating congruences on uniquely unit orthodox semi-
groups.

1. Unit-regular semigroups. Much of what follows depends on the following
elementary fact. If S is a monoid and g is a unit in S, then for each idempotent e of S,

geg™' is an idempotent, and if f in S is also an idempotent then

glef)g™" =(geg™)(gfe™).
DEerIniTION 1.1. A monoid S is said to be unit-regular if for each x in S there exists a

unit u of S for which x = xux.

For the rest of this paper we shall deal with unit-regular semigroups; each such is, of
course, regular, though it is certainly not the case that x = xux implies that uxu = u. We
shall denote by E(=E(S)) the set of idempotents of S and by G(=G(S)) the group of
units of S.

Clearly x = xux implies that xu and ux are idempotent, and each element of S may
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be written in the form eg for e in E and g in G. This factorization is not unique, though e
is unique for unit-regular inverse semigroups [2].
If eg and fh, for ¢,f in E and g, h in G, are elements of S then

egfh = e(gfg™")gh = jkgh
where e, gfg™', j are idempotent and k, g, h are units. Here
i=jle,gfgeHeE and k=k(e gfg ") eG.

Any useful description of the structure of S in terms of E and G would need to provide
more information about j and k than just the fact of their existence.

But there is one case in which j and k are obvious; if S is orthodox (E is a
subsemigroup of S) we can take j=e(gfg™!) and k =1, so that

egfh = e(gfg™")gh
with e(gfg™") in E and gh in G.

DEerFINITION 1.2, A monoid S is said to be unit orthodox if S is unit-regular and
orthodox [1].

When S is unit orthodox it is clear that G acts automorphically (in the sense that
there is a homomorphism from G into the group of automorphisms of E) on the band E
of idempotents of S under the action

g.e=geg”' forginGandeinE.

As yet there is no method for describing the structure of a unit orthodox semigroup S
directly in terms of E(S) and G(S), but a method does exist for a sub-class of unit
orthodox semigroups. Calling a monoid S uniquely unit orthodox if for each x in S there is
a unique unit u in S for which x =xux, Blyth and McFadden proved the following
theorem [1].

THEOREM 1.3. Let E be a band with identity 1 and let G be a group which acts
automorphically on E. Denoting by g. e the action of g€ G on ec E, define a product on
T=EXG as follows:

(a, g)(b, h)=(a(g.b), gh).

Then T is a uniquely unit orthodox semigroup, which we shall denote by E|x|G. Denoting
also by 1 the identity of G,

E(T)={(e,1)| ecE}~E,
G(T)={(1,8)| g G}~G.

If x = (e, g) is an element of T then the unique unit u of T for which x = xux isu=(1, g™ ").
Conversely, every uniquely unit orthodox semigroup arises in this way.

It is worth noting, as pointed out in the proof of Theorem 1.3, that 1. e =e¢ for each e
in E, and g.1=1 for each g in G.
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While the class of uniquely unit orthodox semigroups is not a large one, it plays a
decisive role in determining the structure of unit orthodox semigroups in general, as the
following theorem shows.

THEOREM 1.4. Let S be a unit orthodox semigroup with group of units G. For e in
E=E(S) and g in G =G(S) define g. e =geg™"'. This action defines an automorphism of
E, and the map which assigns this automorphism to g is a homomorphism from G into the
group of automorphisms of E. If the uniquely unit orthodox semigroup T = E|X|G is defined
as in Theorem 1.3, then the map 6:T— S defined by (e, g)0 =eg is an idempotent-
separating epimorphism.

Proof. As noted above, it is obvious that G acts automorphically on E under
g.e=geg™"'. For a in S choose a unit g in G such that a=ag™'a, so that e=ag 'eE;
then

(e,8)0=eg=agg™ =aq,

so 0 maps T onto S.
If (e, g) and (f, h) are elements of T then

(e, 8)0(f, h)6 = egfh = e(gfg™")gh = e(g . f)gh = (e, g)(f, h))6,

s0 6 is a homomorphism.

Finally, each idempotent of T is of the form (e, 1) for some e in E, so if (e, 1) and
(f, 1) are idempotents of T satisfying (e, 1)8 = (f, 1)0 then e =el =f1=f; therefore 0 is
idempotent-separating, and the proof is complete.

Now that we know that every unit orthodox semigroup is an idempotent-separating
homomorphic image of a uniquely unit orthodox semigroup, the question arises: What are
the congruence relations on a uniquely unit orthodox semigroup which are contained in
#? We shall answer this question in Section 2.

2. The P-class structure of E|x|G. For any orthodox semigroup S the finest
inverse semigroup congruence % on S is given by x % w if and only if V(x)= V(w) where
V(x) denotes the set of inverses of x. Further, on any band E the %-classes coincide with
the %P-classes, and E is a semilattice Y of rectangular bands; in particular, if x, y, and z
are 9-equivalent elements of E then xyz = xz. We shall write D, for the & = ¥-class of x
in E, and similarly for ® and &£.

Now let T be a uniquely unit orthodox semigroup. Since we need to know about
congruence relations on T contained in #, we proceed to determine Green’s relations on
T. But while % determines the “local” properties it is @ which determines the *“‘global”
properties of the congruences we are seeking.

By Theorem 1.3 we may assume that T = E|x|G under the operation

(e, &)(f, h)=(e(g. f), gh),

where E=E"' is a band with identity and G is a group which acts automorphically on E.
Recall that 1.e=e¢ and g.1=1 for each e in E and each g in G.
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Lemma 2.1. Let (a, g) be an element of T. Then (x, u) is an inverse of (a, g) in T if
and only if u=g~ " and g. xe D where D is the @-class of a in E.

Proof. First,
(a, g)(x, u)(a, g)=(a(g. (x(u.a))), gug) =(a, g)

! and a(g. x)a = a, while

if and only if u=g~
(x, 87 Na, g)(x, g7 =(x(g7" . (a(g. x)), g™ =(x,87")

if and only if x(g™' . a)x = x. Therefore (x, g~') and (a, g) are mutually inverse if and only
if a(g.x)a=a and x(g™'.a)x =x. Since g acts as an automorphism, this is true if and
only if g.x is in D.

Lemma 2.2. For each e in E and each g in G,
g. Le = Lg.e) g. Re = Rg,e, g. De = Dg.e-

Proof. This follows directly from the definition of Green’s relations and the fact that
G acts automorphically.

Lemma 2.3, Let (a, g), (b, h) be elements of T. Then
(i) (a,g) R (b, h) if and only if aR b in E.
(i) (a,g) L(b,h)ifand only if g™ .a¥Lh™'.bin E.
(iii) (a, g) # (b, h) if and only if hg™' .aDa and b=a(hg™" . a).

Proof. (i) (a, g) R (b, h) if and only if there exist inverses (a, g)’ of (a, g) and (b, h)’ of
(b, h) respectively for which (a, g)(a, g)'=(b, h)(b, h)'. By Lemma 2.1 this is true if and
only if there exist a’ in V(a) and b" in V(b) for which

(a,g)(g™".a', g )=(aa’,1)=(b,h)(h™ .b'", h™})=(bb", 1);
in other words, if and only if a® b in E.
(i) Asin (i), (a,g) £ (b,h)ifandonlyif g~'.a’'a=h"".b’b for some a’ in V(a) and

some b’ in V(b). But a'afa and b'b.¥b, while g7! and h™' preserve £-classes by
Lemma 2.2, and therefore (a, g) £ (b, h) implies

g t.a¥g '.ala=h"'.b'bLh . b.
Conversely, g~'.aZh™'. b implies
g . ((gh . b)a)y=(h'.b)g ' .a)=h"".b,

and certainly h™'.bb=h"".b, so with a’=gh™ .b and b'=b we have g™'.a'a=
h™'.b'b, so that (a, g) £ (b, h).
(iii) By parts (i) and (ii) we have
(a,g) ¥ (b,h) ifandonlyif aRb and g'.a¥lh™'.binE
if andonlyif a®b and b&Phg™'.ain E

ifandonlyif hg™'.a%a and b=a(hg™'.a),
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CoRroOLLARY. Let (a,1) be an idempotent in T. Then (b, h) ¥ (a,1) if and only if
b=a(h.a) for h.aeD,.

The egg-box picture in E when (a, g) # (b, h) in T is as follows.

gh™'.b

hg™'.a

LeMMA 2.4. Let D be a @-class of E, let ae D, and let he G. Then
h.aeD ifandonlyif h.D=D.

Proof. Suppose h.a% a and let b a. Then since D is a rectangular band, b = bab
and a = aba. Applying h to these equations yields h.b@ h.aDa; that is, h. D= D.

Also, a@h.a implies that for some ¢ in D we have aRcZfh.a, so
h™'.aRh™'.cLa; that is, h™'. aD a. By the first part of the proof, h™'. D< D and
therefore D=1. D < h.D. Combining these inclusions yields the result.

DEeFrINITION 2.5. For a @-class D of E define
Spo={geGlg.D=D}.
Clearly S is a subgroup of G, and by Lemma 2.4,
geSp ifandonlyif DNg.D#J.

For each element D of the semilattice of &-classes of E we now have a subgroup of

G which stabilizes D. These stabilizers are in fact intimately connected with the #-classes,
in particular with the maximal subgroups, of T.

LemMma 2.6. Let (a, g) be an element of T and let D be the D-class of a in E. Then the
¥ -class of (a, g) in T is {(a(k.a), kg)| ke Sp}.

Proof. By Lemma 2.3 we have
(a,g) # (b,h) ifandonlyif a®Rb and g '.afh™'.b
if andonlyif hg™' .a¥bRa and hg'=keSp
ifandonlyif b=a(k.a) and keSp.

Therefore (b, h) is in the #-class of (a, g) precisely when (b, h) =(a(k . a), kg) for some k
in Sp.

Lemma 2.7. Let (a,1) be an idempotent in T. Then the maximal subgroup of T
containing (a, 1) is isomorphic to S, where D is the @-class of a in E.
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Proof. Let H denote the #-class of (a, 1). Define the mapping 8 : H— S by (b, k)8 =
k, for (b,k)e H. Clearly 6 is injective; it is also surjective, because if ke S then
(a(k.a), k)e H by Lemma 2.6. If (b, k), (c, h)e H then b=a(k. a), c=a(h. a), again by
Lemma 2.6, and so

(b, k)(c, h)=(a(k. a), k)(a(h.a), h)=(alk.a)k.(a(h.a)), kh)
=(alk.a)(k.a)kh.a), kh)=(a(kh.a), kh),

the last equality following from the fact that D is a rectangular band of which q, k. a and
kh.a are each elements. Therefore 6 is a homomorphism, and the proof is complete.

3. Idempotent-separating congruences on E|x|G. Consider an arbitrary orthodox
semigroup S, and let p be an idempotent-separating congruence on S. If a and b are
elements of S for which a p b then for any inverse a’ of a there is an inverse b’ of b for
which a’ pb’. For certainly aa’ R b £ a’a, so there exists an inverse b’ of b in the #-class
of a’ and since a p b then aa’=bb’ p ab’, whence a’ pa'ab’ =b'bb’' = b’. This is, of course,
almost exactly the treatment provided by Meakin in [7], the only difference being that the
choice of a’ is at our disposal, a fact we shall use below to some advantage. Precisely as
Meakin shows, the fact that p is idempotent-separating implies that:

foreach x in E, a'xa=b'xb and axa’ =bxb'.

Let us apply this to the uniquely unit orthodox semigroup T = E|X |G defined as in
Section 1. First, it is easy to verify that (g~'. a, g™") is an inverse of the element (a, g) of
T. Therefore if p is an idempotent-separating congruence on T and (a, g) p (b, h) then
there exists an inverse (b, h)’ of (b, h) such that (b, h)' p (g™'.a, g”"). By Lemma 2.1 we
can take (b, h) =(h~1.b', k™) for some b’ D b. In fact, using Lemma 2.3(iii) and pc H
we have the @-class picture

a b

b’ hg™.a

and so b'=(hg™".a)a.
Applying to T the property of p noted above, it follows that for each (x, 1) in E(T),
or equivalently, for each element x of E,

(g a,g ) Da, g)=(h".b, h )(x, 1)(b, h)
(a, )(x, D™ . a,g7)=(b, h)(x, )(h™" . b", 7).
Evaluating these products and equating their first components yields:

If (a, g) p (b, h) then for each x in E, axa=gh™" . (b'xb) and a(g. x)a = b(h. x)b’'
for some inverse b’ of b.
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There is a dual condition based on the fact that (h~!. b, h™!) is an inverse of (b, h); it
is that:

If (a, g) p (b, h) then for each x in E, bxb = hg™' . (a'xa) and b(h. x)b=a(g. x)a’
for some inverse a' of a.

Any congruence relation p on T, when restricted to a group #-class of T, determines
a normal subgroup of that maximal subgroup. Let (a, 1)€ E(T) and denote by D the
9D-class of E containing a. By Lemma 2.7 the #-class of (a, 1) is isomorphic to the
subgroup S, of G which stabilizes D, and when p is restricted to this maximal subgroup
of T it determines, by the second projection mapping, a normal subgroup N, of Sp,
namely

N, ={keSp |(a(k.a), k)p(a, 1)}.

Given any two idempotents (a, 1) and (b, 1) of T, then since p is a congruence and
(a, 1)(b, 1) = (ab, 1), it follows that

NaNb < Nab‘
Since each N, is a subgroup of G it is then the case that:
foreacha, xin E, N,cN,, and N,cSN,,.

In particulaf, when a@ b in E, so that a =aba and b = bab, we can conclude that
N, € N,, € Nyo» = N,, and similarly that N, € N,. Therefore a @ b implies that N, =N, =
Np, say, where D is the @-class of a and b. We have therefore:

(1) for any two elements D, D' of the semilattice ¥ of @-classes of E,

Np € Npp: (=Npp).

Further, if D is any @-class of E, if ae D, if k is an arbitrary element of G, and
n € Np, then (n(n. a), n) p (a, 1) implies

(L, k) (n(n.a),n)(1, kY =(...,knk™) p (1, k)a, 1)1, k™) = (k. a, 1);

that is,
(2) for each k in G and for each D in %,

kNpk™' < Np. where D' is the @-class of k. a.

We are now in a position to state and prove the main result of the paper.

TueoReM 3.1. Let T be a uniquely unit orthodox semigroup, say T = E|x|G as defined
in Section 1. Suppose that for each element D of the semilattice ¥ of D-classes of E we have
a normal subgroup Np, of the stabilizer Sy, of D, and that the collection of these normal
subgroups satisfies (1) and (2) above. Define the relation o on T by:

(a, g)o(b, h) ifand only if hg™'eNp,
where D is the 9-class of a (and of b), and there exist a'€ V(a), b’ € V(b) such that for
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each x in E,
(3
axa =gh™'.(b'xb), a(g.x)a=b(h.x)b',
bxb=hg™' . (a'xa), bh.x)b=a(g.x)a'.
Then o is an idempotent-separating congruence on T.

Conversely, every idempotent-separating congruence on a uniquely unit orthodox
semigroup arises in this way.

Proof. We begin by showing that o = #. Suppose that (a, g)o(b, h) and that a'€ V(a)
and b'e V(b) satisfy (3). Setting x=1 in a(g.x)a=b(h.x)b’ yields a=bb'Rbe D,
setting =1 in bxb=hg™'.(a'xa) vyields b=hg™'.(a’a)¥hg”'.a, and so
h™' . b&¥g™"'.a. It follows from Lemma 2.3(iii) that o < H.
It is obvious that o is reflexive and symmetric. For transitivity, suppose that
(a, g)a(b, h) and (b, h)o(c, k). Then there exist a’e V(a), b, b" € V(b), ¢ € V(c) such that
for each x in E we have (3) and
bxb=hk™'.(c'xc), b(h.x)b=c(k. x)c,
cxc=kh™'.(b"xb), clk.x)c=b(h.x)b".
First, k'g =(k 'h)(h~'g) e NpNj = Np. Next, we require the existence of a” in V(a), ¢”
in V(c) such that for each x in E,

axa=gk™".(c"xc), a(g.x)a=c(k.x)c",

cxc=kg™' . (a"xa), clk.x)c=alg.x)a".

The following configuration holds in D.

a b c
gh™.b a'
b’ hg™ . a
c' kh™'.b
hk™'.c b"
gk™'.c a”
c" kg™ .a
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Defining a” and ¢” by this configuration, for each x in E,
clk.x)c"=clk.x)kg™" .a)a
=c(k.(x(g”".a)))ca since aRc
=b(h.(x(g7".a))b"a using (b, h)ol(c, k)
=b(h.x)hg™'.a)a since hg™'.a, b", a areallin D
=b(h.x)b'=a(g.x)a using (a, g)a(b, h).
Similarly, a(g. x)a"=c(k. x)c. Also,
c"xc=c"axac since ¢"LaRc
=c"(a(g. (g7 . x))a)c=c"(c(k.(g™". x))c")c
=c"c(kg™ . x)c"c=(kg™' . a)kg™'.x)(kg™'.a)=kg . (axa),

so axa =gk™".(c"xc) and, similarly, cxc =kg™"'.(a"xa). Therefore o is an equivalence.
To show that o is compatible we show first that if (a, g)o(b, h) and (¢, k)e T then

(c(k. a), kg) % (c(k. b), kh), and dually for products on the right. Since a R b implies

k.aRk.b, and R is a left congruence, c(k.a) R c(k.b); by Lemma 2.3(i)

(c(k.a), kg) R (c(k.Db), kh).
For £-equivalence, note that for each x in E,
xa = xaxa = xgh™' . (b'xb) using (a, g)o(b, h)
=(x(gh™ . b))(gh™".xb) Lgh™'.xb

in D,,, because 9 is a congruence and, using (1), gh™' € Np € Np € Sp- where D' is the
D-class of xb. Therefore g~'.(xa) £h™".(xb), and in particular, setting x=k™'.c, we
have g7' . ((k™"'.c)a) Lh™'.((k™'.c)b). By Lemma 2.3(iii) again, we obtain

(c, k)(a, g) ¥ (c, k)(b, h).
For the products on the right by (c, k),
(a(g.))(b(h.c))=(alg.c)a)b(h.c)) since aRb
=b(h.c)b’b(h.c) using (a, g)o(b, h)
=(b(h.c))((h.c)b)b(h.c))
=b(h.c),
and similarly b(h. ¢)a(g. c)=al(g. c), so (a, g)(c, k) R (b, h)(c, k). Finally,
g h.a®h™ . b>alg.c)L(gh™.b)g.c)=gh™'.(b(h.c))
> (gk)™' . (a(g.c)) L (hk)™' . (b(h.c)),

and so (a, g)(c, k) and (b, h)(c, k) are £L-equivalent, therefore ¥ -equivalent,
To prove that o is compatible with multiplication in T, let us continue to suppose that

https://doi.org/10.1017/50017089500005656 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500005656

238 R. B. McFADDEN

(a, g)o(b, h) and {(c, k) e T. We have the following D-class configurations.

a b a(g.c) b(h.c)
gh™'.b a’ gh™' . (b(h.c) (a(g.c))
b hg™'.a (b(h.c) hg™ . (a(g.c))

Define (a(g.c)) and (b(h.c)) by the configuration on the right. Then

(a(g.c))=(gh™" . (b(h.c))b(h.c)
=(gh™'.b)a(g.c)ab(h.c) since gh™*.bFfaRb
=(gh™'.b)b(h.c)b’'b(h.c) using (a, g)a(b, h)
=(gh™'.b)b(h.c)h.c)b'bh.c)
=(gh™'.b)b(h.c)=a’'th.c)
using b(h.c) D (h.c)b’. In the same way, (b(h.c)) =b'(g. c). Now for each x in E,

(hk)(gk)™" . (a(g.c)Yxa(g.c)=(hg™" . (a'((h.c)x)a))(h.c)
=b(h.c)xbb(h.c),

and similarly (gk)(hk)™ . (b(h.c))'xb(h.c))=a(g. c)xa(g. c). Further,

a(g.c)gk.x)a(g.c)=alg.(clk.x))al(g.c)=blh.(clk.x))b'(g.c)
=b(h.c)(hk.x)b(h.c))
and bth. c)(hk. x)b(h.c)=a(g.c)(gk. x)a(g. c)).

This completes the proof of compatibility on the right. For left compatibility, we note
first that because kNpk ™' < N where k. a e D', we can multiply on the left by the units
(1, k) or (1, k") respectively and observe that it is enough to prove

(k7'.¢)a, g)a(k™ . c)b, h).

Write d=k™'.c and note that hg™'€ Np, because Np<Np, by (1). Consider the
configurations below.

a b da db
gh™'.b a' gh™! . (db) (da)'
b’ gh™'.a (db) hg™'.(da)
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Using these, _
(da) =(gh™'.d)(gh™'.b)(ada)b since db=dab, ada¥da ¥ (gh™' .d)(gh™'.b)
=(gh™'.(dbb'ddb))b using (a, g)o(b.h)
=(gh™'.(db))b calculating in D and in D,
={(gh ' .d)a'.
Similarly (db) = (hg™'.d)b’. It follows that for each x in E,
hg™'.((da)xda)=hg™".((gh™".d)a’'xda) = dbxdb,

and that hg™'. ((db)' xdb) = daxda. The other two equations in (3) of Theorem 3.1 also
follow from (da)’ = (gh™' . d)a’' and (db)' =(hg™" . d)b'. Therefore o is compatible, so is an
idempotent-separating congruence on T.

Conversely, suppose that p is an idempotent-separating congruence on T. We saw
above that p determines a collection of normal subgroups Np, for D in @, satisfying (1)
and (2); let o denote the congruence determined by this collection as in the first part of
the proof. If (a, g)o(b, h) then hg™'e N, implies that (a(hg™ .a), hg ")p(a, 1), and
therefore (b, hg™")p(a, 1) or, equivalently, (b, h)p(a, g); that is o = p. The reverse inclu-
sion is obvious, so o = p. This completes the proof of the theorem.

4. Examples. Theorem 1.3 enables us to construct all uniquely unit orthodox
semigroups, Theorem 1.4 shows that every unit-regular orthodox semigroup is an
idempotent-separating homomorphic image of one of the former, and Theorem 3.1
provides a description of the appropriate congruences. In practice, starting with a given
group G that acts automorphically on a band E=E", one would construct as above a
unit-regular orthodox semigroup T whose band is necessarily isomorphic to E, and usually
one would like the group of units of T to be isomorphic to G. To ensure isomorphism
between the two groups one only has to take Ng ={1} (denoting by G the @-class of 1 in
E) in (1) and (2), and to notice for (1) that G is the identity element of ¥, for (2) that
k.1=1 for each k in G.

A unit-regular orthodox semigroup S constructed as in Section 3 by factoring via an
idempotent-separating congruence on T =E(S)|x|G(S) will be an inverse semigroup
precisely when E = E(S) is a semilattice. In this case the inverse semigroup T is the
semi-direct product of a semilattice and a group. Every factorizable inverse semigroup [2]
is of this sort [6], and may therefore be obtained by factoring T by a congruence of the
type described in Theorem 3.1. And when E is a semilattice its 9-classes are singletons
and the groups S, are the stabilizers of individual elements of E. The idempotent-
separating congruences p in this case may be defined much more simply than in Theorem
3.1; it is easy to see that:

(a, g)p(b,h) ifandonlyif a=b and hg 'eN,.

Chen and Hsieh [2] proved that each element of a factorizable inverse semigroup S
may be written in the form x = eg for a unique e in E(S) and g in G. This does not hold in
general for unit-regular orthodox semigroups, as the example below shows. So while it is
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still true that each element is under a unit in the natural ordering, the uniqueness of e in
x = eg has gone. Further, the natural ordering on a regular monoid S is compatible with
multiplication only if S is an inverse semigroup [8].

ExampLE. Let S be the semigroup of all 3x 3 real matrices of the form

1 p gq
01 r
0 0 s

Then S is a unit-regular orthodox semigroup with E = E(S) consisting of the identity
matrix and those matrices of S for which p=s=0, and G = G(S) those for which s#0.
The band of S consists of two @-classes, namely {1} and one R-class D, say, consisting of
all the non-identity idempotents of S. By straightforward calculation, for each e in D the
subgroup N of units g satisfying ege = e [1] consists of those units whose (1, 2)-entry is
zero, and N is a normal subgroup of G. Each eSe except S itself is isomorphic to the
additive group of real numbers, and S is the union of its group of units and its kernel, a
single #&-class consisting of the eSe, e E—~{1}. There is no uniqueness of e in x =eg
because (E-{1})N<c E—-{1}.

By Theorem 1.4 the semigroup S is the idempotent-separating homomorphic image
of T=E|X|G under the mapping (e, g) — eg. Since the P-class D is a rectangular band
eTe={(a(g.a),g)| g€ G}=G for each idempotent e =(a,1) with ae D. An element
(a(g. a), g) maps to

a(g. a)g=a(gag™')g = aga.

Therefore (a(g. a), g) is congruent to e if and only if the (1, 2)-entry of g is zero; that is,
Np = N. Therefore the congruence o defined in Theorem 3.1 is determined by just two
normal subgroups of G, namely Ng ={1} and Np, = N.
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