P 85. Denote by fi(n) the number of Abelian groups of

order n and by f_(n) the number of semi-simple rings of

2
order n (see I.G. Connell, this Bulletin 7(1964), 23-34.
Prove that

Lim log f (n)/(log n/log log n) = ki , i=1, 2,
i
and determine the constants k, .
i

P. Erdds

SOLUTIONS

P 6. (Conjecture). If a1 < a, < ... is a sequence of
positive integers with a /a 1 ~1, and if for every d,
n' n
every residue class (mod d) is representable as the sum of
distinct a's, then at most a finite number of positive integers
are not representable as the sum of distinct a's.

P. Erdds

In its present generality the conjecture is false; this is
shown by an example due to J. W.S. Cassels, On the repre-
sentation of integers as the sums of distinct summands taken
from a fixed set, Acta Sci. Math. Szeged 21(1960), 111-124
{Math. Rev. 24(1962), A103). See also P. Erdds, On the
representation of large integers as sums of distinct summands
taken from a fixed set, Acta Arith. 7(1961/62), 345-354
(Math. Rev. 26(1963), no. 2387).

P 27. Prove that

0 n
= = d'1/2<oo,F =22+1.
n=1 d,F n
n
d>1
P. Erdds
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Partial solution by the proposer.

We outline the proof of

(1) S= = a1/

d|F
n

<c/n ;

d>1

this is not strong enough to solve the original problem.

(I probably made a mistake in estimating (1) when I posed

the problem.) If F =0 (mod p) then the exponent of 2 mod p
n

fodd +1
is 2" , and therefore p=1(mod 2" ). If the prime factors

of F are q1 < q2 < ..., then a straightforward application
n

of Brun's method gives

+1
(2) qi>C12n ilogi ,

whence S < II (1+p._1/2)
n
if_Z /n
- 2 -
<exp( Z pi1/)<22 p,1/2
1
i<2"/n i<2"/n
-(n+1)/2 -1/2
<2.2-@h/2 o (C,i log i) 2 e/n
i<2n/n

which is (1). It is easy to see that (1) implies

o0
-1/2 -
= = a Y% (loglog )¢ < »
n=1 d]F
n

d>1

for all € >0 .
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P 46. Given infinitely many points in the plane such that

(a) the distance between any two of them is greater than 1,

(b) for infinitely many n, there are more than cn
points in the circle Iz[ T'n .

Show that for any € > 0 there is a line through the origin
which comes closer than € to infinitely many of the points.

P. Erdds

Solution by the proposer.

A simple argument shows that our second condition
implies the existence of a sequence n1 < n2 < vevy nk - 0,
so that the number of our points z, satisfying n, < |z, | <n +5
i i

is greater than c1nk (c1 is an absolute constant which depends

only on c).

Project the points -z, onto the circle lzl =nk. Thus

(k)

we obtain the points w, °, 1 <i< g , £ >c n - Clearly,
i >+=

kK Tk—= 1

the distance between any two W, is at least %— Denote now
by Sk(e) the set of those points on the circle fz[ =n. whose
Sk) is less than —.
i 2
Clearly for € small enough Sk(e) consists of lk disjoint

distance from at least one of the points w

arcs of length >¢ . Thus the measure of Sk(e ) is greater

than <y € . Project finally Sk(é ) onto the unit circle.

This gives a set E (¢ ) on the unit circle of measure > c1 €.

k
Therefore by a well known theorem in measure theory there is
a point z, [zl =1 which is contained in infinitely many Ek(e ).

By our construction it is evident that the line connecting
z with the origin comes closer than € to infinitely many of
our points z,.
i
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I would like to make three remarks.

1. Since I can not give a reference to 'the well known
theorem!' I give the proof. Put

F)= (U E ().
k £>kk

Clearly‘ Fk+1(€ ) C Fk(€ ) and each Fk(e ) has measure
>cc. Since by a well known theorem of Lebesgue a descend-

ing sequence of bounded sets of measure > o have a non-empty
intersection, our theorem is proved.

2. The theorem is best possible in the following sense:
Let f(n) - © as slowly as we wish. Then there is a set of
points z, any two of which have distance > 1, the number of
2
|z, | <n is > =2 for every n, and nevertheless if L. is any
k f(n)
line then for every A there are only a finite number of z's
at distance < A from L.

The construction is very simple. Let g(n)/n - 0 but
sufficiently slowly. Let the z's be the points (2u, 2v) where

2u
g(2u)

log 2u< 2v <

A simple argument shows that the z's have all the required
properties.

3. Inow prove that the assumption of P 46 implies that
there is a line through the origin L so that for every € there

are infinitely many z,6 closer than € to L.
i

In view of the proof of P 46 it will suffice to show the

following.
LEMMA. Let n, < n22< ... be an infinite sequence of
. e (k) .
b tend t f . s , >
numbers tending to infinity. Let w. 1<i< Ek lk—-cink

be a sequence of points on |[z|=1 satisfying

(k) (k) 1
!W, - W, , > —
11 12 an

310

https://doi.org/10.1017/5S0008439500027089 Published online by Cambridge University Press


https://doi.org/10.1017/S0008439500027089

Denote by S (k) the set of points on lz] =1 for which at least

k k
one wgl satisfies [z-wg ), <e/nk (then m(S) denotes

the Lebesgue measure of S):

(1) m(Q s uN>ec, .
2>k

To see this it will suffice to show that to every n > 0 there is

a K =K(n) so that

(2) m( Se (l)))ci-n
k<t <K

If (2) would be false put

(3) Iim m( U (SE(E)) =D<C1
K=w k<l£K

Then if K =K(n) is large enough

(4) m( U S (2)>D-n.
k<t <K

The set Se (£ ) consists of a finite number of disjoint arcs

the sum of whose lengths is between D - n and D. Let now
n be very large (compared to nK of (4)). By assumption

r)’

there are at least cn points wg and since n_ is large
r i r

compared to n__ a simple argument shows that there are less

than Dnr of the w(r) in U S (£). Butthen there are

1 k<t <K ¢

at least (c1 - D)nr points w(ir) notin () Se (£) and
k<t _<_K
therefore the measure of those points in Se (r) which is not

contained in U S (£ ) is greater than (c, - D)e /2.
€ 1
k<t <K
Thus by (4)

m( Se(l))>D=n+(c1-D)€/2>D
k<lf_r
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if n =n(e) is sufficiently small. But this contradicts (3) and

hence our Lemma is proved.

I was led to P 46 by problem 93, p. 39 of the book of
Hadwiger and Debrunner "Combinatorial Geometry of the Plane'.

P 74. Let f(n) denote the number of (associative) rings
with n elements. Show that f is multiplicative, that is, if the
g.c.d. (m,n) =1, then f(mn) ={(m)f(n). Similarly if £ enumerates
the rings with 1, the commutative rings, or the commutative

rings with 1.

I. G. Connell, McGill University

Solution by H. Gonshor, Rutgers University.

Let us first consider the case of Abelian groups. Then if
G is a group of order m and H is a group of order n, G(® H
is a group of order mn. Thus the direct sum operation maps
pairs of groups of orders m and n onto groups of order mn.
Since m is prime to n it is clear from the fundamental theorem
for finite Abelian groups that this map is onto. Furthermore if
K= G@ H where G is of order m and H 1is of order N then
G 1is exactly the set of all elements of K whose order divides m.
Thus K determines G and H uniquely, hence the mapping is
one-one. This shows that f is multiplicative.

The extension to various types of rings is essentially a
corollary. The direct sum operation maps pairs of rings of
orders m and n into rings of order mn. The one-oneness
is a fortiori true (modulo logical quibling, i.e. one should think
in terms of the internal direct sum). To prove that the map is
onto we consider a ring of order mn and express it as a direct
sum of groups of order m and n. It suffices to show that the
components are ideals. Let K=G @ H. By symmetry it is
enough to show that G 1is a right ideal. This is trivial in view
of the above characterization of G, for ma = 0=>m(ax)
=(ma)x=0. Thus a€ G=axe G.

Now in order to complete the solution to the problem as
stated one need only remark that the properties of commutativity,
associativity, and possession of an identity are preserved by
taking direct sums and direct summands. (Incidentally this
takes care of 8 possible cases rather than the 4 listed in the
problem. )
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