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k-FOLD SYIMETRIC STARLIKE UNIVALENT FUNCTIONS

V., V. AnH

This paper establishes the radius of convexity, distortion and

covering theorems for the class

_ _ k+1 2k+1 . af'(z)
Si(A,B) = {f(z) = z + Y17 Ay, ® Fouos (z) € Pk(A,B)},

where
_ _ k 2k . 1+ Aw(z)
Pk(A,B) ={p(zg) =1+ Py 2 + Py 2 +...5p(3) =% Bulz) s
-1< B <A<1, w0 =0, |[wz)| <1 in the unit disc.

Coefficient bounds for functions in Si (A,B) are also derived.
1. Introduction

let B be the class of functions w(2) regular in the unit disc
A= {z;|z| < 1} and satisfying the conditions w(0) = O, Iw(z)l < 1
for 2 € 6. We denote by P(4,B), -1 <B <A <1, the class of

functions p(z) =1+p, z +p, 22 + ... defined by

()_1+Aw(z)
PL2) = 7 Bulz) °

The definition of P(4,B) 1is suggested by the classical result (see

w(z) e B, z¢ 4.

Nehari [70 ,p. 169]) that any regular function p(z) = 1 + P2+ p232+...
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such that Re{p(z)} > O in 4 can be written in the form

_ 1+ w(z)
p(z) = Ty » w(a) e B.

As is well-known, a necessary and sufficient condition for a

function f(z) = z + a,2% + ... to be univalent starlike in A is

zf'(3)
Re{f(z) >0,z2¢d .

This condition suggests that starlike functions may be defined in terms
of functions of positive real part in the unit disc. In fact, Janowski
{6] gefined a general class of starlike functions as

SHAB) = Uf(2) =z + ap s P < Py, s e,

The following special cases of S*(4,B) are of interest:

S*(Z-Za,-1)={f(z)=z+azzz+...,' Re{zf'(2)/f(2)} > 0, 0 Sa < 1},

S*(1,1/M-1)={f(z)=z+a, z%+...; |af'(z)/f(z)-M| < M, M > %},

2

S*(a,0) = {f(z) = 2 + a232+...; laf'(2)/f(z) -1 <a, 0 <a<1},

S*(a,—a)={f(z)=z+azzz+...,' |2f'(2)/f(2)-1|/]|2f"(2)/f(2)+1]|<a,0<a < 1}.

Several results on these subclasses of starlike functions may be found
in Robertson [13], Janowski [5], McCarty [8] and Padmanabhan [712]
respectively. It is seen that a study of S*(4,B) 1leads to unified
results of properties of various subclasses of starlike functions.

In this paper, we pay attention to the class SQ(A,B) of functions

in S*(A,B) with k-fold symmetric expansion:

_ _ k+1 ok+1 L af'(z)
Si(A,B) = {f(z) =5 + Yoz & Hlgppg F Fouuns Flz) € Pk(A,B)},
where

_ _ k 2k _
Pk(A,B) = {p(z) =1 + Py 2 + Py 2 + ... e€P(A,B), k = 1,2,3,...}.

The functions f € Si(A,B) are the k-th root transforms
1

/
Flz) = g(z91 7%
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of functions g € S*(A,B). In particular, the square-root transformation

of S5*(A,B) yields the class of odd functions in Sg(A,B).

The study ;f k-fold symmetric starlike functions was initiated in
the early 1930's with the work of Golusin [4], Robertson [13] and Noshiro
[11], each of whom established coefficient bounds for these functions.
Noshiro [171] investigated in detail geometric properties, including

bounds for |[f(z)|, |f'(z)|, of the class Si = Si(l,-l).

This paper will establish distortion and covering theorems and the

radius of convexity for Si(A,B). Coefficient bounds for functions
an SE(A,B) are also derived. The results are sharp and extend the
previously known results for starlike functions, particularly those of
the classes listed above.

2. Extremal Problems over Pk(A,B)

By definition the radius of convexity of Si(A,B) is the smallest
root in (0,11 of the equation €(r) = 0, where

Q(r) = min{Re{1 + Eﬁ;%g% }s |z| =r<1, fe Si(A,B)}.

Fom the definition of Si(A,B), we derive that

zf"(z) _ zp'(z)
1+ ' (z) p(z) + plz) ° p(z) e_Pk(A,B).

Thus, the radius of convexity of Si(A,B) is obtained if we can determine

the value of

(2.1) min Relp(z) + EPL;()Z—) }
|z] = » <1 btz

over Pk(A,B).

Various methods have been developed to deal with extremal problems

of the form (2.1), or more generally

Re{P(p(z), 2p'(2))}

min
lz]| =r <1
over P = P(1,-1). Based upon a variational formula for functions in P,

Robertson [14] proved
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THEOREM 2.1. [14] Let F(u,v) be regular in the v - plane and in
the half - plane BRe u > O; then for every r, 0 < r < 1, the value of
min min Re{F(p(z), ap'(z))}

p(z) € P |z| =r

occurs only for a function of the form

19 -18
_1+a 1+ ze l1-a 1+ ze
(2.2) p(z) = P 75 *t 3 5 >
1 - ze 1- ze

where -1 <a <1, 0 <8 <27m.

Thus, to solve an extremal problem such as (2.1) over P, we only
have to substitute into (2.1) the function p(z) defined by (2.2) and
to find the minimum of the resulting function of three variables.
waever, this is precisely where the remaining difficulties lie (see
Robertson .[15, Theorem 3] and Libera [7, Theorem 1]). Zmorovic [1§]
developed a useful result to overcome these difficulties. This is

described in the following theorem.

THEOREM 2.2. (18] Let p(z) be as given by (2.2); then zp'(z)
can be written in the form

(2.3) zp'(z) = ¥(p(z2)2 - 1) + %(p? - pg) ezw,
7y R . A
where (1+Ek2)/(1_€kz) = atpe k:k=1: 2,el=e7’e,€2=6_1’e,p(z)=a + poe v s
) Ly TV )2
0<p, < p,a=(14r2)/(1-r2),p =2v/(1-v2), " " = e .

If we put F(u,v) = M(w) + N(u) .v, where M(u), N(u) are regular
in the half - plane Re u > 0, u =p(z), v = 2p'(2) as given by (2.2),
then it follows from (2.3) that

(2.4) min Re {F(x,0)} = Re{M(w) + 5(u? - DN(W} - %[N(w|(p% - 03).

In view of Robertson's Theorem 2.1 and equation (2.4), problem (2.1 ) is
reduced to finding the minimum of a function of u in the disc
lu - a| < p. This is a significant simplification. Employing this
technique, Zmorovic [18] found the radius of convexity for
S*1 - 2a, - 1).

Bor the general class P(4,B), it can be shown that q(z) is in
P(A,B) if and only if
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_ {1+ A)p(z) +1- A
T (1 + B)p(z) +1-B

for some p(z) € P. Robertson's result then implies that the functions

(2.5) q(z)

which minimise the functional Re{F(p(z), zp'(z))} over P(A,B) must be
of the form (2.5) where p(z) is now given by (2.2). I(sing this result,
Janowski [6] extended Zmorovic's technique and solved the problems
min Re{p(z) + zp'(z)/p(z)} and min Re {zp'(2)/p(2)} over P(4,B). The
analysis is, however, lengthy and extremely complicated.

Ior k-fold symmetric functions, Zawadzki [17] extended Robertson -
Zmorovic's techniques and derived the radius of convexity for the class

Si(u,O). Again, the development is rather involved.

In this paper, we employ classical tools to solve the following

more general problem:

(2.6) min min @I(z)l >
p(Z)E Pk(A_,B) lzl = < ] Re {0. p(Z) + B p(z) },C!, O:B = 0.

The results by Zmorovic [18], Janowski [6], Zawadzki [17] are several
special cases of (2.6).

Let By denote the class of functions w(z) in B with the
expansion

_ k 2k
w(z) —bkz +b2k 25+ ...

Then, for every p(az) € Pk(A,B), we have that

(2.7 p(z) = H(w(z)) , 2 € A
for some w(z) € Bk’ where H(z) = (1 + A3)/(1 + Bz). Consequently, an

application of the Subordination Principle (see Duren [3, p. 190-191])
yields that the image of |z| <r under every p(z) ¢ Pk(A,B) is

contained in the disc

2k K
1 - ABr (A - B)r

(2.8) Ip(z) -al <d,a, = —=—55, d, = .
k %>k 7 - Bzrzk k 7_ Bzrzi

It follows immediately from (2.8) that if p(3) € Pk(A,B), then on

|z] =7 < 1,

k k
l_;_/h”_k <Rre{p(z)} <|p(z)| <1+_Ark .

1 - Br 1- Br

(2.9)
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The inequalities are sharp for the function

(2.10) po(z) =1—?.
+ bz

Ior the solution of (2.6), we require the following lemma.

LEMMA 2.3. If w(z) € Bk’ then for z e b ,

2k 2
(2.11) |’ (2) - ku(z)| <XLL2] —I :vziliz)l )
1- |z

Proof. 1In view of the general Schwarz lemma, we have for

w(z) € B, that |lw(z)| < Izlk. Therefore, we may write

w(z) = zk xp(zk), z € A,
where ¢(z) is regular and |y(2)|[<21 in A. an application of
Carathéodory's inequality

2
lor (s | < L= lwz | (2]

= » 2 €A
1- |z

now yields
k2
| (2) - kw(z)|<k|z|2k Z;LM_]_
7 - Izlzk

_kla(®* - Jwie)]?)
1-z|?

Equality in (2.11) occurs for functions of the form
k
zk(z - el)/(1 - czk), le] <1.
5 oing back to the expression ap(z) + Bap'(z)/p(z), we see from
the representation (2.7) that

zp'(a) _ 1+ Aw(z) + B (4 - Blzw'(z)
p(z) %71+ Bu(z) (1+Aw(z)) (1+Bw(z))
Applying (2.11) to the second term of the right-hand side, we find

zp’(z) 1+ Aw(z) B(A - B)kw(z)
Re{“p(” BTz [ TR\ T # Bulz) T 11 ¢ awla)) (1 + Bulz))

ap(2) +B ,w(z) ¢ B

__kaa - B)({al®* — e |?)
(1- |z[2k)|1 + Aw(z)||1 + Buw(z)|"

From (2.7), we also have for w(3) ¢ Bk that
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wz) =B =L pez) < p (a,8).
A - Bp(z)

Hence, in terms of p(z), the above inequality becocmes

/ nQ'(Z)\ 7A+B 1 _Bk—A
(2.12) Relap(Z) + 8 o(z) | 2B gt g ke Ca(A-B)-gkBlp(z) o(z)

k™ 14 - mpz) |2 - oz - 11%)
(4 - 8)(1 -2 |p(a))

At this point, we see that the solution to (2.6) may be obtained by
minimising the right-hand side of (2.12) where p(z) takes its values in

the disc Ip(z) - akl < dk as defined by (2.8). It can be shown that

the minimum is reached on the diameter of this disc. In fact, using the

same argument as in Theorem 1 of Anh and Tuan [7] with » replaced by
k .
r and B replaced by Bk, we can establish the following result.

THEOREM 2.4. If p(z) € P (4,B), o > 0, 8>0, thenon |2| = < 1,

a - [gk(d - B) + ZaA]rk + aAerk r <n
wra) . | (1- A - e 15 R
Fe {ap(z) tE p(z) }>
%
Bk j - 2 * 2 % L(LK) 2—Bk(1-ABr2k)],R2<R1,
- (A - B)(1-r°")

where Ry = (L/K)% R, = (1- ad)/(1 - B%), 1 = k(1 - 0)(1 + ar®)

K =afd - B)(1-2%) +ek(1-8)(1+ B:%5) .

The result is sharp for the functions

k
p,(2) =1—+¢42—k for R <R,

1 + Bz

1 +Aw1(z)

P& =T for RS H

where wl(z) = zk(zk - el)/(1 - czk) is extremal for (2.11) with ¢ now

defined by the condition Re{(1 + Awllz))/(l + Bwl(z))} =R at z=-r.
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REMARK 2.5. It should be observed that a function q(z) is in
Pk(A,B) if q(z) =p(zk) for some p(z) € P(A,B). 1In this representat-
ion,

k k
oq(z)+s%)— =ap(zk)+3kz—ﬂ£z——) z € A.

It therefore follows that the lower bound for Relaq(z) + Bzq'(z)/q(z)}

over Pk(A,B) can be derived immediately from Theorem 1 of Anh and Tuan

k
[7] with » replaced by r and B replaced by Bk. The argument
leading to Theorem 2.4 of this section is presented to highlight the
power and simplicity of the classical method compared to the variational

method as employed by Zawadzki [17].
3. Some Geometric Properties of S;(A,B)

As noted at the beginning of Section 2, the radius of convexity of

S;(‘(A, B) is given by the smallest root in (0,1] of the equation

‘Q(r) = 0, where

Q(r) = min {Re {p(z) +%l} 5 lal =r <1, pla) € B(AB)}

An application of Theorem 2.4 with a =1, g =1 gives Q(r), and

solving Q(r) = 0 we obtain
THEOREM 3.1. The radius of convexity of S;{‘(A, B) 1is given by the

smallest root in (0,1 of

(i) 4% -2+ wa-kBR +1=0, if B <R,

(i) k(A - B)# 4a(1 - A)1r**ealk (4 - B)+ 201 - 002104k (4-B)-4(1-4)=0,
if R,<R, ,

where R, R, are as given itn Theorem 2. 4.

2
The result previously obtained by Zmorovic [78] corresponds to the
case k=1, A=1- 2a, B = -1,
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We next derive sharp bounds for |f(z)|, |f'(z)| in the class

SI’:(A,B). Letting » + I in the lower bound for [f(z)| we obtain

the disc which is covered by the image of the unit disc under every f(z)
in S;:(A,B).

(i)

(it)

THEOREM 3.2. et f(z) € S}(A,B); then on |z| =r < 1,

p(1-BZ) (ABI/KB < \p(2)| <p(14BX)(AB/KB 4o gy,

Ark Ark ;
rexp(-—k—) < |flz)]| < re:zrp(—k—) ., 1f B=0;

k [A-(1+k)B1/B

(1—Ark) (1-Br )

< |F7(2)| S (14475) (148 TA- (1#KIB/B

if B#0,
k ak _ K, 4k
(1-Ar")exp (-——) < if'(z)]| < (1+Ar Jezp(=z—) , if B=0.

Proof. write 2z f'(2)/f(2) = p(z), p(z) € Pk(A,B); then

! 1
‘}(;—j)- 1Ly -0

Hence, on integrating both sides, we get

log f;i)= fZ[p(g)—l]%€ >

that is,
3
flz) epr B ge | plz) e P (4,B) .
z 0 £ k
Therefore,

2
|.f;_zl| = exp[Re{J &éi del]
0

Substituting & by 2t in the integral we have

1
|f(z)| = exp Re{g(zt)—l} at .
b4 0 t

It follows from (2.9) that, on |2t| = rt,

k-1

k
Re{L(zti-l} < (A-B)r'¢

1 +Brk tk

Hence, for B # 0,
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z Kk k

1 k k-1
flz) _ expf (A-B)r t " 40 _ (057K (A-BI/KB
0 1I+Br t

The lower bound may be obtained similarly. The case B = 0 1is trivial.

To prove (ii), we note that
7ol = 12 oo L prare PoaB) .

Hence, applying the above results and (2.9), the assertions follow.
All the bounds are sharp for
k) (A-B) /kB

f(z) z(1+Bz , if B# 0,

Azk
f(z)=zexp(—k—) , if B =20 .

The corollary of Theorem 1 of Zawadzki [16] corresponds to the
special case A =1 -2a, B =-1.
Letting 2 » 1 in the lower bound for |f(z)| we obtain the

following covering theorem for S;(‘(A, B) .

COROLLARY 3.4. The image of the unit disc wnder a function

f(z) e Si(*(A, B) contains the disc of centre 0 and radius

(2-B)(ABV/KB e B 4o, expl-a/k) if B = 0.
4, Coefficient Bounds for SE(A,B)
It is known that if p(z) =1+pz+ pzzz + ... belongs to P,
then ]pn| <2 for n=1,8,3,... Br the next theorem of this section,

we generalise this result to the class P(4,B). The method of proof is

essentially due to Clunie [2].
THEOREM 4.1. If p(z) =1+ pz+ p222 + ... belongs to P(A,B),

then Ipnl <A-B for n=1,2,3,... The estimates are sharp for each n.

Proof. ©From the définition of P(4,B), we can write that

p(z) - 1 = (A - Bp(z)) w(z), w(z) € B.
That is,

® k £ k
kgl pkz = (A - B k£0 pkz )W(Z).
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This equation can be put in an equivalent form as

n © _ k

(4.1) I pkzk + I ckzk =(A-B-38 nz? pkz ) w(z) ,
k=1 k=n+1 k=1
where the second series on the left-hand side is also uniformly and
absolutely convergent on compact subsets of A. Since (4.1) has the form
F(2) = G(3)w(z) , where |w(z)| <1 , it follows that
2 . 27 .
2
(4.2) L J |F(r %)) 2d0 < L ! l6(r &*%)|%ds .
an 1] 2 0

In view of Parseval's identity (see Nehari [10, p.lOO]), (4.2) is

equivalent to

2 .
n @ -1
z |pk|2r2k + I Ick|2r2k <;—f |Aa-B-8B "1 pkzﬂke”“kel2 de
-1
=(A-B)2+B2L |p, 222K
k=1
Thus,
-1
Eolpl? <ta- B2+ 82T |p 77K
k=1 k=1

Letting »r > 1, we obtain

3

n n-1
Dl |2 <(a-8)2+8 1 |p|*
k=1 k=1

or equivalently,

n-1
Ip. |12<(A-B)2+ (B2- 1) & |p, |2
n k=1 k

Since B < I, it follows that Ipnl < A - B. The function

pl(z) = l—i—£52-= 1+ (A-B)2"+ ...
1 + Bz
in P(A,B) shows that the result is sharp.
We next apply the above theorem to derive coefficient estimates for
k-fold symmetric starlike functions of order «, that is, for functions

in the class Si(l - 2a, - 1).
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k+1 + 2k+1

THEOREM 4.2. If f(z) = z + 4, g7 L

belongs to Si(l - 20, - 1) ,
n-1
1 2(1 -a)
laprq] <= TT 125—22 1 v31, n=1,23,..
n!

The estimates are sharp for each n.

Proof. If we put £ = zk and define a function

g(g) = [f(z)] s
then g¢g(g) is regular in A and

E g'(e) _z2f'(z)

glel f(z)

Thus ¢g(f) is starlike of order o for |E| < 1. Expanding in a power

series, we find that

n-1
. -1 ke ak+1+2a2k+1£+"'+nank+15 F e
’ 9(5) 2 n
1+ ak+1 £ + a2k+1 [ +"'+ank+1 E + ...
_ 2
-1+dlg‘+d2g + ...
In view of Theorem 4.1 with A =1 - 20, B = -1, we obtain

Idnl <2(1-o0),n=123...

it then follows that

(4.4) E_H_L << 7 +_1_~_(_1)i
g 1-¢
. . . pog n by n o,
Here, for simplicity, we write I a 2 << I bnz if bn = 0 and
n=0 n=0

|an| < b, for every n.

From (4.3) and (4.4) we see that

ak +2a2k+1 E+ o — 2(1 - a) 7
1+ak.+1€+a2k+152+'” k 1-¢
that is
2 2(1 - a)
(4.5) log(l+ a ;&4 Areg & Fooo) << = = log (1 - &),
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taking a branch of log such that log I = 0. It follows from (4.5) that

1

1+a 2(1-w /K

<<

2
£+ a £E° + ...
k+1 2k+1 . (1- ¢

from which the result can be derived. To see that the estimates are

sharp, we consider the function

+1)...(§£%:gi-+n—])

2

)

2(1 - o) 2(1-a)
kK 'k

+ I 1—,
n=1 n.

nk+1
X 2

f(z) = _zk Ty

(1

The method of proof used in the above theorem unfortunately does
not work for the general class Si(A,B). However, the above coefficient
bounds for Si(l - 2a, - 1) do suggest the form of coefficient bounds

for functions in Si(A,B). In fact, we have the.following theorem, the

proof of which is under the influence of MacGregor [9].

THEOREM 4.3. Let f(z) = z + ak+lzk+1+a2k+lzzk+l+ ... be in
Si(A,B) and put M = [%?g—g}gjﬂ , the largest integer not greater than

(A - B)/k(1 + B).
(a) If A-B > k(1+ B), then

| <L n_ll A-2_ g =1,2 1
(4.6) |ank+1 ar 1T T - VBl,n=1,2...,M+1,
M
1 A - B.
4.7 |ank+1|< "\]T:o[ Z -vB],n>M+2.

(b) If A-B<k(1+ B), then

A-B B
4.8) [ank+1| STz, n=1,235 ...

The estimates (4.6) and (4.8) are sharp.

Proof. Irom the definition of Si(A,B), we have that

z2f'(z) _ 1+ Aw(z)
Flz) ~ 1+ Bulz) ® Y3 €5

that is,
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z2f'(z) - f(z) = w(z) (Af(z) - Baf'(z)) ,

or, in their series expansion,

® nk+1 © nk+1
(4.9) I nkank+lz =w(z)((A - B)z + I (A-B(nk + 1))ank+lz ) .

n=1 n=1

This equation can be put in an equivalent form as
N

v o -1
T nk a znk+1+ t d znk+l= w(z) ((A-B)a+ ¥ (A-B(nk+1))a
nk+1 nk+1 nk
n=1 n=N+1 n=1

znk+1)
+1 ?
where N = 1,2,3,... and the second series on the left-hand side is again
uniformly and absolutely convergent on compact subsets of A.
With the same argument as in the proof of Theorem 4.1, using

Parseval's identity and the fact that [|w(3)| < I, we arrive at the

inequality

4 232 2 2 -1 2 2

£ n%k2la , ,|2< (A-B)2+ 1 (A~ B(rk +1) la 4l

n=1 n=1
or equivalently,

2 n-1 2242
27,2 < - 2 3 _ - 2

(4.10) N%k |a1v7<+1l (A - B) +nil [(4-B(nk + 1))°- n?k ]|ank+1|

since (A - B(nk + 1)}2 - n2k2>0 if and only if n < (4 - B)/k(1 + B),

the following four cases can arise:

(i) n<2(353) and A-B > k(1+B),
(ii) n> gy ad A-B>Kk(1+B),
(iii) n<#‘—%—) and A- B<k(1+B),
(iv) n>% and A- B<Kk(1+DB).

Case (iii) holds only if =n = 1. 1In view of (4.9), we have

K Gpg = (A - B)bk’

k 2k

where w(z) = bz + b,;z" + ... Since |w(z)]| < 1, it follows that

13
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3 b . |% =<
n=1 nk

Thus |bk|2<1. And so,

A- B
|ak+1|< k °

Let us now consider each of the remaining cases.

(4.11)

(1) In view of (4.10), we want to establish that

2 k N1 (a-8 2
2 2 S S— -2 _
(4.12) Nok |a1Vk+1| < TR [ X nB] .

n=0

This inequality holds for N = 1 in view of (4.11). Suppose that it is
true wp to N - 1. Then for N <M + 1,

N-1

< (4-B)% © ((4 B(nk + 1))2 - n2%k2)|a

2 2
2k l =1 nk+1I

yira |

N-1 n-1 2
(4.13) <(A - B)?*+ 3 {[3— T [il;é - vB]] [(A - B(nk +1))%- nzkﬂ} .

’
n= L7 g UK -

Put the expression on the right-hand side of (4.13) equal S(N - 1). 1If

we can establish that

N-1
k A-B 2
(4.14) S(N - 1) = [————, T [ - nBH ,
(N - 1)! =0 % _

then (4.12) is true for all N <M + 1. We again prove (4.14) by

induction. Pr N = 2, we have

5(1) 2

- 2 2
(A-B)2+[Ak—3] ((A-B(k +1)) - k%)

2
- 2
= [’4 B] (A - B(k + 1))
which is the right-hand side of (4.14). Thus (4.14) holds for N = 2.
Suppose that it is true up to N - 1. Then for N,

N1 4-8 2
S - 1)+ [ T [ £ \)B]‘] ((A - BOVK+1))%- 8%K?)
v=0

S(N)

-1 , Ne1 )
= [(IV : 7 11 {AkB -n3”+{,1v—, [A—;Q —vB]] ((4-B(Nk+1) )*-5%K%)
* n=0 .
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N-1 2
1 A- B [2 1 [( ]2 2.2
= |57 TT |55— -8 k+ == ||A - BNk + 1)| - N°k
[(IV-J). =0 [ k ]] Nz

T (52

n=0

Thus (4.14) is true for all N. This establishes (4.12). Note that

(A - B)/k - nB 20 is equivalent to nk<{4A - B)/B if B > 0 [The

inequality is obvious if B < 0]. 1In case (i), nk< (4 - B)/(1+B)<(A-B)/B

as A - B > 0. Thus, inequality (4.6) of the theorem follows from (4.12).

(ii) Again, from (4.10), we have that

M 2
NszIaNk+1|2 <(A-B?+ 3 UA - B(nk + 1)] - n%k?

n=1 lank+1l
N-2
+ [(A - Bnk + 1))*- nZkZ] la g, 1% H>M+ 2
n=M+1
2 M 2 2,2 2
<(A- B)° + n.E.J [(A - B(nk + 1))" - n"k ] |ank+1|

2 MJ n-1
< (4 - B)+ Z[F]T

2
% VB E ((A-B(nk+1)) - nzkz]

n=1 v=0
in view of (4.6)
M 2
= [.k_, A-B _ B ] from (4.14)

M) k

n=0

M

1 A- B

< L - = .
Thus, IaIVk‘f']' NM! nLo ( A ] for N M+ 2

This is inequality (4.7) of the theorem.

(iv) 1In this case, it follows easily from (4.10) that
2.2 2 2

- = 2.
Nk |y, |7 <(4a-B)°, 0 >2

That is,

A- B
lyses| < - V> 2

This with (4.11) above yields inequality (4.8) of the theorem.
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Inequality (4.6) is sharp for the function

2(1 + <) (A - B/KB o g,

f(=)

f(z) = 2z exp (AZ5/k) , if B =0,

while inequality (4.8) is sharp for the function

(7]

(2]

[3]

[4]

[5]

{61

£7]

(8]

(9]

e

f(z) = 2 exp [A—r;}{—g znk]
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