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SINGULAR ISOMETRIES IN ORTHOGONAL GROUPS 

BY 

GEORG GUNTHER 

In this paper, we study the behaviour of singular isometries in orthogonal 
groups. These are isometries whose path is a singular subspace. We shall prove 
that the path of such a singular isometry is always even-dimensional. We shall 
use this result to show that the subgroup of the orthogonal group On(K, Q) 
which is generated by the singular isometries is the commutator subgroup 
ftn(K, Q). In particular, in the case that n = 4 and index Q = 2, we shall obtain 
a nice geometric interpretation for the well-known result that Pùn(K, Q) is 
isomorphic to PSL2(K)xPSL2(K). In addition, we shall discuss some sub­
groups of the commutator group. 

1. Introduction. Let (V, Q) be an n-dimensional metric vector space over a 
field K, with a quadratic form Q. Let / be the bilinear form associated with Q. 
The form / induces an orthogonality on V. We say that a subspace H is regular 
if Rad H - H^H1^ = 0 and H is isotropic if R a d H = H. A subspace H is 
singular if 0 (h ) = 0 for all heH. The index of Q is the dimension of the 
maximal singular subspaces of V. 

In this paper, we shall assume that V is regular, that K # GF(2), and that the 
index of Q is at least 2. We use the notation of Ellers ([5], [6] and [7]) 
throughout this text. 

A transformation TT of V is called an isometry if it preserves Q (and hence 
preserves / ) . The set of all isometries is the orthogonal group On(K, Q). With 
every isometry we can associate two subspaces: 

the path of rr: = B(ir) = {Tr(x)-x \ xe V} 
and 

the fix of TT: = F(TT) = {x e V \ TT(X) = x}. 

Clearly, dim B(7r) + dim F(TT) = n, and JB(7r)"L = F(7r). An isometry a is simple 
if dim B{cr) = 1; these simple isometries generate the group On(K, Q). We say 
that an isometry TT is singular if B(TT) is a singular subspace; otherwise, we call 
7T non-singular. 

We let 1(TT) (the length of TT) be the minimum number of simple isometries 
whose product yields TT. If l{ir) = 2, we call TT a rotation. We shall use projective 
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language, and say "point", respectively "line" for a one, respectively two-
dimensional subspace. A line can then contain 0, 1, or 2 singular points, or 
consist entirely of singular points. We call such lines respectively elliptic, 
parabolic, hyperbolic, or singular, and say that a rotation is elliptic, parabolic, 
hyperbolic, or singular as its path is a line of the corresponding type. In the 
following theorem, we gather some well-known results. 

THEOREM 1.1 

(a) Let 77 be an isometry, and a be a simple isometry. Then B(7rcr) = 
B(ir) + B(or) if and only if B(O-)<£B(TT), and dim B(7ro-) = dim B ( T T ) - 1 if and 
only ifB((r)cB(ir). 

(b) If IT is non-singular, then Z(7r) = dimB(7r). 
(c) If TT is singular, then 1(TT) = dim B(TT) +2. 
(d) 1/ a is simple and B(cr) = Kp, then 

a ( x ) = x""wp-
(e) If p is a parabolic rotation with B(p) = (s, z) with Q(s) = /(s, z) = 0 and 

Q(z) = À 7*0, then 

p(x) = x +— [f(x, s)z —f(x, z + 8s)s] for some 8 e K. 
A 

(f) If p is a hyperbolic rotation, B{p) = (5, t) with Q{s) = Q(t) = 0 and f(s, t) = 
1, then p(s) ~ as, p(t) = a~lt, for some aeK, and p is uniquely determined by its 
effect on s. 

The proof of these results will be omitted. See [4] for details; also [8] for a 
proof of (b) and (c). 

If H is any subspace, we let 0 ( H ) = {TT6 On(K, Q) \ B(<rr)c:H}, and 
0 + ( H ) = {TTG O(H) I J(ir) is even}. In particular, if H is a line, 0+(H) is the 
group of all rotations whose path is the line H. 

As in Ellers [5], we also define, for any isometry IT, the set P(rr) by 

P(ir): = {x e V \ f{jr{x) -x,x) = 0}. 

The condition "x € P(ir)" is clearly equivalent to "Q(7r(x)-x) = 0", so that the 
size of P(TT) gives a measure of the occurrence of singular vectors in B(7r). 
Clearly, the isometry ir is singular if and only if P(TT) = V. 

2. Representation of singular isometries. In l . ld , we see that a simple 
isometry can never be singular. This raises the question: for what singular 
subspaces H does there exist a singular isometry whose path is HI Before 
answering this, we prove 

LEMMA 2.1. Let A be a k-dimensional non-singular subspace containing a 

https://doi.org/10.4153/CMB-1977-031-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1977-031-6


1977] ORTHOGONAL GROUPS 191 

singular k-i-dimensional subspace B. The one of two cases occurs: 

(a) B <= rad A, and all singular points of A lie in B. 
(b) B£rad A, and A contains a second singular k-l-dimensional subspace 

C*B. 

Every singular point of A lies in either A or B. If cr is any simple isometry such 
that B(a) c A, then a(B) = C. 

Proof 

(a) This is immediate, as otherwise A would be singular. 
(b) Now Bçt rad A. Let a be a non-singular vector of A, and b a vector of B 

such that f(a, b) ¥=• 0. Then (a, b) is a hyperbolic line, and hence contains a 
second singular vector c&B. Then Kc@(c±OB) = C is a second singular 
k-1-dimensional subspace of A. Now suppose that x = b + ac with ft e B is any 
vector of A. Then Q(fc + ac) = a/(ft, c) = 0 if and only if a = 0 and xeB, or 
/(ft, c) = 0 and xeC. Finally, let JB(cr) -Ka<=^A. Then there exists a hyperbolic 
line (ft', c') with b' eB and c'eC containing a such that o-((fc')) = (c'). Hence 
<r(B)=C. 

This enables us to prove 

LEMMA 2.2. Let ir be singular and a be simple. Then irar is non-singular. 

Proof. Since TT is singular, we know that P(ir) = V, and hence 
/(7rcr(x), o-(x)) = f(x, x) for all xeV. If ira were also singular, we would also 
have f(7ra(x), x) = f(x, x) for all xeV, implying that f(ira(x), B(o)) = 0 for all 
xeV. But then JB(or)c:rad V, contrary to the assumption that V is regular. 

We are now able to answer the question posed at the top in 

THEOREM 2.3. Let IT be a singular isometry. Then dim B{TT) is even. 

Proof. Suppose Z(7r) = k + 2. Let Kp be a non-singular point such that 
pj^jB(7r)"L, and let B(a) = Kp. By 2.2, we can write ir = pa, where p is a 
non-singular isometry of length fc + 1. Clearly, B(ir), B(cr)^B(p) = A, and by 
our choice of p, we ensure that B(TT) <£ rad A. Thus Theorem 2.1 pertains. Now 
7r(jB(7r)) = B(7r). But if 1(TT) were odd, then 7r(J3(7r)) would be the image of 
B(TT) under an odd number of simple isometries, which is distinct from B{TT) 
by 2.1. Hence 1(TT) = k + 2 is even, and thus dimB(7r) = k is even. 

We observe that if ir is a singular isometry, then B(TT) is singular, and hence 
isotropic, implying that B(<n,)c:F(7r). If charX = p, then let TT be any singular 
isometry. Then 

TTP{X)-X = TTP(X)->JTP-\X) + Trp-I(x) + 7r(x)-JC 

= Ê ir'"VW-x)= Ë 0K*)-*) = 0. 
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Thus we have proved 

LEMMA 2.4. If Char K = p, and rr is singular, then TTP = 1. 

We now state the representation theorem for singular isometries. 

THEOREM 2.5. Let TT be an isometry. Then ir is singular if and only if 
k 

7r(x) = X+ X (Xijfix, Sj)Si 

where the matrix (a^) is skew-symmetric with zeros down the main diagonal and 
S = (su . • • > sk) is a k-dimensional singular subspace, 

The proof of this theorem involves straightforward calculation, and thus is 
omitted. Now, if H is any singular subspace, we let 0(H) be the group 
generated by all singular isometries whose path lies in H. As corollaries of 2.5 
we have 

COROLLARY 2.6. If H is a singular subspace of even dimension, then there 
exists a singular isometry whose path is H. 

COROLLARY 2.7. If H is a singular line, then O(H) is isomorphic to (K, +). If 
7reO(H), then TT(X) = x + a[f(x, s)t~f(x, t)s], where {s,t) = H. 

The singular rotations are important because they generate the singular 
isometries. This is the content of the next 

THEOREM 2.8. Let TT be a singular isometry. Let dim B(TT) = 2k. Then IT is the 
product of k singular rotations. 

Proof. Choose s e B(rr). Then there exists some a e V such that ir(a) = a + s. 
But then 0(7r(a)) = Q(a) = Q(a + s) = 0 ( a ) +/(a, s), implying that f(a, s) = 0. 
Clearly B(fr)<^a±, and so we can find some t e B(rr) for which f(a, t) = 1. Let r 
be the singular rotation given by T(JC) = X + / ( X , s)t—f(x, t)s. Then aeF(r7r) . 
Since F(TT) <= F(TTT), we thus see that F(TT) is properly contained in F(TTT). 

Since TTT is singular, we thus conclude that dim B(T7r) = dim B(TT)-2. The 
result now follows by induction. 

In the next lemma, we study products of two singular or two parabolic 
rotations. 

LEMMA 2.9 

(a) Let ri, r2 be two singular rotations such that B(TI) = (S, t) and B(T2) = 
(s, r). If f(t, r) = 0, then the product TIT2 is a singular rotation. If f(t, r)^0, the 
product is a parabolic rotation. In either case, we have T1T2 — T2T1. 

(b) Let p be a parabolic rotation with B(p) = {s, z), such that Q(s) = 0 = 
f(s, z), and Q(z) ^ 0. Then p is the product of two singular rotations TU T2 such 
that B(T1)nB(T2) = Ks. 

(c) Let pi, p2 be two parabolic rotations with B(p1)nB(p2) = Ks, and Q(s) = 
0. Then pip2 = p2pi, and the product is either singular or parabolic. 
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(d) Let T be a singular rotation. Then r = pip2, where the pi are parabolic 
rotations with B(pOfl B(p2) = Ks c B(r). 

Proof 

(a) If TI * T2, then by 1.1b, c, we have 1 ( r ^ ) = 2. If f(t, r) = 0, then B ^ T ^ c 
(s, f, r), which is a singular subspace, implying the result. We can assume that 
B(TI)T*JB(T2) , as otherwise 2.7 yields the result. But then F(TIT 2 ) = 

{JC G V j TI T2(X) = x} c {x | T2(X) - x G Ks}. But T2(JC) = x + as implies that /(x, s) = 
0. Hence FCTIT^CS - 1", or seB(riT2) . Hence TIT2 is a rotation fixing s. If 
TIT2 7

E id., then in view of l.lf, we can conclude that TIT2 is parabolic. A simple 
computation shows that TIT2 = T2T1. 

(b) In view of l . le , we can write p(x) = x + ô/À[/(x, s)z—f(x, z + 8s)s], 
where A = Q(z). Choose a singular vector te s± such that /(*, z) = 1, and let T 
be the singular isometry r(x) = x + £[/(x, t)s-f(x, s)t]. Then a simple computa­
tion shows that the product rp is again a singular rotation T' with path 
B(T') = (s,8z-8\t). 

(c) As in (a), we see that the product pip2 is again a rotation whose path 
contains Ks, and which fixes the vector s. Hence, either pxp2 = id, or, by l.lf, 
Pip2 is not hyperbolic. Again, a simple computation shows that pip2 = p2pi. 

(d) As in (b), this again follows constructively. 

3. The group of a singular point. We can now use Lemma 2.9 to define a 
certain family of subgroups of the group On(K, Q). We let Ks be any singular 
point, and we define the set 

I(s)= U 0+(H), where this union is taken over all lines H that contain the point 
Ks. We also define a subset of I(s) by R(s)= \J 0*(H), where the line H 
contains the point Ks and is itself contained in the hyperplane s±. We prove 
the following 

THEOREM 3.1. The set I(s) is a group. R(s) is a normal abelian subgroup of 
I(s), and the factor group I(s)/R(s) is isomorphic to the multiplicative group of 
the field K. 

Proof. Let r ^ i d ^ p be elements of I(s). Since seB(T)DB(p), we see that 
dim B ( r p ) ^ 3 . Also, dim B(rp) is even, and hence the product rp is a rotation 
or rp = id. If B ( T ) = B ( P ) , there is nothing to prove. So assume that B(T)C\ 

B(p) = Ks. ThenF(rp) = {x€ V | T P ( X ) = X } C { X G V | P ( X ) - X G K S } . But p(x) = 

x + as implies that f(x, s) = 0, and thus F(rp)<^s±, or equivalently, 5eB(rp) . 
Thus I(s) is a subgroup. The same reasoning shows that R(s) is a subgroup 
which is clearly normal in I(s). The elements of R(s) are either singular or 
parabolic rotations, and so we see from 2.9 that the elements of R(s) all 
commute. We now fix a hyperbolic line through s, and let T be any hyperbolic 
rotation whose path is a second hyperbolic line. Then T(S) = CI(S) for some 
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a e K. We let r ' be the hyperbolic rotation whose path is the given hyperbolic 
line H such that T'(S) = OL~1S. Then TT'(S) = S and hence TT' is a parabolic or 
singular rotation. Also, the rotation r uniquely determines the rotation r \ We 
have thus shown that every rotation r can be expressed as a product of a 
rotation in0+(H) and a rotation in R(s), and that this decomposition is unique. 
We define a map ^ : I ( s ) ->0 + (H) , where i/^r) is the uniquely determined 
element of 0%Ff) in the decomposition described above. Clearly, i/f(id) = id, 
and TT' = tKr)p • ^ ( T ' ) P ' , where p, p ' e J?(s) = I K T ) < M T O [ ^ ( T V W ( T ' ) P ' ] > SO that 
^(TT/) = ï/'(T)^(T,), since ^ M ' V ^ M p ' ^ ^ W - Hence the map ^ is a 
homomorphism whose kernel is clearly JR(S). Hence we have I(s)/R(s) is 
isomorphic to 0 + ( H ) , where H is a hyperbolic line, and from Dieudonné [4] 
we know that 0+(H) is isomorphic to the multiplicative group of the field. 

If dim V- 3 and index Q — 1, we have a nice geometric interpretation of the 
group I(s), which is due to Dr. H. Mâurer at the Technische Hochschule 
Darmstadt. For now the quadric is a Môbius plane, if we define the cycles as 
the plane sections of V with the quadric. Then the derived plane in the point 
Ks is an affine plane. If H is a hyperbolic line through Ks which meets the 
quadric in a second point Kt, then all the hyperbolic rotations with path H 
induce central dilatations with center Kt in the derived affine plane. If H is a 
parabolic line, on the other hand, then the corresponding parabolic rotations 
induce all the translations in a given direction. Thus R(s) is isomorphic to the 
translation group of this affine plane, and this group is, as we know, an abelian 
group. 

4. A class of subgroups of 0„. In this section we describe another class of 
subgroups of On. Before doing this, we require a general 

LEMMA 4.1. Let A be an n-2-dimensional subspace of an n-dimensional 
vector space. Define T ( A ) : = ({TG SLn(K) | r is a transvection and A C F ( T ) } ) , 

and BT(A) :=({7r€ T(A) \ B(TT)CZA}). Then T(A), BT(A) are groups; BT(A) 
is a normal subgroup of T(A), and the factor group T(A)/BT(A) is isomorphic 
to the group SL2(K). 

Proof. Clearly, T(A) and JBT(A) are subgroups, and BT(A) is normal in 
T(A). We now define a map 8 as follows 

g ! jT(A)->GL2(K) 

[ 77—»Ô(7r) 
where 

f VIA -* VIA 

This is a well-defined homomorphism, since A<=F(7r) for all ireT(A). Now 
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kerô = {7r|<7r(x) + A = x + A for all xe V} = {TT | B(TT)<= A}. Hence kerS = 
BT(A). Now choose any transvection T G T(A). We know that r(x) = JC +iM*)&> 
where Ackeri^. Then 8(T)(JC + A ) = x + i/((x)h + A = jc + A + i/r(jc + A)(fc + A), 
and ô(T)(b + A) = £> + A. Thus we see that 8(T) is a transvection of V/A, and 
hence S is a homomorphism into SL2(K). Now let T be any transvection of 
V/A, say T(JC + A ) = (X + A ) + <MX + A)(C + A ) with ce A. Then A + Kc is a 
hyperplane of V, and thus the map T'(X) = x + <j)'(x)c is a transvection in T(A), 
where H = ker<£' and <£'(y) = l = <My + ̂ ) for a suitable yéA + Kc. Then we 
see at once that Ô(T') = T. Hence S is surjective. Thus the theorem is proved. 

We now return to the study of the orthogonal group, and use Theorem 4.1 to 
prove 

THEOREM 4.2. Let H be a fixed singular line. Let L{H) := {H' | dim H' = 2 and 
HHHVO, and H' singular}. Define G(H) :=({TreOn\ B(TT)EL (#)}>. Then 
O(H) is a normal subgroup of G(H), and the factor group G(H)/0(H) is 
isomorphic to the group TiH^IH), which is defined as in the statement of 
Theorem 4.1. 

Proof. We first observe that if T is any singular rotation whose path is a line 
of L(H), then T fixes H. This is a direct consequence of 2.1b. As in the proof of 
Theorem 4.1, we define a map p as follows 

(G(H)-*GLn-2(V/H) 
I 7T-» p(7r) 

where p(ir) is defined by 

f VIH-+VIH 
P ( 7 r ) : U + H-*7r(x) + H 

Now we argue as in 4.1. We see that p is a homomorphism with kernel O(H). 
If T is any singular rotation with path a line in L(H), then as in 4.1, we see that 
p(r) is a transvection of V/H. Indeed, if HDB(T) = KS, then p(r) is a 
transvection whose path is K(t + H), where t is a second vector of B(T), and 
whose fix is the hyperplane s±/H of V/H. But seH implies that H±<=s±, and 
thus p(r) is a transvection of T(Hx/ff). Thus p is a homomorphism into 
TiH^IH). Now consider any seH, and any non-singular zes±. Then (s, z) is a 
parabolic line, and let a be a parabolic rotation with this line as path. Then by 
2.9b, we know that a can be written as the product of two singular rotations 
which are clearly elements of G(H). Hence ere G(H). But then we can check 
that p(r) is a transvection of V/H whose path is K(z + H), and whose fix is 
s±/H. Thus these parabolic rotations yield all the transvections of Ti^/H) 
whose path is a non-singular point. Conversely, if T is any transvection in 
TiH^/H), then T is induced by a singular or a parabolic rotation in G(H), 

https://doi.org/10.4153/CMB-1977-031-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1977-031-6


196 G. GUNTHER [June 

depending whether B(T) is a singular or non-singular point. Thus p is surjec-
tive, and the theorem is proved. The following corollary is of particular 
interest. 

COROLLARY 4.3. If dim V = 4, then G(H)/0(H) is isomorphic to SL2(K). 

Proof, In this case, H = Hx
9 and hence H^jH^ 0. But then 4.1 allows us to 

deduce that BTiH^/H)-^!, and hence Ti^/HyBTi^/H) is isomorphic to 
TiH^/H), which in turn is isomorphic to SL2(K). 

5. The group generated by singular isometrics. We now let S be the set of 
all singular isometries, and G(S) be the subgroup of On which is generated by 
the elements of S. We let ftn denote the commutator subgroup of On(K, Q), 
and let On(K, Q) be the subgroup of On(K, Q) which is generated by the 
rotations. As in [4], we let 6 be the spinor norm, which is the map 
6:On(K, Q)-> K*/K*2. The spinor norm is defined as follows: suppose rre 
On(K Q)> and 7T = CTI * • • crk, where the cr, are simple isometries and £(o-j) = 
Kpt. Then 0(7r)= Q(pi)- * • Q(pk) * K*2. From [4], we know that 6 is a subjec­
tive homomorphism whose kernel is ft„(K, Q), and hence On(K, Q)/ftn(K, Q) 
is isomorphic to K*/K*2. 

Now let p be any parabolic rotation with path (s, z) where Q(s)~f(s, z) = 0, 
and Q(z)?*0. Then any other vector in (s, z) can be expressed in the form 
x = a(j3s + z), and so Q(x) = a 2 Q(z) . But p is a product of two simple 
isometries whose path lies in (s, z) and thus 0(p) = a 20 2Q(z) 2K* 2 = K*2, 
implying that the parabolic rotations all lie in ft„(X, Q). But by 2.9d, we see 
that every singular rotation can be expressed as the product of two parabolic 
rotations. Thus we have proved 

LEMMA 5.1. The group G(S) is a subgroup of (ln(K, Q). 

We can improve upon this lemma. We do this in the next two theorems. 

THEOREM 5.2. If n > 5 , then G(S) = ïln(K, Q). 

Proof. If char K = 2, we know from [4] that iln(K9 Q) is a simple group for 
n > 5 . Since G(S) is clearly a normal subgroup of £ln(K,S), we therefore 
conclude the result. If char K ^ 2, we need only check that G(S) is not 
contained in the center Zn of On(K,Q). But Z n = { l , - 1 } , and clearly no 
singular rotation lies in Z„. Hence we may apply Theorem 5.27 of Artin [1], to 
conclude that G(S) contains the group Dtn(K, Q). This again proves the result. 

We deal separately with the case that n — 4 and index 0 = 2. In this case the 
quadric is a hyperboloid and contains two families of singular lines. We denote 
these two families Ly and L2. Then any two distinct lines of Lu respectively L2, 
span the whole space, and every line of Lx meets every line of L2. Also, every 
singular point lies on exactly one line of each family. We define G(Li), 
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respectively G(L2), to be the group generated by all the singular rotations 
whose path lies in Lu respectively in L2. Let TI be a singular rotation in G(Li), 
and T2 be a singular rotation whose path lies in L2. In view of 2.9a, we know 
that Ti and T2 commute. Hence we have proved 

LEMMA 5.3. Let 7 T I G G ( L I ) , and 7r2eG(L2). Then TT1TT2 = TT2TT1. 

We now strengthen this result in 

LEMMA 5.4. Suppose that TTE G ( L I ) , and that IT fixes all the lines in Lx. Then 
ireZ4 = center of the group 04(K, Q). 

Proof. By 5.3, we know that IT fixes all the lines in L2. If TT also fixes all the 
lines of Lt then TT fixes all the point of the quadric, since every singular point 
lies on two fixed lines. But then TT is a homothety (see [1]). Since TT is also an 
isometry, we conclude that TT = 1 or - 1 . 

We now check that -le G(Li). For this purpose we decompose V into two 
hyperbolic planes V = (su s2)©(s3, s4). Then we define the following three 
singular isometries: (we assume char K ^ 2, as otherwise the result is trivial) 

7T1(X) = X+ 2[f(x, S3)S1 ~f(x, 5i)s3] 

TT2(X) = x + 2[f(x, s4)s2-f(x, s2)s4] 

7T3(x) = X + 2[/(*, Sx + S4)(S2 ~ S3) ~ f(x, S2 ~ S3)(5i + S4)] 

These are three singular rotations, and it is easy to see that they belong to 
G(Li). Now an easy, though laborious, calculation shows that the product 
/TTi7r2TT3

 = 1. 
We now choose a particular line H in L2. Recalling the definition of the 

group G(H) (Theorem 4.2), we see at once from the preceding results that 
G(H) is isomorphic to the direct product of G(Li) with O(H). From this we 
deduce at once that the factor group G(H)/0(H) is isomorphic to the group 
G(Li). Combining this with Corollary 4.3, we see that the group G(LX) (and 
hence G(L2)) is isomorphic to the group Sl2(K). Thus we have proved 

THEOREM 5.5. The group G(S) is isomorphic to G(Li)xG(L 2) if charK = 2. 
If charKV2, then G(S)/Z4 is isomorphic to G(L1)/Z4xG(L2)/Z4. The groups 
G(Lt) are isomorphic to SL2(K). 

Thus we see that the group G(S) is always the commutator subgroup 
£ln(K, Q), (see Dieudonne [4]). Thus we see why the commutator displays the 
uncharacteristic behaviour of being the direct product of two groups in the case 
that dim V = 4. This is a consequence of the geometric result that a hyper-
boloid is a ruled quadric, admitting the two families of lines. 
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