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GENERIC FREE RESOLUTIONS II 

DAVID A. BUCHSBAUM 

1. I n t r o d u c t i o n . In [1], a number of "mult i l inear" f u n c t o r s ! , / , denned for 
finitely generated free modules, were introduced. They arose as cycles in a 
generic Koszul complex, and in turn gave rise to a large family of other generic 
complexes. One of the things we will do in this paper is s tudy some of these new 
complexes in order to obtain new multilinear functors on free modules which 
appear as their cycles. 

One reason for s tar t ing this systematic s tudy is tha t work on Schubert 
calculus and Young tableaux, in particular, articles by Lascoux and by 
Towber [2; 4] , indicate a not yet completely understood connection between 
some of these ' 'mult i l inear" functors and the more classical representation 
theory. (For example, our functors L / correspond to the irreducible represen­
ta t ion belonging to the part i t ion (p, 1, . . . , 1).) 

The functors L / arose out of consideration of certain complexes, namely, 
generic free resolutions of cokernels of the maps 

Apf: APF - > APG, 

w h e r e / : F —> G is a map of free modules. T h e new multilinear functors intro­
duced in Sections 4, 5, and 6 arise from consideration of complexes resolving 
the cokernels of the maps 

APF ® AQG - + Ap+qG, 

which are the composites of 

APF ® A?G - > APG ® AQG - > Ap+qG. 

(In particular, when p + q' = rank G, we are a t tempt ing to resolve the ideal 
of p X p minors of the map f:% F —> G.) Lascoux has shown [2] t ha t certain 
irreducible representations of GL(n) occur in the minimal resolutions of ideals 
of low order minors of a matrix. Since minimal resolutions are essentially 
unique, we have further evidence of a strong connection between the irreducible 
representations of GL(n) and some of the functors introduced in Sections 4, 5, 
and 6. 

In Section 2, we review those par ts of [1] t ha t are required for this paper, 
and in Section 3 we observe what happens when we assume tha t we are dealing 
with a graded ring. Using the results of Section 3, we are able to prove the 
acyclicity of certain free complexes, and thereby obtain new functors of free 

Received March 3, 1977. This research was supported in part by NSF Grant MCS 72-
04584 A04. 

549 

https://doi.org/10.4153/CJM-1978-049-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-049-4


550 DAVID A. BUCHSBAUM 

modules LQ
p

lQ
p
2, KQ

p
lQ

p
2. In fact, we indicate in this section how one might generate 

a whole sequence of multilinear functors, bu t we do not s tudy this general 

procedure here; we will do this in a subsequent article. 

In Section 5, we give an explicit construction of a generic resolution of the 

cokernel of 

A?F® G-+ AV+1G 

for a m a p / : F —> G, when rank F = rank G. We do this in characteris t ic zero, 
since this enables us to make precise a split t ing of a certain map . T h e procedure 
used in Section 5 suggests a general procedure which we outline (very sketchily) 
in Section 6. I t is here t h a t certain other functors arise; bu t , except in certain 
special cases, little can as yet be said about them. Nevertheless, we do use this 
procedure to construct a resolution of the ideal of (ft — 2) X (ft — 2) minors 
of an (ft — 1) X ft matr ix, because in this case our functors come up in certain 
simple exact sequences. This reproduces a result of Poon [3], a l though our 
construction is so far restricted to the case of characterist ic zero. 

2. P r e l i m i n a r i e s . Throughou t this section, rings will be commuta t ive with 
identi ty, and free modules will always be of finite rank. If the ring is graded, 
" c o m m u t a t i v e " will mean commuta t ive in the graded sense. Thus , if F is a 
free i^-module, and S(F) (resp. D(F)) denotes the symmetr ic (resp. divided 
power) algebra of F, then we must regard the elements of F as having degree 
2 in S(F) (resp. D(F)). However, we shall denote by Sq(F) (resp. Dq(F)) the 
elements of degree 2q in S(F) (resp. D(F)), and thereby re turn to the classical 
notat ion for polynomial rings. As usual, AF will denote the exterior algebra 
of F] in this algebra the elements of F are of degree one. 

If F is a free /^-module, we define the free /^-modules Lq
vF as follows. T h e 

identi ty map F —» F yields an element cF £ F ® F* which may be considered 
an element of S F ® AF*. As such, cF

2 = 0. Since S F is an SF-module , and 
AF is a AF*-module (as described in [1]), SF ® AF is an S F ® AF*-module. 
Multiplication by cF on SF ® AF converts S F ® AF into a complex whose 
homogeneous components look like 

(*) . . . > Sq-iF ® AVF^L SqF ® A25"1 F ^ Sq+1F 

® AP~2F > Sg+2F ® A p ~ 3 / ' > 

and LF = \Lq
vF) is defined to be the module of cycles of this complex. In 

part icular , 

LfF = Ker \SqF ® Kv~lF^±\ Sq+1F ® Ap-2FJ 

and, because the complex (*) is acyclic, wTe also have 

L*F = Coker \Sq^2F ® AV+1F^X S^F ® APFJ q ^ 1. 
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Notice that 

Lq F = SqF for all q 

L?F= AVF for all p 9* 0 

^ LqF = L0
PF = 0 for all p ^ 1, and all g 

L//7 = 0 for all p > rank F. 

Also, if rank F = n, then 

(2) Lq
nFttS<-iF® AnF. 

(All of this may be found in § 2 of [1].) 
Letting DF denote the divided power algebra of F, we have DqF œ Sq(F*)* 

and DF 0 A/7 is an SF* 0 AF-module. Considering the element cF an element 
of 5T7* 0 A/7, we have the complex 

(**) . . . > Dq+2F 0 Ap-3F-^±i Z>ff+1F 0 A*'2F ^ DqF 

0 A^F^D^F 0 A*F > . . 

which is also acyclic. We define 

K*F = Coker \Dq+lF 0 AP~2F^±XDQF 0 A p~v) . 

We therefore also have 

K*F = Ker (ZVi^ 0 ApF->Dq-2F 0 AP+1F) ^ 1. 

and, by dualizing, we see that 

K*F &L*(F*)* or K»(F*) = (L*F)*. 

Corresponding to (1) and (2) we have 

K^F = DqF for all q 

KJF = APF for all p ^ 0 
} Kq°F = K0*F = 0 for all p ^ 1 and all q 

K*F = 0 for all p > rank F. 

(2') Kq
nF œ Z V i F 0 Aw/< if n = rank F. 

To show that Lq
pF is free, we showed in [1, Proposition 2.5] that 

L*(F 0 R) ^ L / F 0 A^Sç-dF 0 JR) 

and hence, by induction, Lq
v is free and 

if rank F = n. 
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Similarly, we have 

K*(F ® R) œ KPF ® A*-1 F ® Dq.x(F ® R); 

KQ
VF is free and its rank is equal to that of Lq

pF. 
In [1] we did not introduce the notation Kq

pF and simply wrote LPF* to 
denote Kq

p(F*). However, it is useful to notice that if R contains the rationals, 
then the algebra DF is isomorphic to SF and the complex (**) may be re­
placed by 

(***) . . . Stt+2F ® A*-*F -> Sq+1F ® AP~"F -> . . . 

where the boundary operator involves the usual partial derivatives d/dX t if 
Xi, . . . , Xn denotes a basis for F. Thus K/(F*) may be interpreted as the 
module of exact ^-forms of degree q — 1. For this and other reasons, we shall 
use the functors Kq

p in this paper. 
If y. F —> G is a map of free 7^-modules, with m = rank F and n = rank G, 

we have the complexes introduced in § 3 of [1]: 

Vq-
r(<p):0-+KZ?T+1G> ® L^F^K^G* ® Z ^ M . . .^KVG* 

®LQ
TF^L?F 

and 

L / ( ^ ) : 0 > K7-TG* 0 L , m F _ ^ - > X^lL'iG* ® L™"^ — ^ 

... _A^rp+1G* <g> L«+1F^->L:F^IH L/G. 
The complex L/(<p) is the complex I/,r(<p) augmented by the map Lp{ip) 

where r = n + 1 and Lq
p(<p) is the map induced by <p. Because the maps d, 

di and Lp
q(ç) are described rigorously in [1], we will give here only an heuristic 

description of them. 
The map <p: F —> G induces the map A<̂ * : AG* —> AF* and thus we have 

the operation of AG* on AF. To define a map 

K/G* ® L;F-*K^G* ® L;-1^, 

we regard K^G* as a factor module of 

DXG* ® A ^ G * 

and LQ
VF as a submodule of 

SqF ® A^F. 

Thus we shall represent a "typical" element of K^G* ® L/Fasco ® 7 ® i7 ® 
a where w ® 7 £ AG* ® A"_1G* and H ® a is a sum of elements in 5ffF ® 
AV~~1F. Letting ei, . . . , en be a basis for G, and £1, . . . , £n the dual basis for G*, 
we send the element a > ® 7 ® i 7 ® a : t o ]£(dw/def) ® 7 ® # ® £<(a) where 
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d/det denotes the derivation on DG* induced by e7 G S (G) and £ t (a) is the result 

of operat ing by £?: G G* on a G AF. We thus end up in DX-iG* ® A ^ G * ® 

5çF (g) AV_2F and, heuristically d(œ ® y ® H ® a) = £(dco/dez-) ® 7 ® 

# ® £,(«). 
The map dx\ KisG* ® Lq

lF —» L!~SF is easy to define since KisG* is simply 
A5G*. Again representing an element of L / / v as an element H ® a G 5 r y / ; 0 
A ' - 1 ^ , and taking 7 G A*G*, we define d^y ® H ® a) = # 0 7 (a ) G 5ffF 0 
A'-*-1/?. 

Finally, the map Lq
p<p: LPF —> L / G is just t ha t induced by the map 

SQ(<p) ® Ap~V: 5 , F ® A ^ F - ^ G ® AP~'G. 

With this notation set, we can s ta te the following result of [1]. 

T H E O R E M 2.1. [1, Theorem 3.1]. Let R be a noetherian ring, and suppose that 
<p: F —» G is a map between free R-modules of ranks m and n, respectively. Denote 
by In(<p) the ideal generated by the minors of cp of order n. If grade In((f) = m — 
n + 1, thenLQ

p(cp) is a free resolution of Coker {Lp<p: Lq
vF —» LPG). 

3. T h e graded case . We now turn to the case where the ring R is graded. 
Since wre shall want R to be strictly commutat ive , we may suppose t ha t R is 
zero in odd degrees. However, since we would, in tha t case, be tempted to 
divide all the degrees by two, we shall simply write R = \Jy^o Ry and assume 
tha t R is commutat ive in the classical sense. The free /^-modules we consider 
will all have the canonical grading, i.e. F = R ® RQ F0 where F0 is a free 
j^o-module. If G = R ® R() G0, a map <p: F —> G of degree d is given by a map 
cp0: F0 —> Rd ® G0. 

I t is clear tha t if F = R ® Ro F0, then 

SR(F) = R®SR0(F0) 

AR(F) = R®R0 ARQ(F0). 

From this it follows easily tha t 

L*F = R ® L*Fo. 

Given the map (p: F —> G induced by (p0: F0 —> Rd ® Go, we obtain the maps 

S W : S(F)->S(G) and A(*>): A(F) -> A(G). 

On the graded components, these maps are: 

Ry ® Sq(F0) - » Fy+qd ® 5ff(G0) 

i?7 ® Ap(F0)->Ry+pd ® Ap(G0). 

Consequently, the components of the map LQ
p(<p): Lq

p(F) -+LP{G) are: 

Ry ® LQ
pFo - » i?7+(p+ff_i )d ® L / G 0 . 
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Similarly, we have 

DR(F) = R ®Ro DRQ(Fo), K*(F) = R ® K/(F0), and 

K*(<p): K*(F) -> K*(G) has components Ry ® # / ( F o ) -» 

^7+(P+c-Dd ® Kq
p(G0). 

We must next transcribe the maps that occur in the complexes L?,r(<p) to 
the graded case. That is, we want to describe the homogeneous components of 
the maps 

d:Kx"G* ® L/F-tK^G* ® Lv~lF 

and 

duKi'G* ®LQ
tF->Lt~sF. 

It is easy to see that we get: 

d:Ry® K/Go* ® L/Fo -* i?7+d ® ^x-iG0* ® L ^ o 

di: Ry ® XiU* ® V^> -> 2^+,,, ® i r ^ o . 

Taking the grading into account, we see that the complexes Lp
q'

r(<p) and 
L/(<p) of Section 2 are the direct sums of complexes: 

Lp
q'

r(<p)k: . . . -> 74_(r_p+1M ® Kr
2~

pGo* ® £J + V 0 -» Rk-(r-p)<i 

® x r w ® L/FO ̂  ** ® i/^o 

Lç (<£>)*: . . • —> Rk-{n+q)d ® Xi Go ® Lq Fo—> Rk-(P+q_i)d 

®L*Fo->Rk ® L/Go-

4. New complexes and modules from old. In this section we will apply 
Sections 2 and 3 to the following situation. 

We let R be a ring, and let F and G be /^-modules of ranks m and w, respec­
tively. Denote by 5 = YL Sv the symmetric algebra S(F ® G*), and by cG the 
element in G* ® G C AG* ® SG which is the image of 1 under the map 
R —> G* ® G corresponding to the identity map of G. Using cG we define 
the map 

<p0: F -» F ® G* ® G = 5i ® G 

to be 1 ® cc . This defines the map 

<p: S ® F-+S ® G 

which is a morphism of free ^-modules of degree 1. 
If we identify S with the polynomial ring R[Xij] with 1 ^ i S m and 

1 è j è n, we see that, with suitable choice of basis, the matrix corresponding 
to (p is the generic matrix (X tj). 
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If R is noetherian, we may apply Theorem 2.1 to see tha t the complexes 

L/(<p) are acyclic and so, too, are the homogeneous components L/(<£>)*, 

since grade In(<p) is m — n + 1. If R is not noetherian, this is still t rue as can 

be easily seen by observing tha t R is the direct limit of noetherian subrings 

and noting tha t the si tuation is generic. 
Consider now the special case when n = 1. In tha t case we need only look 

a t the complexes L , / ^ ) ^ . and, identifying K\lG* with R, we obtain the 
acyclic complexes 

Bq,k: . . . -> Sk-2F ® Lq*F -> Sk-iF ® La*F -> SkF ® 5 , F -> 5ff+fcF, 

with the map m on the extreme right an epi for k ^ 0. In fact, this map is 
simply the product map in the symmetric algebra of F. 

Since the complexes B ^ are free acyclic complexes, the cycles are projective 
7^-modules. We will shortly see tha t they are in fact free. 

T h e maps in the complex BqJ- may be described as follows. We saw in [1] 
tha t LF is an 577 ® A/7*-module and hence a A/7*-module. S F is clearly an 
SF-module. T h u s S F (g) LF is an S F ® A/^-module . Let t ing cF be the element 
of F ® F* C S F ® A/7* analogous to the element cG described above, the 
maps S F ® LF—+SF ® LF in the complex Bql are simply multiplication 
by cF. 

Dualizing Bqk one sees tha t the complexes 

Cqy. 0-*Dg+kF->DkF ® DqF-^Dk^F ® Kq*F-+Dk-2F ® K*F-+. . 

are also acyclic, where the map Z^ / , —> A^ ® ^ ç is the (&, g) component of the 
diagonal map in the divided power algebra, and the other maps are multiplica­
tion by the element cF' G F* ® F C S F* (g) AF. 

T h e map Dq+kF —* DkF (g DqF may also be described as follows. T h e algebra 
SF* ® D / 7 is an algebra with divided powers, namely (x ® y) ( ç ) = xq ® ;y((Z). 
In particular, the element c;7/ G F* (g) F has divided powers and we may 
consider cF

r{(1) £ S^/7* ® £Vy- The map Dq+f: —> P/-F ® Z^/ 7 is the composition 

1 /Ov r '(?) 

ZV* = DQ+kF ® 7? y ) D , + , F ® 5 ,F* 

y ® 1 
® £ , F « > Z>*F ® DqF, 

where v: Dq+kF ® SqF* -+ DkF is the operation of Si7* on D/7 . 
For convenience we state the above as 

PROPOSITION 4.1. Let F be a free R-module of rank m. Then for all positive 
integers q and k, the complexes BQtk and Cq>k above are acyclic. 

LEMMA 4.2. Let F be a free R-module of rank m, and let p, q be non-negative 
integers. Then the complex 

Dp.q: 0 ->Kp
q+1F-±KpF ® F-> . . . ->K2

PF 

® A ç ~ V - > APF® AQF-> A p + 7 7 - > 0 
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is exact. The map APF ® AQF —> AP+QF is the usual multiplication in AF. The 

other maps are the operation oj c F G S F* ® AF. 

Proof. T h e case p = 1 is simply the s t a tement t h a t d ^ is exact, and we 

now proceed by induction on p. Consider the double complex: 

. . . -> DTF ® A l " ^ (8) A Î _ V -> Z>rF <8> Kl~rF ® A9~lF -> £>rF <8> Ap~rF <8> A V -> DrF ® Ap+Q~rF -> 0 

I I I I 
. . . - » - Dr_iF <8> KVT+lF <8> Ae~2F^DT-iF ® Kp2~r+1 ® A8-1/? -> D ^ F ® Ap - r + 1F <8> AqF-^DT^F ® AP+Q~T+1F-+Q 

I I I I 

. . . -> F (8) / n - 1 F (8» Af l-2F -> F <8> i^2~V <8> Aff_1F -> F <8> AP~V ® A"F -> F <8> A p + Î~V -» 0 

I I I I 

. . . -> # 3
P F <8> A*~V -> # 2

P F ® A9"V --» A V (8) AtfF -* A p + V — 0 

I I I I 
0 0 0 0 

T h e rows of the complex are simply DrF ® T)p-r<q, and the columns are 
Cr>P-i ® AQ~r+1F. I t is easy to check t ha t this is indeed a double complex. 
By 4.1 we know tha t the columns are exact, and by induction we have t h a t all 
bu t the bot tom row are exact. The usual spectral sequence a rgument yields 
the exactness of the bo t tom row, i.e., DPt(7 is exact. 

Our next step is to consider complexes of the form: 

DP>q,r: 0-+Kq
P+TF->Kr

lF ® Kp
QF-* . . .-^K^F 

® K2
qF-+Kr

vF ® AQF->Kp
T

+gF->0. 

The right hand map is jus t the operation of AF on KF. T h e left hand map is 
the composition: 

R ® KQ
p+rF

 CF'T ® *> DrF ® SrF* ® K9
p+rF

 l ® M > DTF 

® Kp
qF = KT

XF ® K/F 

where cF'{T) is the r th divided power of cF' in DrF ® SrF*, and v is the operation 
of SF* on KF. 

T h e maps in the rest of the complex are given by the operation of c/ £ 
AF ® SF* on KF ® KF, where we t rea t the first factor of KF ® KF as a 
AF-module, and the second factor as an 5 ^ - m o d u l e . 

PROPOSITION 4.3. / / F is a free R-module, and p, q, r are non-negative integers, 
then T)p,Q,r is an acyclic complex. 
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Proof. In this proposition we proceed by induction on r, the case r = 0 being 
trivial and the case r = 1 being Lemma 4.2. Assume, then, tha t r ^ 1. I t is 
easy to show tha t the following diagram is commutat ive : 

0 

1 
0-> i C / F <g> X / F -> 

I 1 
O-^Dr- -iF <8> KQ

P+1F-+ 

II 

£> r_iF <g> F ® KP
QF-+ 

I 
0^DT. . iF ® KQ

p+1F-> z^_iF <g> X / F -> 

1 1 
0 0 

0 0 0 

1 I I 

X r ' F ® K2
qF -> X r

p F ® A'F -> X?+ 9F -» 0 

1 I I 

>I> r_iF® AP_1F ® KjF^Dr-iF ® APF ® AQF-+Dr^F® Ap+QF-+0 

1 i I 

I 1 I 

0 0 0 

The top and bot tom rows are the sequences D r , ? i r and Dp+i i (7 i r_i respectively 
with their tails lopped off. The middle row is Dr-\F 0 T>qtP. The vertical maps 
are the inclusion maps (on top) tensored with appropriate KFs, and the 
canonical surjections, also tensored with KF's. Thus , the columns are exact, 
the middle row is exact by 4.2, and the bot tom row is exact except a t the 
extreme left end, where the homology is K$+rF (by our induction hypothesis) . 
I t follows, therefore, tha t the top row is exact except a t the extreme left end, 
and the homology there is also K$+rF. I t only remains to show tha t the map of 
K$+rF into Kr

lF ® Kq
pF is the one described for the complex D^ > ç r . T o see 

this, it suffices to prove tha t the following diagram is commutat ive : 

R ® Kq
p+TF- cF + Dr-lF 

f{T) 
cF'v" 09 1 

DTF <g> SrF* <g> K9
p+rF 

DrF ® Kp
qF >DrF 

T h e proof is probably most easily accomplished by choosing a basis X\, . . . , xm 

for F and the dual basis £i, . . . , £w for F*. Since c/ is then E #* ® £<> we see 
t h a t c / w = E xit) ® £r where x (^ means Xi ( f l ) . . . xm«m\ ¥ means &1. . . £j>\ 
and where f = (fi, . . . , fw) runs over all w-tuples of weight &, i.e., E £i = &• 
If one takes a " typ ica l" element H (g) a of K$+rF, one obtains the element 

£*«"> ® *, ® £<£'(#) ® « 

with f 's of weight r — 1 by going to the right and down in the diagram. Pro­
ceeding around the other way, one obtains 

E £f(*(<0) ® Xi ® f H ® a 
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where the o-'s run over w-tuples of weight r. These two terms are clearly the 

same, and the proposition is proven. 

As usual, we may dualize all of the complexes described above, get t ing a 
whole family of others. For the sake of completeness we list these also: 

Ep>Q,r:0->LPSQF->Lr
pF 0 A9F-*LrlF 0 UF-* . . . -> STF 

®L/F-+LQ
p+rF->0. 

As we have already remarked, the cycles (or boundaries) of the complexes 
DptQtr, Rr,q,r are projective /^-modules. However, since the functors DF, SF, 
AF all commute with base change, so also do the functors LF and KF. I t 
therefore follows t ha t the cycles of these complexes also commute with base 
change. If the ring R is the ring of integers, then we see t h a t all these cycles 
are not only projective but free. If R is any commuta t ive ring, and F a free 
7^-module, then F = i^ ® z F0 where FQ is a free Z-module. Hence we see tha t 
all these cycles (or boundaries) , are also free /^-modules. 

Definition. Let F be a free 7^-module. Define 

ifçfâF = Ker (Ll\F 0 LP2~lF-+ LÏ1+1F 0 Lv
q\T

2F) 

K%\F = Coker (KP
Q\+1F 0 K^F-+KP

Q\F 0 Kv
q

2~xF). 

PROPSOITION 4.4. The modules Lp
q
lP

q;F and K^fyF are free R-modules of finite 
rank. 

I t is clear t ha t we may continue the procedure described above to obtain 
mult iply indexed L's and K's. In fact, it is easy to outline the general pro­
cedure as follows: 

Let A and F be /^-algebras, and let M be a A 0 F-module. Suppose we have 
an element c G A 0 T such tha t c2 = 0. Define Li(Af) = Ker (c: M -^ M). 
Then L\(M) is also a A 0 T-module. We may therefore consider LX{M) 0 
Li(M) a A 0 T-module with A operat ing on the first factor, and F on the 
second, and define 

L2(M) = Ker (c: L ^ 0 L ^ -> L ^ 0 L^). 

Proceeding in this way, we define 

Ln(M) = Ker (c: Ln.x{M) 0 Ln_x{M)-* L^M) 0 Ln^(M)). 

Let t ing A = AF*, F = SF, M = AF 0 SF and c = cF, the first two steps 
of the procedure above describe our modules L/F and lFq

lV
q\F. 

Let t ing A = AF, F = SF*, M = AF 0 DFznd c = cF'', the first two steps 
of the procedure above describe our modules Kq

pF and Kp
q
lP

q\F. 
In a subsequent article we shall explore these modules and the complexes of 

which they form a par t . We suspect t ha t the complete sequence of modules 
LVql

v'.'
Vq\ describes the irreducible representat ions of the general linear group 

(at least in characterist ic zero). 
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We have known for some time that the L/F's correspond to the partition 

( g , l , l . . . , l ) , 

and it appears that the L/glP
q;F's correspond to sums of certain of the irreducible 

representations of the general linear group which can be made quite explicit. 
However, at this point the connection is not completely understood. 

5. Some lower order minors. As we mentioned in the introduction, we are 
interested in finding complexes associated to the lower order minors of a 
matrix. Iff: F —•> G is a map of free modules with m = rank F and n = rank G, 
we let Iq be the ideal generated by the minors of/ of order q, i.e., 

IQ = Im{AqF ® An~qG-> AnG). 

We know that for all p g min (n, m), the cokernel of 

fp>Q: APF® An-«G-> An~^pG 

has the same support as R/Iq [1], and we also know that the generic height of 
Iq is (m — q + \){n — q + 1). Suppose, then, that we have a canonical way 
of writing down a free complex 

X:0 >Xa >Xa^ >. . . >X2 > AVF ® An~qG ^ An~q+PG 

where a = (m — q -\- \){n — </ + 1), and that we want to show it is grade 
sensitive to the ideal Iq. Then, as pointed out in [1], we may first consider the 
case when / is a generic matrix (Xi,) and prove acyclicity there. In order to 
prove that acyclicity, it suffices to prove it after localization at primes of height 
less than (m — q + 1) (n — q + 1), in which case Iq blows up to the whole 
ring. We are therefore reduced to proving that the complex X is acyclic under 
the assumption that R is a local ring and one of the q X q submatrices of/ is 
the identity. 

To illustrate, suppose/: F —•> G as above, and that m ^ n. We want to get 
a complex associated to the minors of order m; in fact, we want to resolve the 
cokernel of 

fv,mAvF ® An-mG-+ An-m+pG 

for all p ^ m. We write down the complex 

K(/,,») : 0 > Kl-m+lF > Kl^F ®G 

. . . * K»'F ® A"-m-2G > K2
PF ® A"-,"-1G > A."F 

https://doi.org/10.4153/CJM-1978-049-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-049-4


560 DAVID A. BUCHSBAUM 

where we regard KF ® AG as an S F* ® AF-module by having SF* operate 
on KFand AF on AG. All the maps (except frjn) are the multiplication by cF'. 
(It is easy to check that the composition 

K2
pF ® An~m-lG -» APF ® An~mG -> An~m+PG 

is zero.) Notice that this complex is of length n — m + 1, which is the height 
(and grade) of the generic m X m minors ideal. Therefore, to show that 
K(/PiW) is grade sensitive to the ideal Im, we need only show that it is acyclic 
when R is local and an m X m submatrix of/ is the identity. In this case, by 
simple change of basis, we may assume that the m a p / is simply the injection 
of F as a summand of G, i.e. G = F © G' and F —» G is the canonical inclusion. 
Making the identification 

An-mG = ^ A ^ g A!l-m-qG', 

we see that the map/p ,m is just the direct sum of maps: 

n—m n—yn 

£ APF ® Af,F ® A"-"!-?G' - • £ A'+«F ® An-'"-5G'. 
ç=0 ç=0 

Applying 4.2, we have an exact sequence for each q: 

0 -> KP
+1F ® An~w"<rG' -» X / F ® F ® An"m~<rG' -> . . . 

. . .->K2
PF ® A ^ F ® An-OT-ffG' -> APF ® A*F ® An"m"ffG' -> AP+*F 

® An-m- 'G'-» 0 

and this sequence is of length q + 1. The sum of these sequences therefore is 
exact and taking the sum, we see that in dimension / we get 

n—m n—77i—l+l 

£ KfF ® A."-'+1F ® A"-"'-'G' = A:,V ® S A'/-' ® A"-«- '+i- 'G ' 
g=l—l t=0 

where t = q — / + 1. This is clearly the term Kt
qF <g> An~m~I+lG and, since 

this is the /-dimensional term of the complex K(/PiW), we see that K(/P,m) is 
acyclic when F —* G = F © G' is the injection. Consequently we have proven 

PROPOSITION 5.1. Let R be a noetherian ring, F and G free R-modules of ranks 
m and n respectively, with m ^ n. If f: F —-> G is a map, then K(/P>w) is a free 
complex which is grade sentitive to the ideal Im(f) generated by the minors of f of 
order m. In particular, the homology of K(/;,iW) is zero in all positive dimensions 
if and only if grade (Im(f)) è n — m + 1. 

Suppose now that F' has rank m + 1, G has rank n and / ' : F' —» G is a map. 
Then F' = F © R, and we may assume t h a t / ' is the sum of two maps/ : F —» G 
and b: R —> G. The problem still is to associate a complex grade sensitive to the 
ideal Im(f) of m X m minors off. In this case, the grade of Im(f) is generically 
2(w — m + 1) so we would like a complex of that dimension. We see that we 
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have the beginnings of what may be a double complex if we consider: 

o 
I 

0->KÎ-mF <8> AnG 0 AmF'-> K"n^m_^F <g> A*_1C* ® AmF-+ . . . —> APF ® Am+1G* ® A m F—• Am _ p + 1G* ® A m F —> AP_1F—> 0 

1 
A""1/*" ® G 

1 

I 

( P ) A P ~ V <8> A""™"^ 

I 
A P _ 1 F ® A"_mG 

0-» Kp„-m+iF - • Kp
n„mF ® G - • . . . - > K2

pF®An~m'1G -»• A P F <g> A""mG - > An~m + PG - > 0 

The bottom row is simply the complex K(/P>m). The map /* is given by 
M(^I 0 «2) = fp-iim(cii ® a2) A b while the maps 

A*"1/? ® AkG -> A2'-1^" 0 Ak+1G 

are just ui (8) a2 —> ai ® a2 A fr. The top row is obtained by considering the 
map/*: G* —> 77* and the complex 

0 -> Kp_mF ® AnG -> i C - i / 7 ® AW_1G* - > . . . - > À 7 F O AW+1G* -> APF 

® Am+1G* -» Am-p+1G* -> Aw"p+V* 

of [1], which we know is also grade-sensitive to the ideal Im(f). Tensoring each 
term of the above complex with AmF and identifying Am~p+1F* ® AmF with 
AP~1F} we get the complex on top. Notice that the column in the diagram has 
length n — m + 1 so that if we can fill in the rectangle suitably we can get a 
double complex whose total complex will have length 2(w — m + 1). Observe, 
too, that if Im(f) = R, then the top and bottom rows are exact. If we could fill 
in all the rows acyclically, then the total complex would also be exact and we 
would have a candidate for a complex K(/p im). 

What we propose to do in this section is carry out this program in detail for 
one case. In the next section we will outline the techniques and difficulties 
encountered in attempting to push the program further. 

Let F be a free module of rank n — 1, G a free module of rank n, and let 
/ : F —> G, b: E —> G be maps. In this case, the diagram (P) becomes 

0-+ APF® A*G* ® An"V-> An~pG* ® A n "V-^ A p "V->0 

Ï 
(Pi) Ap~lF ® G 

0 -> K2
PF H APF ® G ^ AP+1G -> 0 
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for we are a t t empt ing to construct a complex K(/p i n_i) associated to the minors 

of order n — 1 of the m a p / ' : F ® R —> G determined b y / and &. 

We now regard the top complex as a complex over the zero module, and 

we regard 

0-+F^G 

as a complex over the cokernel of/. If we take the tensor product of these two 
complexes, we obtain a complex over 0 ® C o k e r / = 0; 

(*) 0 -> APF ® AnG* ® An~lF ® F - > An~pG* ® A?-1 F ® F ® A?F 

® A"G* ® A"-1 F ® G -> A^F ® F 0 An~pG* ® A91-1 F 

® G - > A27-1^ ® G - > 0 

When we assume t h a t / : 77 —•> G is a summand of G, we have the acyclicity of 
the top (and bo t tom) row, and 0 —> F —» G is a resolution of C o k e r / , so t ha t 
the homology of the complex (*) is Tor (0, C o k e r / ) = 0, i.e. the above tensor 
product is acyclic. 

If wTe identify the modules AA"G with A"~A'G*, the bo t tom row of (P i ) becomes 

(1) o -> K2
PF A APF ® An_1G* -£ Atl~p~lC -> 0 

where the map g is just the operation of AVF on An-1G*. T o describe the m a p h 
more aesthetically, we replace K2

PF by K2
VF ® AnG*. T h e m a p h is then the 

composition: 

K2
PF ® A"G* d ® \ APF® G® AnG* * ® \ APF ® An_1G* 

where rf: K2
VF -+ AVF ® G is the map in the bot tom row of (P i ) and v: G ® 

A*G* —» A"_1G* is the isomorphism induced by the operat ion of G on A"G*. 
Replacing K2

VF in (1) by i £ 2
p ^ ® A"G*, and then tensoring the whole complex 

with An~lF, we obtain a complex: 

(**) 0-^K2
pF ® AnG* ® A " - 1 ^ - * APF ® A ' ^ G * ® A " - 1 / ' - » Aw-p"1G* 

® A ^ ^ - ^ O . 

We now define a m a p of the complex (**) into the complex (*), which will be 
a monomorphism. This will make the cokernel acyclic when both (*) and (**) 
are acyclic. 

(**): 0 - > K<?F ® A"G* <g> An~lF h A" F ® An_1G* ® A"'1 F ^ A^^G* ® A'"1 F -> 0 -> 0 

I<K3 [Ç2 [if I I 

( * ) : 0 ^ APF <g> A"G* ® A"'1 F ® F ^ An~pG* ® A " ~ V <g> F ^ A 7 ^ <g> F i A " - 1 / ' ® ( 7 - • 0 

0 A"/'" <g> A"G* <E> A " - 1 ^ ® G © A " - P G * <8> A'"1 F <g> G 

The map ç\ is the sum of two maps 

<pn: An-*~lG* ® A " - 1 ^ - * A^F ® F 

<p12: A ^ - i G * ® A " - ^ - > An~pG* ® A*-1^ ® G. 
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The first one, <pn, is the composition 

A ^ ^ G * ® A"-1 F l ® Al> AT^G* ® AW-2F ® F " ® * > AP"V ® F 

where Ai: An~{F-+ An~2F ® .Fis the indicated component of the diagonal map, 
and^: kn-p~lG* ® An~2F-* Ap~lF is the operation of AG* on A/<\ 

The second map, (pn, is the composition: 

An~p-lG* ® A11-1 F X^CG01
y A ^ - ' G * ®G*®G 

® An~lF. ?-®_7 > An~pG* 0 An~lF ® G 

where cG: R —> G* ® G is the usual element, pi stands for multiplication in 
AG* and F: G ® An~lF—> An~lF ® G is simply the interchange map. 

To define the map <p2, we define two maps 

<P2i: AVF ® A ^ G * ® An~lF-> An~pG* ® A71"^ ® F 
<P22'- APF ® An~lG* ® An~lF-> APF ® AnG* ® A71"1/? ® G. 

(P2i is the composition: 

APF ® A'^G* ® A n ~ V - A l 0 1 ® *> AP~V ® F ® AW~XG* 

® AW~V -® r > AP"V ® A^G* ® An_1F 

® F ^ ® 1 0 1
) A ^ G * 0 A-V 0 F 

where Ai is as before, T': F ® A'^G* ® An~lF -> A^G* ® A*"1^ ® G is 
just an interchange, and v. Ap~~lF ® AW-1G* —» An_;pG* is the operation of AF 
on AG*. 

The map <p3 is simply the composition: 

X2
PF ® AnG* ® A w - V — l ® i > APF ® F ® A*G* 

0 An-l/7 1 ® ? ' ^ ApF 0 A n G * 0 An-1F ^ f 

where i: K2
PF —» A7;F ® F is the inclusion map, and F" is the obvious inter­

change. 
Actually, the map <pi is <pi2 — <pn- The map <p2 is <̂ 2i ± ( — 1) ^22. 
We will briefly sketch the proof that these maps do provide a map of com­

plexes. The major thing we shall leave out of the proof is consideration of signs. 
To see that dupi = 0, we take 

P12G8 ® a) - <pu(P ® a) = E P A £i(a) ® xt - E P(aj) ® / ( a / ) 

where Ai(a) = E ^ ® #/> {#?•} a n d {£*} are a basis and dual basis for G, 
G* respectively. But 
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so that 

E M £,(a) ®Xt=Z P(aj) ® £,(a/)*< = E Pkh) » / (<*/) . 

The essential part of the proof that d2(p2 = <Pi52 is the formula: 

ai(j8)(a2) = E ± «i, A /3(«i/ A a2) 

where A(«i) = E «ij ® «i/> au oc2 G A/7, /3 £ AG*. This fact can be found in 

That dzçz = ^2^3 is straightforward. 
We will now see that <pi, <p2, and <̂ 3 are monomorphisms, actually split 

monomorphisms. 
The map <̂ 3 is essentially an inclusion; its cokernel is AP+1F ® AnG* ® Aw_1/\ 
The map 2̂2 is essentially the identification of An_1G* with G, so it is an 

isomorphism. Therefore ip2 is a monomorphism whose cokernel is isomorphic 
to An~pG* ® A71-1 F ® F. 

Finally, the map çn is essentially the formal map 

\n-P-lQ* _> Kn-pQ* 0 g 

given by multiplication by cG. If we dualize this map, we obtain 

An~pG ® G* -> A^-^G 

which is just the operation of G* on AG. If we identify A*G with A"_A"G*, the 
above map is seen to be the split epimorphism 

A^G* ® G* -> Ap+1G* 

whose kernel is K2
PG*. Thus we see that the map cpi2 is a split mono whose 

cokernel is isomorphic to (K-fG*)* ® An~1F œ L2
PG ® An~1F. Consequently 

the map <pi is a monomorphism whose cokernel is isomorphic to 

Coker (<p12) © A*-1/? ® 7<\ 

Because the split monomorphism AAG* —> AÂ+1G* ® G come up so often, it is 
convenient to have a notation for the cokernel. 

Definition. The cokernel of AA"G* —> AA+1G* ® G is denoted by rF\+lG*. 

T%+1G* is a free module isomorphic to iD>~a+1)G*. In this notation, we have: 

Coker <px = 7TPG* ® Aw~ V 0 A*"" V ® F. 

Taking the cokernels of the maps (pu we obtain the complex: 

0 -> Ap+lF ® ABG* ® A^F-^U An~pG* ® AW~V ® / ' 

- ^ A*"1/? ® F © r r ' G * ® An~lF^U A*-1 F ® G -> 0. 
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As we remarked, this complex is acyclic when the map / : F —> G is split. 
Since the above modules were identified as the cokernels of <pi thanks to the 

splitting of certain canonical morphisms, it is necessary to make explicit the 
maps à I induced by the maps d{. 

Let 

a: Aw-pG* ® AnF ® G -> A^-^G* ® AnF 

be a map splitting <pi2. In case of characteristic zero, this would just be 

<r(0 ® ai ® a2) = 7—77Û2M ® «i. ^ + 1 

Straightforward calculations show: 

di'(0 ® ai ® a2) = /?(ai) ® a2 ± (1 ® f)ài(<r(P ® a2)(«i)) 

- /3(ai) ® a . i - - - — X a2(/3)(aij) ® / a i / (in char 0) 

where Ai(ai) = X) «1./ ® «1/ G A*~2^ ® ^ 

d2'(0 0 ai ® a2) = /3(ai) ® a2 ± /3 ® ai ®/a2 =b Ai(d(0 ® rz2)(ai)) 

= jS(ai) ® a2 db J~®~âT®fâ2 ± —j—r Z «2(/?)(fli,) 

® a i / (in char 0). 

dz'(ai ® 0 ® a2) = X) ai*(0) ® «2 ® a i / . 

Our final step is to fill in the empty spaces in (Pi). That is, we must now find 
maps tii, 112, Vi, v2 making the following into a double complex: 

0 > A"F ® AnG* ® A""1 F > A"""G* ® A""1 F > AV~1F 

(Q) 0 • AP+1F <g> A"G* <8> A " _ 1 F - ^ > A"-pG* <8) A"-1/-' <g> /< - ^ 1 A"" 1 / - <8> F _^L* A P _ V <g> G 

0 7 T P G * ® A"^1/' 

X 2 V - ^ APF ® G -?±-> A'+ 1G 
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We define the maps as follows: 

Ui(/3 ®a) = /3®a®b± Ai(a(/3 ® b)(a)) 

= Jl®~a~®~b ± — 7 - 7 X) b(fi)(aj) ® a/ (char 0) . 
P "T 1 

«2(ai ® 0 ® a2) = Z (b A ai,-) (0) ® a2 ® a i / . 

fli(ai ® a2) = r/i A «2 ® b 

vi(P ® «i ® r/2) = b(j3)(a2) ® «1 zb (T(/3 ® a i ) (a 2 ) ® & 

± E &(*(0 ® ai))(a2j) ®fa2/ 

= 6(/3)(a2) ® û i ± - " 7 - T a i ( ^ ) ( r / 2 ) ® 6 £ + 1 
± 1 ] (b A tti)(0)(fl2</) ® / a 2 / in char. 0. 

z>2(0 ® f/i ® a2) = b(P)(ai) ® a2 ± Yl &(<K# ® «2>)(«ii) ® fli/ 

6(0) (fli) ® «2 ± —jTY ^ ( i A fl2)^)(ai^ * • ^ . . ^ . T - * i 

in char. 0. 

T h e map v2 is defined with range Av F ® F> and one must verify t ha t t h e 
image is indeed contained in K2

VF. 
Although it is easy to check tha t the maps are well-defined, the commuta -

t ivi ty of the diagram Q has been checked only in characterist ic zero, using the 
part icular split t ing indicated. Therefore, from now on, we shall assume charac­
teristic zero, although it is to be hoped tha t the rest of the a rguments in this 
section will hold for arb i t rary rings. 

All of the above discussion may be summarized in 

T H E O R E M 5.2 Let R be a commutative ring containing the rational numbers. 
Then the diagram Q with the maps defined as above is a double complex. If the map 

f: F —> G is split, then the rows of Q are exact and the total complex consequently 
is acyclic. If R is noetherian, the total complex of Q is grade sensitive to the ideal, 
I'n-i, generated by the minors of order n — 1 of the map f : F © R —* G, where 
f — f + b. The total complex ofQ may be described as follows: 

Q / : 0 - * AP+1F' ® AnG* ® A V ^ An~pG* ® AnF' ® F'^KfF' 

© TT^G* ® AnF'H APF' ® G^ AP+1G 

di is the usual map; 

d2 : K2
pFf -> ApFf ® G is the obvious map ; 

a2: TTPG* ® AnF'->ApF" ® G w gwew 63;: 

d2(£ ® fli®"^) = 0(«2) ® "1 - 7 X 7 Z ) «i(P)(<i2j) ® A 2 / ; 
P T 1 

d3(/3 ® «I ® «2) = /3(ai) ® «2 + — r x Z a2($){ai3) ® « 1 / + /3 ® "1 ®/tf2 

p -f- 1 
d4(ai ® 0 ® a2) = 2 ] ai7(/5) ® a2 ® a i / . 

https://doi.org/10.4153/CJM-1978-049-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-049-4


GENERIC FREE RESOLUTIONS 567 

Here F' indicates a free R-moduIe of rank n {not n — 1 ), andf: F -^ G is a map. 

All the assertions, bu t for the description of the total complex Q / have been 

proven or a t least sketched. The final description of Qf follows from the obser­

vat ions t ha t 

AkF ® R tt AkF © A*-1 F 

and tha t 

K*(F © R) tt Kq
pF © A*-1 F <g> D^F © R). 

6. S o m e part ia l resu l t s and i n d i c a t i o n s . In the preceding section we 
s tar ted with maps / : F —> G and b: R —> G, where G has rank n and F has 
rank n — 1, and succeeded in constructing explicit generic minimal resolutions 
of the cokernels of the maps AvFr ® G —> AP+1G, where F' = F © R and 
/ ' : T7 —> G is the m a p / + &. We did this, in any event, under the assumption 
tha t R contained the rationals and we shall continue to make this assumption 
throughout this section, al though we do not know if this is an essential assump­
tion. We will now indicate how we might t ry to generalize the procedure used 
in Section 5 to handle the following situation. 

Assume tha t we have m a p s / : F —> G and b: R—> G where G is of rank n 
and F is of rank n — q. We want to find minimal generic resolutions of the 
cokernels of the maps AvFf ® AqG -> Ap+qG, where F' = F © R a n d / ' : F' - » 
G is the map j + b. We would thereby obtain complexes grade sensitive to the 
ideal In-Q(ff) generated by the minors or order n — q of the (w — q -\- 1) X n 
m a t r i x / ' . 

T h e m a p / : F —> G gives us the following complexes: 

(B) : 0 -> Kp
q+lF -> X / F ® G -> . . . -> K2

PF ® Aa~lG -> APF 

® AqG - > Ap+qG - > 0 

(C):0-+Kg
pF ® AWG* ® AB _ f fF-» . . .-+K2

PF ® A*-ff+2G* ® An _ f fF-> A*/' 

® An~*+1G* O An _ f fF-> An-ç-p+1G* ® Aw~ffF-> A^F-^O 

(Dr):0->DrF-* . . .->D2F ® A r~2G -> F ® A r _ 1 G-> A r G - * 0 . 

We shall also consider the complex 

(B ' ) : 0 - > ^ + i F ® AnG* ® An-QF->KQ
PF ® A ^ G * ® A w ~ ^ - > . . . -> A 'F 

(8) A"-gG* (8) A n ~ ^ - > AW"(P+?)G* ® A*"*/' 

which is the complex (B) with A'G replaced by A"~'G* and tensored with 
An~QF. 

T h e complexes (B) and (B') we know to be acyclic w h e n / : F —» G is a split 
injection, and Hi(Dr) = 0 for i > 0 w h e n / is a split injection. The complex C 
is the complex associated t o / * : G* —» F*, with the term AW_(Z~P+1F* replaced by 
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AP-1F (viz section o), and tensored with An~QF to make the maps compatible 
with this identification. It, too, is acyclic when/ is split. We therefore see that 
the complexes C ® D r and B' ® D r are acyclic when / is split. 

Notice that D r has length r, while C and B' have length q + 1. Thus 
C ® D r is a complex of length r + q + 1, and B' ® D r _ 1 has length r + q. 
We shall relabel the complexes B' ® D r _ 1 so that they begin with 0 in dimen­
sion 0, and therefore B ' ® D r _ 1 will be a complex of length r + q + 1. Our 
next step is to define a map 

<pr : B' ® D r " 1 - > C ® D r . 

In degree 0, ipor is the zero map. In degree 1, we need a map 
^ r . tfi-p-qg* ^ An-qp ^ A r - i £ _> AP-1 p (g) ^ (g> ^r-iQ 

® Aw-p-*+1G* ® An~qF ® ATG 

whose composition with the map into Ap~lF ® ArG is zero. 
We define ç\r as the direct sum of the following maps: 

Çnr. fin-p-QQ* ^ An-qf ^ y-lQ _^ ^p-i p ^ p 0 y-iQ 

çl2
r: An~p-ÇG* ® An~qF ® Ar~lG -> An~p-Q+lG* ® An~qF ® ArG 

where 

^nr(/5 ® (H ® a2) = £ p(au) ® au' ® (h 

<Pi2r(P ® ai ® a2) = ± S /3 A £7; ® ax ® xf A a2. 

As in § 5, we have denoted by J2 (ln ® a\l the image in An-q~lF ® F of the 
diagonal of r/i, and {xz-}, {£*} denote a basis and a dual basis of G and G*. In 
fact, the map cp\2r is a formal map which is used repeatedly in the definition of 
the map <pr, so we shall digress to make a formal definition. 

We have often considered the element cG (z G* ® G, but usually as an ele­
ment of the algebra AG* ® SG or SG* ® AG. This time, however, we shall 
regard cG as an element of AG* 0 AG, and we therefore have the map 

cG: AkG* ® A'G-> AA:+1G* ® Al+lG 

given by multiplication by cG. 

PROPOSITION 6.1. For all integers k, /, the cokernel of 

cG: A*G* ® A'G-> A*+1G* ® A/+1G 

is a free module of finite rank. 

Proof. The proof is by induction on rank G, the rank 1 case being trivial. If 
G = G' 0 R, an analysis of the map shows that its cokernel is the sum of the 
cokernels of the maps: 

A*G'* <g> A'G'-» A ^ G ' * ® A ^ G ' 
A*G'* ® Al~lG' -> A*+1G'* ® AlG' 

Ak~lGr* ® AlGf -> A*G'* ® Al+1G\ 
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We see, therefore, that if we let a (ft; k, I) be the rank of the cokernel for a 
free module of rank n, then 

a (ft + 1; k, 1) = a (n; k, I) + a (ft; k, I — 1) + a(n\ k — 1, /). 

Since 

a(n\ k, 0) = (J J (ft - k - 1), 
+ 

we can calculate the rank in general. 

Definition. We denote by T\+l'lJrlG* the cokernel of the map 

cG: A*G* ® AlG-> Ak+1G* ® Al+1G. 

Notice that r ^ 1 , 1 ^* is the module T\+lG* defined in Section 5. 
To define maps <pv+\\ (B ® Dr~l)v+2 —> (C ® Dr)^+i, we first note that 

(B' ® D r _ 1 ) , + 1 = £ Kl
vF ® A ^ ^ G * ® Aw"^ ® A / 7 ® A ' - ^ G 

0 A ^ ^ G * ® A"_?F ® D,F ® kT-v~lG 

(C ® Dr)„+i = Y< K?F® Kn-Q+lG* ® A"""F ® C*^ ® A r - iG © A"_^P+1G* 

® AW-^ ® DVF ® Ar~'G 0 AP"V ® D H - I F ® A ' - ^ G . 

The map <^+i is defined to be the sum of maps: 

^ 0 : Aw-*-*G* ® An~QF ® £>„F ® A' - '^G -> An-fl-p+1G* 
® An-ffF ® D„F ® Ar-'G © A ^ F ® DV+1F ® A ' - ^ G 

^ i : A^F ® Aw-flG* ® An-ffF ® DV^F ® Ar-"G -> APF ® An-fl+1G* 
® An-flF ® DV-!F ® Ar-^+1G © An-ff"p+1G* ® Aw"ffF ® D„F ® Ar-'G 

and, for I > 1, 

Vï.KfF ® A ^ + ^ G * ® An~'F ® A F ® Ar"*_1G-> 

-*K?F ® An_?+ZG* ® An~?F ® D ^ ® Ar~"G © K^F ® An"ff+Z_1G* 

® An"~'F ® A + i F ® Ar"fc_1G. 

For ^o, ^ 1 , and ^h the first component of each map is just the formal map 
cG tensored with the appropriate identity. The map 

An-p-qQ* ^ An-QF gj Dvp ^ A r - , - l G _^ ^ - 1 ^ 0 £>„+1F ® Ar-""1G 

is the composite: 

An-p-QQ* ^ A n - f f f ^ £ ) ^ ^ Ar-v~lQ _> frn-p-aQ* g A n - f f - i ^ 

® F ® £>„F ® kT-v-*G -> A^-1^ ® £>„+i^ ® A ' - ' - ^ , 

where the left hand map is diagonalization of An~QF into An~Q~1F ® F, and 
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the second map entails the operation of AG* on AF as well as multiplication 
in DF. 

The second component of ^ i is similar, in that one diagonalizes APF to 
A2"-1/7 ® F, operates with Ap~lF on An~qG*, and multiplies with F on DV-\F. 

The second component of Sf̂ , for I > 1, is purely formal again. This time, we 
regard J2 KfF as an 57^-module, and DF is clearly a DF-module. Then 
cF £ F* ® F C S F* ® DF and cF operates on Kt

pF ® DkF, carrying it into 
Ki-ipF ® D,:+iF. This multiplication by cF, tensored with the appropriate 
identity, is the second component of the map ^ t. 

Having defined the maps <p/, it is not difficult to show that we actually get 
a map of complexes (fr-i

T: B' ® D7"-1 —» C ® D r . The cokernel of <pT is there­
fore a complex starting with AP~1F ® ArG, which we shall denote by E7". 
Moreover, the element b G G which we are given along with the map / : F —» G, 
defines maps of DA into D*+1. Consequently we have maps 

B' ® D r l -> B' ® Dr and C ® D r -> C ® Dr+* 

which commute with the maps ^ r. These maps therefore induce maps E r _ 1 —* 
E r and, since E° = C, we get a double complex: 

O - ^ C - ^ E 1 - * . . . - ^ * . 

It is also possible to define a map Eq —V B such that 

0 - > C - ^ E 1 - ^ . . . - > E ? - > B 

is a double complex. 
When we take g = 2 and p = n — 2, the morphisms ^ r are monomorphisms 

for r = 1, 2, so that the complexes E r are also acyclic when/ is a split mono-
morphism. In this case, the double complex 

looks like this: 

C: 0 —> K'i 7- '® AT'* ® A" ''/•' —> \"~~F ® A" V,"* ® A"""/-' - • (,'* ® A"""/-' -» A" T 

I I I I 

E ' : 0 — A" V ® AT* ® A""'2/''® A7" — A""2/'- ® A"~V;* ® \"~'F ® /<' -^ G* ® A" T ® / ' — A" * F ® /•' • A" T ® (,' 

| © A"-'1 F ® Y Î V;* ® A" - 2 / - - © y,V;* ® A" T 

i i I I I 
E2: A"--F($ A"" 1 *: ;*® A" T ® /;,/•' — G* ® A"J'2y ® / ; , / • - • A"~ :T ®/)•>/•' -^ A" : T ® y ® c; — A" :iy ® A V 

© A" - '2/-' ® 7TV;* ® A " " 2 / - ' ® y © y,V;* ® A"~-F ® y © y.VV;* ® A"" '•/•' 

B: o -> A T T — AT2/-- ® a - , A""2/-"® A'V; • A T 

Letting 7V = /̂  © R, the total complex then becomes: 

0-> An~lF' ® A V ® A*G* ® Aw~V'-> An-V' ® An~lG* 

® An~ 1F' ® £>2F' -> Aw~ V ® ITXG* ® Aw~ V ® F ® G* © An~lFf 

® D,F'-^Kt2F' © 7^XG* ® AW~V ® F'-^K^F' ® G © 7'2
12G* 

® An" V -» Aw~ V ® A2G -> AnG. 
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This complex, then, does give a resolution (in characteristic zero) of the 
ideal of (n — 2) X (n — 2) minors of an (n — 1) X n matrix. We were able 
to write it down because we could explicitly calculate the terms of E r . T h e 
generic acyclicity of the complex results from the acyclicity of E r , and in 
general we have not been able to prove this acyclicity for arb i t rary q and p. 
Clearly, more has to be understood about the maps cF and cG which are basic 
to the definition of the maps <pr. Because the elements cF and cG are not nil-
potent , their cokernels don ' t seem to fit natural ly into long exact sequences. 
We hope to investigate all these mat ters further in a later paper. 

Although interest generally focuses on the ideal of (n — q) X (w — q) 
minors of a map / : F —>• G, hence on the cokernel of An~qF ® AqG —» AnG, 
it is probably worthwhile to look a t all the maps APF ® A9G —> AP+QG] the 
supports of all these cokernels (for fixed q) are the same. Moreover, these maps 
show up in the following context. 

In [1], we showed tha t if 

R = K 

F-Î+G 

is a commuta t ive diagram with rank F = m, rank G = n, m ^ n, then we had 
a double complex: 

An+1F-

A ^ G * 0 Aw+17^-

F I G 

A 2 - Af i 
-> A F—U A G 

G* (g) An+1F- _> AnF^L AnG 

whose rows are the complexes associated to the maps Apf: APF —> APG, T h e 
total complex is grade sensitive to the ideal generated by the n X n minors of 
/ and by b*. When R = k[Xi, . . . , Xm] and 6(1) = (Fi, . . . , Fn) where Ft are 
forms generating a complete intersection, we may c h o o s e / to be the Jacobian 
matr ix (dFj/dXj). In characteristic zero, we therefore get a complex grade 
sensitive to the singular locus of the complete intersection (F\, . . . , Fn). 
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Suppose, now, that (Fi, . . . , Fn) generate a variety of codimension n — g. 
Then the singular locus of (Fi, . . . , Fn) is generated by Fi, . . . , Fn together 
with the minors of dFjdXj of order n — q. In analogy with the case of com­
plete intersections (where q = 0), we consider: 

F ® A'G 

a ® 1 

A2F ® A?G 

and we would like to find an extension of this diagram to obtain a double 
complex grade sensitive to the singular locus of (Fi, . . . , Fn). In this case, we 
are looking for complexes over the cokernels of the maps 

APF ® AqG -> AP+QG. 

Here, we are not treating the case of a generic matrix, for we are assuming that 
the minors of order n — q + 1 of the Jacobian are contained in the ideal gener­
ated by (Fi, . . . , F„). Nevertheless, the interest in the above maps for all 
p persists. 
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