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GENERIC FREE RESOLUTIONS II
DAVID A. BUCHSBAUM

1. Introduction. In 1], a number of “‘multilinear’ functors L,?, defined for
finitely generated free modules, were introduced. They arose as cycles in a
generic Koszul complex, and in turn gave rise to a large family of other generic
complexes. One of the things we will do in this paper is study some of these new
complexes in order to obtain new multilinear functors on free modules which
appear as their cycles.

One reason for starting this systematic study is that work on Schubert
calculus and Young tableaux, in particular, articles by Lascoux and by
Towber [2; 4], indicate a not yet completely understood connection between
some of these ‘“‘multilinear” functors and the more classical representation
theory. (For example, our functors L,? correspond to the irreducible represen-
tation belonging to the partition (p, 1, ..., 1).)

The functors L, arose out of consideration of certain complexes, namely,
generic free resolutions of cokernels of the maps

APf: APF — A?G,

where f: I' — G is a map of free modules. The new multilinear functors intro-
duced in Sections 4, 5, and 6 arise from consideration of complexes resolving
the cokernels of the maps

APF ® AG— APHG,
which are the composites of
APF Q@ AG— A'G Q AG — APHG.

(In particular, when p 4+ ¢ = rank G, we are attempting to resolve the ideal
of p X p minors of the map f:" F — G.) Lascoux has shown [2] that certain
irreducible representations of GL(n) occur in the minimal resolutions of ideals
of low order minors of a matrix. Since minimal resolutions are essentially
unique, we have further evidence of a strong connection between the irreducible
representations of GL(n) and some of the functors introduced in Sections 4, 5,
and 6.

In Section 2, we review those parts of [1] that are required for this paper,
and in Section 3 we observe what happens when we assume that we are dealing
with a graded ring. Using the results of Section 3, we are able to prove the
acyclicity of certain free complexes, and thereby obtain new functors of free
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modules Lz, Kp'72. In fact, we indicate in this section how one might generate
a whole sequence of multilinear functors, but we do not study this general
procedure here; we will do this in a subsequent article.

In Section 5, we give an explicit construction of a generic resolution of the
cokernel of

ANFQ G— APHIG

for a map f: I — G, when rank F = rank G. We do this in characteristic zero,
since this enables us to make precise a splitting of a certain map. The procedure
used in Section 5 suggests a general procedure which we outline (very sketchily)
in Section 6. It is here that certain other functors arise; but, except in certain
special cases, little can as yet be said about them. Nevertheless, we do use this
procedure to construct a resolution of the ideal of (n — 2) X (n — 2) minors
of an (n — 1) X n matrix, because in this case our functors come up in certain
simple exact sequences. This reproduces a result of PPoon [3], although our
construction is so far restricted to the case of characteristic zero.

2. Preliminaries. Throughout this section, rings will be commutative with
identity, and free modules will always be of finite rank. If the ring is graded,
“commutative”” will mean commutative in the graded sense. Thus, if FFis a
free R-module, and S(F) (resp. D(F)) denotes the symmetric (resp. divided
power) algebra of F, then we must regard the elements of /' as having degree
2 in S(F) (resp. D(F)). However, we shall denote by S,(F) (resp. D,(F)) the
elements of degree 2¢ in S(F) (resp. D(F)), and thereby return to the classical
notation for polynomial rings. As usual, AF will denote the exterior algebra
of I'; in this algebra the elements of F are of degree one.

If I' is a free R-module, we define the free R-modules L’/ as follows. The
identity map /' — I’ yields an element ¢, € F ® F* which may be considered
an element of SFF ® AF*. As such, cpz? = 0. Since SF is an SF-module, and
AFis a AF*-module (as described in [1]), SF ® AFisan SF ® AF*-module.
Multiplication by ¢» on SF @ AF converts SFF ® AF into a complex whose
homogeneous components look like

P —1
) e Sare NP s e v Y s

Q NV — 5 S,F @ N1 —— L,
and LI* = {LP2F} is defined to be the module of cycles of this complex. In
particular,

LIF = l(er(Sﬁ ® ATy o1 lf @ AT P)

and, because the complex (*) is acyclic, we also have

p+1

LJF = Coker (Sq_gF ® A7t dey 1P ® A”F)
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Notice that

L'F=S8,F forallg
L{F = NF forallp #0

(1) L'F =LPF =0 forallp = 1,andallg
L,F =0 forallp > rank F.

Also, if rank I = #n, then

©) L/F~ S,1.F @ A'F.

(All of this may be found in § 2 of [1].)

Letting DF denote the divided power algebra of I, we have D, IF = S,(I™*)*
and DF ® AFisanSF* @ AF-module. Considering the element ¢z an element
of SIF* ® A, we have the complex

—1
() . D F® N R st iF @ APTR R 20 i D,F
® A"‘IF‘L, D, F ® NF —

which is also acyclic. We define

K'F = Coker( DoiF @ ANTPR 2 sy DI’ @ A F)
We therefore also have

KJMF = Ker (D 1F @ N'F— D, 2,F ® A"V'F) ¢=1.
and, by dualizing, we see that

KPF =~ LP(F¥)* or Kp(F*) = (LPF)*
Corresponding to (1) and (2) we have

K F =D, forallg

KyPF = A?F forall p # 0

KSF = KIFF =0 forall p # 1 andallg
KPF =0 forall p > rank F.

(2) KMF~D,.F® A*F ifn=rank F.

(1)

To show that LF is free, we showed in [1, Proposition 2.5] that
LPY(F@® R) ~LPF® AIS, 1 (F @ R)

and hence, by induction, L2 is free and

pn n+q—1) (p+q—2)
rank(LqF)—(P_I_g_1 g1

if rank F = n.
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Similarly, we have
KP(F®R) X KPF® N'FQ D 1(F®R);

K PF is free and its rank is equal to that of L2F.

In [1] we did not introduce the notation K /F and simply wrote L7F* to
denote K ?(F*). However, it is useful to notice that if R contains the rationals,
then the algebra DF is isomorphic to SF and the complex (**) may be re-
placed by

(%) S F @ N S F @ APF—

where the boundary operator involves the usual partial derivatives d/9X ; if
X1, ..., X, denotes a basis for F. Thus K/ (F*) may be interpreted as the
module of exact p-forms of degree ¢ — 1. For this and other reasons, we shall
use the functors K7 in this paper.

If o: F — G is a map of free R-modules, with m = rank Iand » = rank G,
we have the complexes introduced in § 3 of [1]:

L7 (¢): 0 K2 oG* @ L1 S kizer o 1k 9 L kg

© L, P L7r
and
4 . n—p+1 ~x m d n—p+1 ~% m—1 d
L) 0 — K, 3V GFQL"F— S Ky aG*Q Ly F—
4 kg g oy d L Lrp ey L) | JG.

The complex L ?(¢) is the complex LZ’T((,D) augmented by the map L7 (o)
where » = n 4+ 1 and L/(¢) is the map induced by ¢. Because the maps d,
dyand L,%(¢) are described rigorously in [1], we will give here only an heuristic
description of them.

The map ¢: FF— G induces the map A¢* : AG* — AF* and thus we have
the operation of AG* on AF. To define a map

K'G* @ LF— Ks ,G* ® LF,
we regard K *G* as a factor module of
D\G* @ A*IGH
and LI as a submodule of
S F® AL

Thus we shall represent a “‘typical” element of Ki\*G* @ L/ Fasow @ v @ H ®
a where 0 ® v € D\G* @ A*'1G* and H ® « is a sum of elements in S,FF ®
A7UE. Letting ey, . . ., €, be a basis for G, and &, . . ., &, the dual basis for G*,
we send the element w @ v ® H @ a to 2. (dw/de;) @ v ® H ® £4(a) where
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d/0d¢; denotes the derivation on DG* induced by €; € S(G) and ¢,(a) is the result
of operating by &, € G* on a € AF. We thus end up in D\_;G* ® A'G* ®
S,F® A2 and, heuristically d(o @ vy @ H ® &) = > (dw/de;) @ v ®
H® fi(a)-

The map d,: K+°G* @ L,'I' — LI=5F is easy to define since K,’G* is simply
ASG*. Again representing an element of L,/ as an element H @ a C S, I' ®
A™1F, and taking v € ASG*, we defined,;(y @ H ® ) = H® y(a) € S,F ®
AL,

Finally, the map L/¢: L F — LG is just that induced by the map

S, () ® Al S,F @ ATF 5,6 ® AIG.

With this notation set, we can state the following result of [1].

THEOREM 2.1. [1, Theorem 3.1]. Let R be « noetheriun ring, and suppose that
¢: I'— G is a map between [ree R-modidles of ranks m and n, respectively. Denole
by I,(¢) the ideul generated by the minors of ¢ of order n. If grade I,(¢) = m —
n + 1, then L P () is « free resolution of Coker (Lfo: LPI'— LFG).

3. The graded case. We now turn to the case where the ring R is graded.
Since we shall want R to be strictly commutative, we may suppose that R is
zero in odd degrees. However, since we would, in that case, be tempted to
divide all the degrees by two, we shall simply write R = [],z0 R, and assume
that R is commutative in the classical sense. The free R-modules we consider
will all have the canonical grading, i.e. ' = R ® g, Iy where Iy is a free
Ro-module. If G = R ® , Go, a map ¢: I' — G of degree d is given by a map
eo: I'o— Ry @ Go.

It is clear that if F = R ® gz, Fo, then

Sp(F) = R ® Sg,(Fo)

Ag(F) = R @ gy Aro(Fo).

From this it follows easily that
LPF =R Q@ LPF,.

Given the map ¢: F — G induced by ¢o: Fy — R; ® Gy, we obtain the maps
S(e): S(F) - S(G) and A(e): A(F) — A(G).

On the graded components, these maps are:

Ry ® Sq(FO) = Frpa ® Sq(GO)
R, ® A?(Fo) = Ryppa ® A?(Go).

Consequently, the components of the map L?(¢): L (F) — LP(G) are:
Ry ® LquO = Ryypre-na @ Lqul%
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Similarly, we have
Drp(F) = R @y Dg,(Fy), KP(F)=R® K?(F), and
K (¢): KZ(F)— K2(G) hascomponents R, @ K/ (F,) —
Ryt pre-na ® K7 (Gy).
We must next transcribe the maps that occur in the complexes L77(¢) to
the graded case. That is, we want to describe the homogeneous components of
the maps
d:K\G* @ L) F — K4_G* @ L7'F
and
di: K:'G* ® L,'F — L, °F.
It is easy to see that we get:
d: Ry @ K\'Go* @ L,Fo— Ryya ® Kb_1Go* @ L7'Fy
di: Ry @ Ki'Go* ® L,'Fo— Ryyou ® LiT°Fy.

Taking the grading into account, we see that the complexes L27(¢) and
L7 (¢) of Section 2 are the direct sums of complexes:

r d —, T d
Ly (@)oo = Ri—(r—pina @ K5 "Go* @ Lq+1Fo — Ri—(r—pra

® K1 °Go* ® L, F, dy R, ® LMF,

d - i1 d
L7(¢)i: . = Ri—ipa @ Ki"VG* @ LT Fy = Ri—iprgna

® L7Fo— Ry ® LG,

4. New complexes and modules from old. In this section we will apply
Sections 2 and 3 to the following situation.

We let R be a ring, and let I'and G be R-modules of ranks m and #, respec-
tively. Denote by S = > S, the symmetric algebra S(F ® G*), and by ¢ the
element in G* @ G C AG* ® SG which is the image of 1 under the map
R — G* ® G corresponding to the identity map of G. Using ¢, we define
the map

c: F>FQQG*Q6G=SQGC
to be 1 ® c¢. This defines the map
e SR IF->S®G

which is a morphism of free S-modules of degree 1.
If we identify S with the polynomial ring R[X;;] with 1 £7 < m and

1 £ j £ n, we see that, with suitable choice of basis, the matrix corresponding
to ¢ is the generic matrix (X ;).
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If R is noetherian, we may apply Theorem 2.1 to see that the complexes
L/ (¢) are acyclic and so, too, are the homogeneous components L7 (¢),,
since grade I, (¢) ism — n 4 1. If R is not noetherian, this is still true as can
be easily seen by observing that R is the direct limit of noetherian subrings
and noting that the situation is generic.

Consider now the special case when n = 1. In that case we need only look
at the complexes L,'(¢),, and, identifying K)\'G* with R, we obtain the
acyclic complexes

B, ... > SiaF @ LI — S, il @ LI — S,F ® S, — Sypil

with the map m on the extreme right an epi for £ = 0. In fact, this map is
simply the product map in the symmetric algebra of 7.

Since the complexes B, are free acyclic complexes, the cycles are projective
R-modules. We will shortly see that they are in fact free.

The maps in the complex B, may be described as follows. We saw in (1]
that LI is an SFF ® Al*-module and hence a Af™*-module. SI is clearly an
SF-module. Thus SIF @ LFisanSI°® Al*-module. Letting ¢ be the element
of '@ I CSIF® AIF* analogous to the element ¢ described above, the
maps SI'Q® LIF— SF ® LI'in the complex B, are simply multiplication
by cp.

Dualizing B, ; one sees that the complexes

C,s: 0= D, F—>DF @D, =Dy [' @ K2F—DoF @ KAF— ..

are also acyclic, where the map D,,, — D, ® D, is the (k, ¢) component of the
diagonal map in the divided power algebra, and the other maps are multiplica-
tion by the element ¢,/ € I* @ I' C SI* ® AL,

The map D, [' — D, I' ® D,I'may also be described as follows. The algebra
SF* @ DI is an algebra with divided powers, namely (x ® y)@ = x? ® y©,
In particular, the element ¢,/ ¢ I* ® /' has divided powers and we may
consider ¢,/ ¢ S, I* @ D, . The map D,y — D F ® D,I'is the composition

1 c "I((l) . .
Do = DyuF @ R~8% \p . .F® S
1
o pr—21 .pren,r
where v: Dy [ ® S, I** — D, I is the operation of SF* on DF.
For convenience we state the above as

ProrositioN 4.1. Let I be « free R-module of rank m. Then for all positive
integers q and k, the complexes B, and G, above are acyclic.

LEMMA 4.2, Let I be « free R-module of rank m, and let p, q be non-negative
integers. Then the complex

D, ;0K WF>K'F® F—...—»KJSF
® ATIF— APF® A'F— AP0
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is exact. The map APF @ A'F — AP*F is the usual multiplication in AF. The
other maps are the operation of ¢ € SI* @ Al

Proof. The case p = 1 is simply the statement that G, , is exact, and we
now proceed by induction on p. Consider the double complex:

i ! ! !

...—> DF®K,F®AT'F — DFOKVFQAT'F — DF@NF®AF — DFQNF —0
! ! l !
o DA FQKYTME® ATF D, F@KY ™ @ AT 5D, F® NTHE® AF D, F® AT ES 0
! 1 ! l
! ! 1 !
o FOKU'F® AP > FOKVF®ATE - FOANTF®AF - F@ AR 0
! 1 1 1
Lo KIF® AR - KJSF @ A“'F - NF® AF - agia -0
1 l !
0 0 0 0

The rows of the complex are simply D,F ® D,_, ,, and the columns are
C,po1 @ A, It is easy to check that this is indeed a double complex.
By 4.1 we know that the columns are exact, and by induction we have that all
but the bottom row are exact. The usual spectral sequence argument yields
the exactness of the bottom row, i.e., D, , is exact.

Our next step is to consider complexes of the form:
D,, 05K\ F>K'FQK,F—...—»K'F
® K 'F—>K/F ® AF— Ki"F— 0.

The right hand map is just the operation of AF on K/ The left hand map is
the composition:

(1)

, 1
“ Ol presrer,r— 12"k pr

® K,'F = K,'F ® KAI

where ¢,/(7 is the rth divided power of ¢ in D, FF ® S,F*, and v is the operation
of SF*¥ on KI'.

The maps in the rest of the complex are given by the operation of ¢’ €
AF ® SF*¥ on KFF ® KF, where we treat the first factor of KFF ® KI' as a
A F-module, and the second factor as an .SF*-module.

R ® K;-H'["

ProrositioN 4.3. If I is « free R-module, and p, q, r are non-negative integers,
then Dy, ,,, is an acyclic complex.
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Proof. In this proposition we proceed by induction on r, the case r = 0 being

trivial and the case r = 1 being Lemma 4.2. Assume, then, that r = 1. It is
easy to show that the following diagram is commutative:
0 0 0 0
! ! ! l
0 K'NFOKF —..—» KTFQK'F - KF®AF - KNP 0
! 1 1 l !
0D, \F®KiyF— D,y F ® F®K,F— ... D, .\F® N"'F&KyF —D,.F ® A’F® AF— D, ,F® A""F—0
I ! ! l !
0D, FO®KWF— KiiFQ®K,F —...—  KIL.F®K)F -  KMF® AF - KNS
! ! 1 ! !
0 0 0 0 0

The top and bottom rows are the sequences D, ,., and D1, ,—1 respectively
with their tails lopped off. The middle row is D,_1/" ® D, ,. The vertical maps
are the inclusion maps (on top) tensored with appropriate K[/’s, and the
canonical surjections, also tensored with KF's. Thus, the columns are exact,
the middle row is exact by 4.2, and the bottom row is exact except at the
extreme left end, where the homology is K§,,F (by our induction hypothesis).
It follows, therefore, that the top row is exact except at the extreme left end,
and the homology there is also K%, ,F. It only remains to show that the map of
K., Finto K,'F' ® K/I' is the one described for the complex D, ,.,. To see
this, it suthces to prove that the following diagram is commutative:

1(r—1)
RoK, - CLp res ok, i—CY D F®R®KLLF

'’ ®1 1® ¢ ® 1
v
D.F ® S,F* ® K'\,F D, .\ F® F® F*® K. F
191®y»

1@ & F® K
Jole) Dml®FOK
/®

ProK Fi8 e OLy pe g re K, E
The proof is probably most easily accomplished by choosing a basis x1, . . . , x,,
for F and the dual basis &, . .., &, for I'*. Since ¢’ is then 3 x; ® £, we see
that c,/'® = 3 x® @ £ where x® means x4V .., x,$ | & means &5, .. £,f»,
and where { = ({1, ..., {») runs over all m-tuples of weight &, i.e., > ¢, = k.
If one takes a ‘‘typical’”’ element H ® a of K§, F, one obtains the element
20 Qx; @ ELEH) @ a
with {’s of weight r — 1 by going to the right and down in the diagram. Pro-
ceeding around the other way, one obtains

(D) @ x;, Q@ H Q
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where the ¢’s run over m-tuples of weight r. These two terms are clearly the
same, and the proposition is proven.

As usual, we may dualize all of the complexes described above, getting a
whole family of others. For the sake of completeness we list these also:

Ep, 0L FSLFR AMF-LYIFQLF—...— S I
® L (1]’ "‘)Lﬂ+r]’ — (),

As we have already remarked, the cycles (or boundaries) of the complexes
D, . E,,, are projective R-modules. However, since the functors DI, SI°,
AF all commute with base change, so also do the functors LI* and KF. It
therefore follows that the cycles of these complexes also commute with base
change. If the ring R is the ring of integers, then we see that all these cycles
are not only projective but free. If R is any commutative ring, and I a free
R-module, then I = R ® Iy where Iy is a free Z-module. Hence we see that
all these cycles (or boundaries), are also free R-modules.

Definition. Let I' be a free R-module. Define

Ly F = Ker (LY'F @ L' 7'F— Ly F @ LE°F)
Ko}l = Coker (K¢ 1 /' @ K@ 'F — Ko'F @ K¢ 'F).

Prorso1tioN 4.4, The modules L2 I and K92 I are free R-modules of finite
rank.

It is clear that we may continue the procedure described above to obtain
multiply indexed L's and K’'s. In fact, it is easy to outline the general pro-
cedure as follows:

Let A and I' be R-algebras, and let 1/ be a A ® I'-module. Suppose we have
an element ¢ € A ® I' such that ¢ = 0. Define L, (M) = Ker (¢c: M — ).
Then L;(3}) is also a A ® I''module. We may therefore consider L,(}M) ®
Ly(M) a A ® I-module with A operating on the first factor, and T' on the
second, and define

L,y(M) = Ker (¢: L, @ L, — L, @ L),
Proceeding in this way, we define
L,(M) = Ker (¢c: Lo, (M) @ Ly (M) — L, (M) @ L,_,(JM)).
Letting A = A/™, T = SI, M = AIF® SFand ¢ = cp, the first two steps
of the procedure above describe our modules L,”I" and LZ;f;]
Letting A = AF, T = SI* M = AFQ® DIFand ¢ = ¢/, the first two steps
of the procedure above describe our modules K7 and K772 I.
In a subsequent article we shall explore these modules and the complexes of
which they form a part. We suspect that the complete sequence of modules

DD
Lt describes the irreducible representations of the general linear group
(at least in characteristic zero).
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We have known for some time that the L,”F’s correspond to the partition
(¢, 1,1...,1),
N
p—1

and it appears that the L!3: [”’s correspond to sums of certain of the irreducible
representations of the general linear group which can be made quite explicit.

However, at this point the connection is not completely understood.

5. Some lower order minors. As we mentioned in the introduction, we are
interested in finding complexes associated to the lower order minors of a
matrix. If f: ¥ — G is a map of free modules with m = rank /and » = rank G,
we let I, be the ideal generated by the minors of f of order g, i.e.,

I,=Im(AF Q@ NG — AG).
We know that for all p < min (n, m), the cokernel of

Fpt APF @ A'=IG — A'142G

has the same support as R/I, [1], and we also know that the generic height of
I,is (m — ¢+ 1)(n — ¢ + 1). Suppose, then, that we have a canonical way
of writing down a free complex

X:0 Xa Xa1 e X —— NP Q ATG h» ARG

where « = (m — ¢+ 1)(n — ¢ + 1), and that we want to show it is grade
sensitive to the ideal ,. Then, as pointed out in [1], we may first consider the
case when f is a generic matrix (X ;) and prove acyclicity there. In order to
prove that acyclicity, it suffices to prove it after localization at primes of height
less than (m — ¢ + 1)(n — ¢ + 1), in which case I, blows up to the whole
ring. We are therefore reduced to proving that the complex X is acyclic under
the assumption that R is a local ring and one of the ¢ X ¢ submatrices of f is
the identity.

To illustrate, suppose f: I — G as above, and that m < n. We want to get
a complex associated to the minors of order m; in fact, we want to resolve the
cokernel of

fp,m APF Q@ A"G — AVHPG

for all p < m. We write down the complex

K(fp,m)3 0—s Kg—nz+lﬁ‘_> K ,FQG—s ...
o —>KPFQ A""GC —S KPF® A6 —— APF

® An-mG fp.m An—m+pG
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where we regard KF ® AG as an SI* @ AF-module by having SF* operate
on KFand AF on AG. All the maps (except f,,,) are the multiplication by ¢#’.
(It is easy to check that the composition

K211F ® A"_""“IG — ApF ® An—mG N An_m“’G

is zero.) Notice that this complex is of length # — m -+ 1, which is the height
(and grade) of the generic m X m minors ideal. Therefore, to show that
K (f,.») is grade sensitive to the ideal I,,, we need only show that it is acyclic
when R is local and an m X m submatrix of f is the identity. In this case, by
simple change of basis, we may assume that the map f is simply the injection
of Fasasummand of G,i.e. G = I'® G and F — G is the canonical inclusion.
Making the identification

Arz—mG — Z Aq],‘ ® An-—nz—qu’

we see that the map f, ., is just the direct sum of maps:

DNFQAF QR ANTGC— Y, NTEQ ATTG.
¢=0 q=0

Applying 4.2, we have an exact sequence for each ¢:
0oKVWF®@ NG >KFQF® AV'G — ...
Lo KIFQ@ ATF® NG - NP AF @ NG — ATF
® A 0

and this sequence is of length ¢ + 1. The sum of these sequences therefore is
exact and taking the sum, we see that in dimension [ we get

n—m n—m—Il+1
Y KIF® AT NG =KPF® Y, AF@ AT
¢=1-1 1=0

where t = ¢ — [ 4 1. This is clearly the term K 2/ ® A" '"1G and, since
this is the /-dimensional term of the complex K(f,,), we see that K(f, ) is
acyclic when I — G = FF @ G’ is the injection. Consequently we have proven

ProrosiTioN 5.1. Let R be a noetherian ring, I und G free R-modules of ranks
m and n respectwvely, with m < n. If f: I'— G is « map, then K(f,..) 1s a free
complex which is grade sentitive to the ideal 1,,(f) generated by the minors of f of
order m. In particular, the homology of KX (f,..) is zero in all positive dimensions
if and only if grade (I,(f)) = n — m + 1.

Suppose now that /* has rank m 4+ 1, G has rank n and f": I/ — G is a map.
Then I/ = F @ R, and we may assume that f" is the sum of two maps f: I — G
and b: R — G. The problem still is to associate a complex grade sensitive to the
ideal I,,(f") of m X m minors of f’. In this case, the grade of I,,(f") is generically
2(n — m 4+ 1) so we would like a complex of that dimension. We see that we
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have the beginnings of what may be a double complex if we consider:

0
l

0= Kl F ® A'G® A"F— Kb, \F ® A'TIG* @ A"F— ... — APF® A™'G* @ A"F— A"7HIGK @ A"Fs  APTVES0
l

VPR G
!

1
®) N @ AT
1
AT ® ATTG
Lu
0— Ko pirF - K1 ® G .= KSF® ATG — NF® ATTG - A6 -0

The bottom row is simply the complex K(f, ). The map u is given by
play ® az) = fy_im(ar ® a2) A b while the maps

APTIE @ MG — AP @ ATIG

are just ¢; ® ¢ — «1 @ a2 A b. The top row is obtained by considering the
map f*: G* — I'* and the complex

0K, FQ A'Go K’ , . F @ AV'G*— ... 5 KSF® A6 — APF
® Am+ IG* N Am—p-i—lG* — Am—p+ 1]—;*

of [1], which we know is also grade-sensitive to the ideal 1,,(f). Tensoring each
term of the above complex with A"/ and identifying A" ?T1F* @ A"[ with
AP7LE) we get the complex on top. Notice that the column in the diagram has
length # — m 4+ 1 so that if we can fill in the rectangle suitably we can get a
double complex whose total complex will have length 2(n — m + 1). Observe,
too, that if 1,,(f) = R, then the top and bottom rows are exact. If we could fill
in all the rows acyclically, then the total complex would also be exact and we
would have a candidate for a complex K(f, ).

What we propose to do in this section is carry out this program in detail for
one case. In the next section we will outline the techniques and difficulties
encountered in attempting to push the program further.

Let F be a free module of rank n — 1, G a free module of rank », and let
f: F— G, b: R — G be maps. In this case, the diagram (P) becomes

0> ANFQ A'G*Q AV 'F— A"7G* @ A" 'F— AT'F—0
l

(P,) NTF®G
s s lu
0— KLF B NFQG B AG—o0
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for we are attempting to construct a complex K (f, ,—1) associated to the minors
of order » — 1 of themap f": ' ® R — G determined by f and ).

We now regard the top complex as a complex over the zero module, and
we regard

0-rhc

as a complex over the cokernel of f. If we take the tensor product of these two
complexes, we obtain a complex over 0 ® Coker [ = 0;

™) 0> AFQ ANGQ NP FF— NG AIFQ FQ A
® NMG*Q A"'F®G— A IFQ F@® ANPG* Q@ A-LF
RG— AR G—0

When we assume that f: I — G is a summand of G, we have the acyclicity of
the top (and bottom) row, and 0 — I — G is a resolution of Coker f, so that
the homology of the complex (*) is Tor (0, Coker f) = 0, i.e. the above tensor
product is acyclic.

If we identify the modules A*G with A"*G*, the bottom row of (P;) becomes

() 0-KP M v e aier & arig Lo
where the map g is just the operation of A?F on A*'G*. To describe the map &

more aesthetically, we replace Ko?* by K.IF° ® A"G*. The map % is then the
composition:

kre ver L8 vrece ver L2 v e e
where d: Ko?F — A’F ® G is the map in the bottom row of (P;) and »: G ®
A"G* — A"'G* is the isomorphism induced by the operation of G on A*G*.
Replacing Ko Fin (1) by Ko ® A"G*, and then tensoring the whole complex
with A"~!'F, we obtain a complex:

(**) 0o KL Q@ A'G*F @ A'-1F— APF @ A-IG¥ @ A-1F — A-7-IG*
® A*IF—0.
We now define a map of the complex (**) into the complex (*), which will be

a monomorphism. This will make the cokernel acyclic when both (*) and (**)
are acyclic.

): 0> KJF® AVGre AF B vre aiere A L = I G 0 —0
les le: ler !
®: 05 NFR NG e s e D ATGF R NTIF® F 4 NTUE®F Lot e G0
@ NFRANG*® ANTF®G @ANTIFOANTFRG

The map ¢; is the sum of two maps
p11: ATPTIGR @ ATIF — APTIFQ F
p120 ATPTIGEF @ ATIF — ATPGF @ AIF ® G
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The first one, ¢11, is the composition

1®A1 V®1

n p—1 C* ® \n— J o n—p—lG* ® ;\1172]“ Q I

where A;: A'F — A"2F @ Fis the indicated component of the diagonal map,
andv: A"P7IG* @ A'2F — AP7'F is the operation of AG* on AF.
The second map, ¢12, is the composition:

NTFPQF

1®CF®1

ATTTIGR® GF R G

@ yip PO i g alp g G

where c¢q: R — G* ® G is the usual element, p stands for multiplication in
AG¥ and 1: G @ A"'F'— A™'I' ® G is simply the interchange map.
To define the map ¢,, we define two maps

An~p—le* ® An-lﬁw

en: APF @ NTIGH @ NTIF — NIGR @ NTUF Q@ F
e: APF @ ATIG* @ A™IF — APF @ N'G* @ A™'F @ G.

@21 1s the composition:

AT R®1I®1
—_—

NFQ NG ® AT NT'FQF® NG

o v L8 | g aigr e Al

]- 1 n— n—1 7 N
o1 t8L1Ol yrge @ aip ek
where A; is as before, 77: IF® A™IG* @ A" 'F — AIGF @ A" QG is
just an interchange, and v: A”"'FF @ A""!G* — A" ?G* is the operation of A
on AG*.

The map ¢; is simply the composition:

1®1Q1

KPF@ AN'G* @ A 'FZ2 -2 S AP Q F® AGH

113
® AT'F _16.”—> NFQ AG*® A'F®F

where 1: Ko?I' — A?I° @ [I'is the inclusion map, and 7" is the obvious inter-
change.

Actually, the map ¢; is ¢12 — ¢11. The map ¢z 1s @21 &= (—1) @oa.

We will briefly sketch the proof that these maps do provide a map of com-
plexes. The major thing we shall leave out of the proof is consideration of signs.

To see that dig; = 0, we take

<P12(5 ® a) — <P11<5 ® (lv) = Z B A Ei((l) @ x; — 2 5(“]‘) ®f(“j/)

where A;(¢) = Y a; @ aj, {x;} and {&;} are a basis and dual basis for G,
G* respectively. But

2B A Eila) = X B(E(a))ay)

https://doi.org/10.4153/CJM-1978-049-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-049-4

564 DAVID A. BUCHSBAUM

so that
Y B AE) ®x; =X Blay) ® Eila))xy = X Blay) ® fla)).
The essential part of the proof that dops = @109 is the formula:

011(;3)(042) =2 =+ ai; A 5(011.7" A az)

where Alay) = X a1; @ a1/, a1, a2 € AF, 8 € AG*. This fact can be found in
[1].

That dses = @40y is straightforward.

We will now see that ¢;, ¢, and ¢3 are monomorphisms, actually split
monomorphisms.

The map ¢3 is essentially an inclusion; its cokernel is AP*1F @ A'G* @ A'F.

The map ¢s22 is essentially the identification of A*'G* with G, so it is an

isomorphism. Therefore ¢, is a monomorphism whose cokernel is isomorphic
to A"?PG* @ AP Q F.
Finally, the map ¢;2 is essentially the formal map

APEIGY —» APGH QR G
given by multiplication by ¢4. If we dualize this map, we obtain
APG Q GY — ATTIG

which is just the operation of G* on AG. If we identify A*G with A"=*G*, the
above map is seen to be the split epimorphism

NG* ® G* — APHIG*

whose kernel is K,’G*. Thus we see that the map ;2 is a split mono whose
cokernel is isomorphic to (K»G*)* @ A" 'F =&~ LG @ A" 'F. Consequently
the map ¢; is a monomorphism whose cokernel is isomorphic to

Coker (¢12) @ A" 1F @ F.

Because the split monomorphism A*G* — A*HIG* @ G come up so often, it is
convenient to have a notation for the cokernel.

Definition. The cokernel of A*G* — AMIG* ® G is denoted by T%5H'G*.
T5+1G* is a free module isomorphic to K&~ *+DG*, In this notation, we have:
Coker ¢1 = 1537G* @ A'7'F @ A'F @ I
Taking the cokernels of the maps ¢;, we obtain the complex:
’
0— AP ® 4G @ A, Aot @ R e

Y ypg @ Ty 7G* ® g g ® G— 0.
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As we remarked, this complex is acyclic when the map f: F— G is split.

Since the above modules were identified as the cokernels of ¢, thanks to the
splitting of certain canonical morphisms, it is necessary to make explicit the
maps d; induced by the maps d,.

Let

o N'PGF @ N'F @ G— N7TIGE @ A'F

be a map splitting ¢12. In case of characteristic zero, this would just be

(B ®ay ®a) = ay(B) ® ai.

+1

Straightforward calculations show:

dl,(,B ® a1 ® (12) = ,3((11) ® 3] + (1 ®f)A1(0’(,3 ® (12) ((11))

= B(a1) @ as £ - > ax(8) (a1,) ® fay; (in char 0)

P-f—l

where Ay(a1) = X ay;, @ ar/ € A°F @ I

= B(t1) @ a: = B a1 ®f¢lz =+ - as(B) (ai;)

p+1

® a1/ (in char 0).
dy' (a1 ® B ® ax) = 2, ay;(B) ® az ® aiy.

Our final step is to fill in the empty spaces in (P;). That is, we must now find
maps 1, 2, v1, v2 making the following into a double complex:

0—5 NMFR AG*® A'F  — AG*® AR , AT 50

B b

ATGHF R ATIE® F APFEQF i. ANTE®G

®IYTG* @ A

! b

Y 01
—

0—>s KSF — NFE®G

Q) 0— A"'FQR AGF® PV

MG

https://doi.org/10.4153/CJM-1978-049-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-049-4

560 DAVID A. BUCHSBAUM

We define the maps as follows:

m(BRa)=0a @b+ Al(a(ﬁ ® b)(a))
=8Qu®b+ :{)—-_FI > b(B)(a;) ® a; (char0).
Uy @ B® a2) = ». (b A ar)(B) @ ax @ s
7)1((l1 ® (12) =y N\ 2 ® b
118 ® a1 @ as) = b(B)(a2) @ ar £ a(B ® a1) (1) @ b
+ 2 (@B ® 111))((12.;') ® faz/

PR TIOIEY

+ > (b A w)(B)(az;) ® fas in char. 0.
2(B ® a1 @ «z) = 0(B) (1) @ ay £ Z b(c(B ® as))(a1;) ® aiy

= 0(B)(a1) ® ua :l:PJ‘{‘T Z (b A a2)(B)(a1;) ® ay

=0(B)(as) ® ay £ —

in char. 0.

The map vs is defined with range A"/ ® [7, and one must verify that the
image is indeed contained in K"/

Although it is easy to check that the maps are well-defined, the commuta-
tivity of the diagram Q has been checked only in characteristic zero, using the
particular splitting indicated. Therefore, from now on, we shall assume charac-
teristic zero, although it is to be hoped that the rest of the arguments in this
section will hold for arbitrary rings.

All of the above discussion may be summarized in

THEOREM 5.2 Let R be « commutalive ring contuining the rational numbers.
Then the diagram Q with the maps defined as above is « double complex. If the map
fo "= G is split, then the rows of Q are exact und the totul complex consequently
s acyclic. If R 1s noctheriun, the total complex of Q is grade sensitive to the ideal,
1., generaled by the minors of order n — 1 of the map ' : F ® R — G, where
I =14 b Thelotal complex of Q may be described as follows:

Q0 AV @ AGH® AT Wvrgr o N e 1 B K
@ 1176 @ A9 arr @ ¢ B arrig

01 1s the usual map;
A KS"F'— A'F' ® G s the obvious map;
9 127G* @ NI A1 @ G is given by:

3208 ® a1 ® az) = Blaz) ® uy — ‘)“1“*’ 2 w1(B) (az)) ® flusy’s

3:(B ® a1 ® az) = Blar) @ as —I—/ + i 3w (B)ay) @ arl + B ® ay & fas
3s(a1 ® B® ax) = 2. a;(B) @ a2 @ ay/.
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Here F'indicates a free R-module of rank n (not n — 1), and f': F — G is « map.

All the assertions, but for the description of the total complex Q,” have been
proven or at least sketched. The final description of Q' follows from the obser-
vations that

AMF® R~ NF@® AP
and that
KP(FOR) X KPF® A 'FQ D, 1(F® R).

6. Some partial results and indications. In the preceding section we
started with maps f: I'— G and b: R — G, where G has rank n and I has
rank » — 1, and succeeded in constructing explicit generic minimal resolutions
of the cokernels of the maps A?F' @ G — A?*!'G, where I/ = F ® R and
f': IF— G is the map f + 0. We did this, in any event, under the assumption
that R contained the rationals and we shall continue to make this assumption
throughout this section, although we do not know if this is an essential assump-
tion. We will now indicate how we might try to generalize the procedure used
in Section 5 to handle the following situation.

Assume that we have maps f: F— G and b: R — G where G is of rank #
and F is of rank » — ¢. We want to find minimal generic resolutions of the
cokernels of the maps A’/ ® A'G — A"G, where IV = F® Randf': ' —
G is the map j 4 0. We would thereby obtain complexes grade sensitive to the
ideal I,_,(f") generated by the minors or order n — q of the (n — ¢ + 1) X n
matrix f’.

The map f: I' — G gives us the following complexes:

B):0 K F>K/FQG—...>K/F® AT'G— A'F
® AG— NG —0
(C):0—>K/F® NG A" F— ... >K/FQ NG ® A" 'F— A°F
@ ATHIGE @ ATF— NTUTHIGE @ AR — AR — 0
DN:0—-D,F—... 5D F® ATG—>F® A7'G— A'G— 0.
We shall also consider the complex
BN): 0K ® NG A" F-K/F® A'T'GF® AN F— ... APF
® AIG* @ AVUF— ATTTOGk @ AT

which is the complex (B) with AG replaced by A"'G* and tensored with
A"9F.

The complexes (B) and (B’) we know to be acyclic when f: I' — G is a split
injection, and H,(D") = 0 for i > 0 when f is a split injection. The complex C
is the complex associated to f*: G* — F*, with the term A"~ 77+1[* replaced by
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AP1[ (viz section ), and tensored with A"~?J" to make the maps compatible
with this identification. It, too, is acyclic when f is split. We therefore see that
the complexes C ® D™ and B’ ® D" are acyclic when f is split.

Notice that D7 has length 7, while G and B’ have length ¢ + 1. Thus
C ® D7 is a complex of length r + ¢ + 1, and B’ @ D"~! has length r 4 ¢.
We shall relabel the complexes B’ ® D! so that they begin with 0 in dimen-
sion 0, and therefore B’ ® D! will be a complex of length » + ¢ + 1. Our
next step is to define a map

o B D!'—-CQD'.
In degree 0, ¢o" is the zero map. In degree 1, we need a map
el APPIGH @ AU R ATTIG o ATTIF® F QR ATTIG
® ATUIGE @ AU @ A'G
whose composition with the map into A”7 '/ ® A’G is zero.

We define ¢, as the direct sum of the following maps:

et ATPTIGEF @ AU ATIG— AP Q F QR ATTIG

‘Pl?r: An—p—qG* ® An_q],‘ ® Ar_1G__) An—p-q—HG* ® An_qF ® ArG
where

e’ (B® a1 @ ) = 3 Blar;) @ ard ® ay

(,’,’127(6@([1@(12) :tZ[?/\ Ei®u,1®x,- /\(12.

As in § 5, we have denoted by > «y; ® «;/ the image in A"~ 1[F ® [ of the
diagonal of «y, and {x,}, {£;} denote a basis and a dual basis of G and G*. In
fact, the map ¢12" is a formal map which is used repeatedly in the definition of
the map ¢, so we shall digress to make a formal definition.

We have often considered the element ¢ ¢ G* ® G, but usually as an ele-

ment of the algebra AG* ® SG or SG* ® AG. This time, however, we shall
regard ¢ as an element of AG* ® AG, and we therefore have the map

Cce: NG* ®@ AG — AMIGYr @ ATHIG

given by multiplication by cq.
ProrosiTiON 6.1. For all integers k, 1, the cokernel of
ce: AFG* @ A'G — AMIGY @ ATHIG
is a free module of finite rank.

Proof. The proof is by induction on rank G, the rank 1 case being trivial. If
G = G" ® R, an analysis of the map shows that its cokernel is the sum of the
cokernels of the maps:

AG* @ NG — AMHIG™* @ ATIG
AMG* @ ATIG — AFHIG* @ AG
AFIG™* @ NG — MG @ ATIG.
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We see, therefore, that if we let «(n; &, ) be the rank of the cokernel for a
free module of rank #, then
aln 4+ 1;k1) =aln; k1) +aln; k)l — 1) + aln; kb — 1,1).

Since

w(n;k, 0) = (Zii)(n—k— 1),

we can calculate the rank in general.
Definition. We denote by 1%+1"+1G* the cokernel of the map
cg: AFG* ® A'G — AMIG* @ A'TIG.

Notice that T%+11G* is the module T%+!G* defined in Section 5.
To define maps ¢,.;: (B ®@ D™-1),.» — (C ® D7),,1, we first note that

B @D, = > K/F® A —eHElok @ AR @ DF @ ATVTG

I+k=v
@®ATTGFR AV FQD,FR ATTG
C D)= 2, K/FQ A6 @ NF @ DiF @ A7°G @ A7 GH

l+k=v
@ AN FRD,F® NG ® A" 'F® D, F® A6
The map ¢,y is defined to be the sum of maps:

Vo APIGE @ AF ® D,F @ ATIG — AerHIGE

® AF® D,F ® A—G ® A"'F ® D, F @ A—~1G
Vi APF® NG @ AUF @ D, F ® A'G — APF @ A'HGH
® AF ® D, 1F @ A™+1G @ A7+G* @ A'F @ D,F @ A™™'G

and, for [l > 1,
VKPP @ AR @ ATF @ DF @ A6 —
—K/F@ NG @ AP @ DiF @ NG @ KhuF @ NG
® A"F @ Dk ® ATFG.

For ¥y, ¥y, and ¥, the first component of each map is just the formal map
¢ ¢ tensored with the appropriate identity. The map

A PIGH @ N'TUF @ DF @ ATTIG — AR @ Dy F @ A6
is the composite:
AP=IG*F @ A"1F @ D, F @ A™~1G — A P-I1G* @ AI-1F
Q@ FQD,FQ A 1G— A 'FQ D, F @ AT—1G,

where the left hand map is diagonalization of A" ?F into A" "!F ® F, and
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the second map entails the operation of AG* on Al" as well as multiplication
in DF.

The second component of ¥y is similar, in that one diagonalizes A”I" to
APF @ IY, operates with A1/ on A"9G*, and multiplies with /“on D,_,F.

The second component of ¥, for/ > 1, is purely formal again. This time, we
regard > K /I as an SF*-module, and D/ is clearly a DF-module. Then
cp € I*Q I' C SF* @ DI' and ¢ operates on K ’F @ D, F, carrying it into
K "I’ @ D;.1F. This multiplication by cp, tensored with the appropriate
identity, is the second component of the map V,.

Having defined the maps ¢,’, it is not difficult to show that we actually get
a map of complexes ¢,_;": B’ @ D! — G ® D’. The cokernel of ¢" is there-
fore a complex starting with A*7'F ® A’G, which we shall denote by E".
Moreover, the element b € G which we are given along with the map f: I' — G,
defines maps of D* into D**1. Consequently we have maps

BeD-!'-B D" and C® D"— C ® D!

which commute with the maps ¢”. These maps therefore induce maps E'-! —
E" and, since E® = C, we get a double complex:

0—-C—-E'—...—>E"
It is also possible to define a map E? — B such that
0->C—>E'—-...->E‘—>B

is a double complex.

When we take ¢ = 2 and p = n — 2, the morphisms ¢” are monomorphisms
for r = 1, 2, so that the complexes E” are also acyclic when f is a split mono-
morphism. In this case, the double complex

0—->C—oE'—E

looks like this:

[¢ 0 - RiF@ NG @ N - NP GO N TR o Gra N T A
! ! l !
E 0 VNG e N o N - NP VT NP P (G-I — N rar ARG
| ! ONTFR TGO AT @l er e N F
| l !

B @ NG N @ Dl — @ N @ D — N @ Dl — NP2 rec -\ e A
GANTFRIVICRR NP F @GO NTERF GRS
|
B 0 — KiEr - Kir® G — AT NG NG

Letting I/ = I ® R, the total complex then becomes:
0 A @ A F @ NG*® AU — AU @ AVIGH
@ A'F' @Dy - AT @ 1VGHF @ AT Q I @ G @ AT
Q DoF' - Ky 'I' @ 15'G* @ A" ' @ ' > Ki'F' @ G @ TYH6*
Q@ A — AR @ A'G — A'G.
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This complex, then, does give a resolution (in characteristic zero) of the
ideal of (n — 2) X (n — 2) minors of an (n — 1) X » matrix. We were able
to write it down because we could explicitly calculate the terms of E’. The
generic acyclicity of the complex results from the acyclicity of E7, and in
general we have not been able to prove this acyclicity for arbitrary ¢ and p.
Clearly, more has to be understood about the maps ¢ and ¢, which are basic
to the definition of the maps ¢’. Because the elements ¢, and ¢ are not nil-
potent, their cokernels don’t seem to fit naturally into long exact sequences.
We hope to investigate all these matters further in a later paper.

Although interest generally focuses on the ideal of (n — q) X (v — q)
minors of a map f: I*— G, hence on the cokernel of A" 'F ® A‘G — A"G,
it is probably worthwhile to look at all the maps A’F @ A‘G — APTIG; the
supports of all these cokernels (for fixed ¢) are the same. Noreover, these maps
show up in the following context.

In [1], we showed that if

R=R
(Ll lb
JNe

is a commutative diagram with rank I = m, rank G = n, m = n, then we had
a double complex:

f

— J AR NN AN
[
n—1 n+1 4~ 2 AQf 2~
— ATGFR AN F— ANF 5 AG

l l l

l ! l
An
P -3 Gy SN U S A
whose rows are the complexes associated to the maps A?f: APF — APG. The
total complex is grade sensitive to the ideal generated by the #» X # minors of
fand by b*. When R = k[X,,...,X,]and b(1) = (Fy, ..., F,) where F; are
forms generating a complete intersection, we may choose f to be the Jacobian

matrix (0F,;/9X;). In characteristic zero, we therefore get a complex grade
sensitive to the singular locus of the complete intersection (Fy, ..., F,).
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Suppose, now, that (I, ..., I,) generate a variety of codimension n — q.
Then the singular locus of (Fy, ..., I7,) is generated by Fy, ..., F, together
with the minors of 0F,;/dX; of order n — ¢. In analogy with the case of com-
plete intersections (where ¢ = 0), we consider:

F® AG— ATG

a® Il lb

A'F® A'G— ATG
l

ATIF® AP — NG
and we would like to find an extension of this diagram to obtain a double
complex grade sensitive to the singular locus of (Fy, ..., F,). In this case, we
are looking for complexes over the cokernels of the maps

AP ® NG — AP,

IHere, we are not treating the case of a generic matrix, for we are assuming that
the minors of order # — ¢ + 1 of the Jacobian are contained in the ideal gener-
ated by (I, ..., IY,). Nevertheless, the interest in the above maps for all
p persists.
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