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EXAMPLES OF FACTORIAL RINGS IN 
ALGEBRAIC GEOMETRY 

BY 

JACEK BOCHNAK AND WOJCIECH KUCHARZ 

ABSTRACT. We show that the ring of complex-valued regular functions 
on an affine irreducible nonsingular real algebraic variety X is factorial if 
dim X = 1 or dim X = 2 and X has no compact connected components 
or X is compact and the second cohomology group of X with integral 
coefficients vanishes. 

1. Introduction. In this note algebraic varieties and regular maps between them are 
understood in the sense of Serre [10]. Given a real algebraic variety X we denote by 
2ft(X) the ring of real-valued regular functions on X. Factoriality of this ring has been 
studied in [5] and [11]. Our purpose here is to investigate factoriality of the ring of 
complex-valued regular functions on X, i.e., the ring 

&(X,C) = {/+ ig\f,g E 3t(X)9 i2 = -1} . 

Note that if Y is an algebraic subvariety ofW,A(Y) its coordinate ring (i.e., the ring 
of polynomial functions on Y) and X a Zariski open subset of Y, then 

&(X) = \f/g\f,g G A(Y), g-\0) H X = 0}. 

In this setting the ring 9l(X,C) can be described as follows. Let Yc C Cn be the 
complexification of Y and let A(YC) be the coordinate ring of Yc. Then 2ft(X,C) is 
naturally isomorphic to the localization of A(YC) with respect to the multiplicatively 
closed set 

s = {/GA(yc)lr
,(O)nx = 0}. 

Our main result is the following. 

THEOREM 1.1. LetX be an affine nonsingular irreducible real algebraic variety. Then 
the ring 9l(X,C) is factorial in each of the following cases: 

(a) dim X — 1 ; 
(b) dim X = 2 and X has no compact connected components; 
(c) X is compact with H2(X,Z) = 0. 
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Note that, in general, the ring 9l(X, C) is not factorial. In particular, the assumption 
"X has no compact connected components" in (b) is essential. Indeed, set 

Sn = to iB + 1 ) 6 M" + ]\x] + ... + x2
n+l = 1}. 

The examples below can be easily verified by combining results of section 2 and [7]. 

EXAMPLE 1.2. The ring 2ft(S2, C) is not factorial. Its divisor class group is isomorphic 
toZ. 

EXAMPLE 1.3. The ring <3l(Sl x S\C) is factorial but there exists an affine non-
singular real algebraic variety X diffeomorphic to S] x Sl such that the ring 2ft(X, C) 
is not factorial. 

EXAMPLE 1.4. Let X be an affine nonsingular real algebraic surface. Assume that X 
is compact connected nonorientable and has odd genus (as a smooth manifold). Then 
the ring Sft(X,C) is not factorial. Its divisor class group is isomorphic to Z/2Z. 

Some information about the factoriality of the affine coordinate ring of a complex 
variety can be deduced from properties of the real part of this variety. More precisely 
we have the following. 

COROLLARY 1.5. LetZ C C" be a nonsingular irreducible complex algebraic surface. 
Assume that Z D R" is a compact connected nonorientable nonsingular real algebraic 
surface of odd genus. Then the coordinate ring ofZ is not factorial. 

PROOF. The localization homomorphism A(Z) —> A(Z)S, where 

S = {/G A(Z)\f~\0) fl Un = 0} 

composed with the natural isomorphism A(Z)S —» 2ft(X,C) induce the epimorphism 
Cl(A(Z)) -> C/(9l(X, C)) of the divisor class groups [8]. By Example 1.4, the group 
Cl(A(Z)) is nontrivial and hence A(Z) cannot be factorial. 

Note that here the terms "compact", "connected", etc. refer to the strong (metric) 
topology on an algebraic variety. 

Theorem 1.1 is proved in section 2, where also the Picard group is studied. 

2. The Picard Group of 2ft(X,C). We say that a triple £ = (£, ir,X), where £,X 
are real algebraic varieties and IT : E —» X is a regular map, is a complex algebraic vector 
bundle of rank k if the following conditions are satisfied: 

(i) For each x in X the fiber TT_1(JC) is a ^-dimensional complex vector space. 
(ii) For each point x in X there exist a Zariski neighborhood U of x and a regular 

isomorphism 9 : TT~~] ( U) —» U x Ck such that for each point y in U, 9 induces a C-linear 
isomorphism between Tr_1(y) and {y} x Ck. 

Here C is considered as a real algebraic variety. The notions of a morphism or an 
isomorphism of complex algebraic vector bundles can be defined in the usual way. 
Vector bundles of rank 1 will be called line bundles. 
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A complex algebraic vector bundle £ = (£, ir,X) is said to be strongly algebraic if 
there exists an algebraic complex vector bundle TJ over X such that the Whitney sum 
£ 0 T) is algebraically isomorphic to a product vector bundle X x Cm for some m and 
if X is an affine variety. There are several equivalent definitions (cf. [2], [3], [4], [6], 
where mainly real vector bundles are considered but most proofs can be trivially 
modified to cover the complex case too). In this note we shall make use of the 
following. 

PROPOSITION 2.1 (cf. [2]). Every smooth section of a strongly algebraic complex 
vector bundle £, over a compact affine nonsingular real algebraic variety X can be 
approximated in the Cx topology by regular sections. More precisely, if s is a smooth 
section ofè,,F a finite subset ofX, and {kx}xEF a collection of nonnegative integers, 
then every neighborhood of s contains a regular section u whose kx-jet at x is the same 
as the kx-jet at x of s for all x in F. 

PROOF. By definition, one can find an algebraic complex vector bundle r\ over X such 
that £ © r\ is algebraically isomorphic to a product vector bundle X x Cm. Denote by 
z the zero section of r\. The Weierstrass theorem implies that there exists a regular 
section of £ © r\ arbitrarily close to s © z and whose &.r-jet at x is the same as the kx-')ti 
of s © z at x for all x in F. The conclusion follows since the projection £ © r\ —> £ 
is an algebraic morphism. • 

REMARK 2.2. If one drops the assumption that X is nonsingular, then every con­
tinuous section of £ can be approximated by regular sections in the C° topology. 

Given an affine real algebraic variety X we denote by V(X,C) the semiring of 
algebraic isomorphism classes of complex strongly algebraic vector bundles over X 
with addition and multiplication induced by the Whitney sum and tensor product of 
vector bundles, respectively. It will be convenient to compare V(X, C) with the semi­
ring Proj(^k(X,C)) of isomorphism classes of finitely generated projective 
2ft(X, C))-modules. Note that the map çx which assigns to the isomorphism class [£] 
of a vector bundle £ the isomorphism class [T(^)] of the 2ft(X, C)-module of regular 
global sections of £ is a homomorphism of semirings from V(X, C) into Pr<9/(2ft(X, C)). 

PROPOSITION 2.3. The map yx is an isomorphism. 

PROOF. With any finitely generated projective 2ft(X, C)-module P we can associate, 
in the usual way, an algebraic complex vector bundle £(P) = (£(P), Tr(P),X), whose 
fiber over x in X is equal to P/MXP, where Mx is the maximal ideal of 2ft(X, C) of all 
functions vanishing atx. Since the bundles ^{Px © P2) and Ç(P,) © £(P2) are naturally 
isomorphic, £(P) is a strongly algebraic vector bundle. We claim that the natural 
homomorphism h(P):P-+ T(C(P)), defined by (h(P)(e))(x) = e + MXP for e in P 
and x in X, is bijective. Indeed, injectivity of h(P) is obvious. To show surjectivity, 
pick up a finitely generated 2ft(X, C)-module Q such that P © Q is a free module. 
Clearly, h(P © Q) is an isomorphism. Hence also h(P) © h(Q):P ®Q-^ T(%(P)) 
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© r(£(ô)) is an isomorphism and the claim follows. By construction, [P] —» [£,(P)] 
is the inverse map of <px. • 

REMARK 2.4. Bijectivity of h(P) is equivalent to bijectivity of the natural homo-
morphism from P into the 2ft(X, C)-module of sections of the sheaf over X whose stalk 
over x in X is equal to P 0 9l(X, C)Ms. Note that, contrary to the familiar situation from 
algebraic geometry over an algebraically closed field, the last statement is not true for 
an arbitrary finitely generated 2ft(X,C)-module [4]. 

Let V\X,C) be the subset of V(X,C) of isomorphism classes of line bundles. 
Clearly, Vl(X,C) is a group with multiplication. 

COROLLARY 2.5. For every affine real algebraic variety X, cpx induces an iso­
morphism from V\X, C) onto the Picard group Pic($l(X, C)) o/2ft(X, C). In particu­
lar, the ring 9l(X, C) is factorial if and only ifV\X, C) is a trivial group, provided that 
X is irreducible and nonsingular. 

PROOF. Obvious. • 

COROLLARY 2.6. Let U be a Zariski open subset of an affine irreducible nonsingular 
real algebraic variety X. Then the homomorphism 

p:V\X,C)-+ V\U,C) 

induced by the restriction of vector bundles is surjective. 

PROOF. Since the diagram of natural homomorphisms 

V\X,C) "^ V\U,C) 

1 1 
P/c(2ft(X,C)) -> Pic(<3l(U,C) 

is commutative and vertical arrows are isomorphisms, it suffices to observe that 
2ft(£/,C) is naturally isomorphic to the localization of Sft(X,C) with respect to the 
multiplicatively closed subset 

S = {f e 2ft(X, C)\f~\0) C X - U} 

and apply [1], p. 144. CI 

Now we are ready to prove Theorem 1.1. 

PROOF OF THEOREM 1.1. Proofs of (a) and (b) are similar so we shall only show (b) 
which is more interesting. We may assume that X is an algebraic subset of Un. Let Sn 

be the unit M-sphere and let/?:S" - {a}—> Un be the stereographic projection from the 
"north pole" a = (0, . . . , 0, 1). Denote by X* the Zariski closure of p~\X) in B?n+ '. 
Topologically X* is the one point compactification of X and X* — {a} is algebraically 
isomorphic to X. Let TT:X -> X* be the Hironaka desingularisation of X* [9]. Then X 
is a compact affine nonsingular real algebraic variety, IT'1 (a) is a union of finitely 
many nonsingular real algebraic curves in X, and the induced map TT\X — ir~](a):X 
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- TT_1(A) —» X* — {a} is a regular isomorphism. Clearly, the intersection of any 
connected component of X and tt~l(a) is an infinite set. By Corollaries 2.5 and 2.6, 
it suffices to prove that given a complex strongly algebraic line bundle £ over X its 
restriction to X — IT"1 (a) is algebraically trivial. Take a real analytic section s of £ 
transversal to the zero section. Since X is compact and dimX = rank/^, the set Z = 
{x E X|^(JC) = 0} is finite. By [6] there exists a real analytic diffeotopy crt:X —» X, t 
E [0, 1], of X such that ai~!(Z) C it'1 (a). Since the pullback vector bundle af£ is 
analytically isomorphic to £ and the set of zeros of the pullback section erf s is equal to 
aj~ (Z), we may assume that Z is contained in ir~l(a). Fix a positive integer k. One 
can find a regular section u of £ which is arbitrarily close to s in the C00 topology and 
has the same &-jet as s at each point in Z. If /: is sufficiently large, then the set of zeros 
of u is equal to Z and hence the restriction of £ to X - it~l(a) is algebraically trivial, 

(c). We have to show that V\X, C) is a trivial group. Note that the natural homo-
morphism \\ix from Vl(X, C) into H2(X,Z) induced by the map which assigns to each 
complex vector bundle over X its first Chern class is injective. Indeed, if the iso­
morphism class of a complex strongly algebraic line bundle £ is sent, via \\fx, onto 0, 
then £ is topologically trivial. Hence, by Remark 2.2, Ç is also algebraically trivial and 
tyx is a monomorphism. Since H2(X,Z) = 0, the conclusions follow. • 
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