
Glasgow Math. J. 47A (2005) 177–189. C© 2005 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089505002387. Printed in the United Kingdom

FROM THE NON-ABELIAN TO THE SCALAR
TWO-DIMENSIONAL TODA LATTICE

CORNELIA SCHIEBOLD
Mathematisches Institut, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany

e-mail: cornelia@minet.uni-jena.de

(Received 30 October, 2003; accepted 13 September, 2004)

Abstract. We extend a solution method used for the one-dimensional Toda lattice
in [1], [2] to the two-dimensional Toda lattice. The idea is

1. to study the lattice not with values in � but in the Banach algebra L of bounded
operators and

2. to derive solutions of the original lattice (�-solutions) by applying a functional
τ to the L-solutions constructed in 1.

The main advantage of this process is that the derived solution still contains an element
of L as parameter that may be chosen arbitrarily. Therefore, plugging in different types
of operators, we can systematically construct a huge variety of solutions.

In the second part we focus on applications. We start by rederiving line-solitons and
briefly discuss discrete resonance phenomena. Moreover, we are able to find conditions
under which it is possible to superpose even countably many line-solitons.

2000 Mathematics Subject Classification. 35Q58, 32A65.

1. Introduction. In this article we study the so-called two-dimensional Toda
lattice

∂2

∂x∂y
wn = exp(wn − wn−1) − exp(wn+1 − wn), (1)

where wn = wn(x, y), n ∈ �, (x, y) ∈ �2, which actually has been already considered
by Darboux [3] in 1915. For further information and related results we refer to [4], [5],
[6], [7], [8], [9] and [10].

The present work is based on an operator theoretic approach developed by Aden,
Carl, and the author [11], [1], [12], that was inspired by pioneering work of Marchenko
[13].

First we consider a non-abelian two-dimensional Toda lattice taking its values
in the Banach algebra of bounded operators. In Theorem 2.1 we provide an explicit
operator-valued solution, which is formally similar to the line-soliton but contains
two operator-valued commuting parameters. From this we derive in Theorem 2.3 the
solution formula for the scalar two-dimensional Toda lattice which will be fundamental
for our applications. The decisive gain is that this solution formula still depends on the
same operator-valued parameters as before. (See [1] for a comparable treatment of the
one-dimensional Toda lattice.)

The above procedure is given in the framework of Banach spaces. But many of
the salient features can already be seen in the finite-dimensional case. For the sake of
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illustration we rederive N-solitons (see also [14], [15]). As a more interesting finite-
dimensional application, we try to give the reader a first impression of how to use our
method in the study of resonantly interacting solitons; i.e., solutions similar to the
Miles structures of the Kadomtsev-Petviashvili equation (see [16], [17], [18], [19]). Here
a comparison with our treatment of the one-dimensional Toda-lattice is instructive. In
this case there is only one operator-valued parameter in the solution formula, and, as
shown in [1], [2], the finite-dimensional case reduces completely to matrices in Jordan
form yielding the so-called negatons. The case of the two-dimensional Toda lattice
seems to be essentially more intricate as can already be seen for the simplest Miles
structures. (See Section 3.2.)

Our main application concerns the problem of countable superpositions of
solitons as raised and pursued by Gesztesy and collaborators [20], [21]. Here infinite-
dimensional methods become truely crucial. The approach of [20], [21] consists in a
direct passage to the limit requiring a good deal of hard analysis. In our approach,
the difficulty reduces to summation properties of operators on Banach spaces, a topic
which was systematically developed in [22], [23]. For a comparison of the two methods
in the KdV case we refer to [20], [24]. To the best of our knowledge Theorem 4.3 is the
first result in this direction for two-dimensional discrete equations.

2. Operator-theoretic treatment. For convenience, we use the dependent variable
transform vn = exp(wn) − 1 to rewrite the lattice in the form

∂2

∂x∂y
log(1 + vn) = 1 + vn

1 + vn−1
− 1 + vn+1

1 + vn
. (2)

2.1. Non-abelian two-dimensional Toda lattice. Let us now consider the non-
abelian version of the two-dimensional Toda lattice,

∂

∂y

(
(1 + Vn)−1 ∂

∂x
Vn

)
= (1 + Vn−1)−1(1 + Vn) − (1 + Vn)−1(1 + Vn+1), (3)

where Vn = Vn(x, y) takes values in the space of bounded operators L(E) on some
Banach space E. In view of the applications in Section 4 the statements will be given
for possibly infinite-dimensional Banach spaces. To grasp the main argument, it is
enough to understand the finite-dimensional case.

An explicit solution of (3) is provided by the following result.

THEOREM 2.1. Let A, B be constant invertible operators on some Banach space
E with [A, B] = 0. If the family of operators Ln(x, y) solves the following set of linear
equations

Ln+1 = (AB) Ln,
∂

∂x
Ln = (A − B−1) Ln and

∂

∂y
Ln = (A−1 − B) Ln (4)

and if (1 + Ln) is invertible for all n ∈ � and all (x, y) ∈ �, where � is an open subset of
�2, then a solution of (3) on � is given by

Vn := (1 + Ln)−1(ALnB − Ln). (5)

Non-abelian Toda lattices are known in the literature. For example in [7], the
matrix-version of (3) was studied from the Darboux transformation point of view.
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Observe that if Ln+1 = (AB) Ln holds for all n ∈ �, then the differential equations
in (4) need only to be checked for some n0.

Proof. First note that

1 + Vn = (1 + Ln)−1(1 + ALnB) = (1 + Ln)−1(1 + B−1 · ABLn · B)

= (1 + Ln)−1B−1(1 + Ln+1)B

and thus

(1 + Vn)−1 = B−1(1 + Ln+1)−1B(1 + Ln). (6)

By the usual product rule and the non-abelian differentiation of the inverse
operator of T = T(x) with respect to x, (T−1)x = −T−1TxT−1, we get

∂

∂x
Vn = −(1 + Ln)−1(A − B−1)Ln(1 + Ln)−1(ALnB − Ln)

+ (1 + Ln)−1(A − B−1)(ALnB − Ln)

= (1 + Ln)−1(A − B−1)(−(1 + Ln)−1Ln + 1)(ALnB − Ln)

= (1 + Ln)−1(A − B−1)Vn (7)

and, analogously,

∂

∂y
Vn = (1 + Ln)−1(A−1 − B)Vn.

From (6), (7) we have (1 + Vn)−1 ∂
∂x Vn = B−1(1 + Ln+1)−1(AB − 1)Vn, and thus the

left-hand side of (3) reads

∂

∂y

(
(1 + Vn)−1 ∂

∂x
Vn

)
= B−1(1 + Ln+1)−1(AB − 1)((1 + Ln)−1(A−1 − B)Vn)

+ B−1(−(1 + Ln+1)−1(A−1 − B)Ln+1(1 + Ln+1)−1)(AB − 1)Vn

= B−1(1 + Ln+1)−1(AB − 1)(A−1Ln+1(1 + Ln+1)−1 − (1 + Ln)−1A−1)(AB − 1)Vn.

Calculating the expression in the bracket

A−1Ln+1(1 + Ln+1)−1 − (1 + Ln)−1A−1

= (1 + Ln)−1((1 + Ln)A−1Ln+1 − A−1(1 + Ln+1))(1 + Ln+1)−1

= (1 + Ln)−1(LnA−1Ln+1 − A−1)(1 + Ln+1)−1

= (1 + Ln)−1(LnA−1(AB)Ln − A−1)(1 + Ln+1)−1

= (1 + Ln)−1(LnBLn − A−1)(1 + Ln+1)−1,

we finally obtain

∂

∂y

(
(1 + Vn)−1 ∂

∂x
Vn

)
= B−1(1 + Ln+1)−1(AB − 1)(1 + Ln)−1(LnBLn − A−1)(1 + Ln+1)−1(AB − 1)Vn.
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Now we show that this expression coincides with the right-hand side of (3). Using
again (6) as well as the identities

Vn − Vn−1 = (1 − (1 + Ln−1)−1(AB)−1(1 + Ln))Vn = (1 + Ln−1)−1(1 − (AB)−1)Vn

Vn+1 − Vn = ((1 + Ln+1)−1(AB) (1 + Ln) − 1)Vn = (1 + Ln+1)−1((AB) − 1)Vn

we get

(1 + Vn−1)−1(1 + Vn) − (1 + Vn)−1(1 + Vn+1)

= (1 + Vn−1)−1(Vn − Vn−1) − (1 + Vn)−1(Vn+1 − Vn)

= B−1(1 + Ln)−1B(1 + Ln−1) · (1 + Ln−1)−1(1 − (AB)−1)Vn

− B−1(1 + Ln+1)−1B(1 + Ln) · (1 + Ln+1)−1((AB) − 1)Vn

= B−1((1 + Ln)−1B(AB)−1 − (1 + Ln+1)−1B(1 + Ln)(1 + Ln+1)−1)(AB − 1)Vn

= B−1((1 + Ln)−1A−1(1 + Ln+1) − (1 + Ln+1)−1B(1 + Ln))(1 + Ln+1)−1(AB−1)Vn.

As for the expression in the bracket, we use

(1 + Ln)−1 − (1 + Ln+1)−1 = (1 + Ln+1)−1((1 + Ln+1) − (1 + Ln))(1 + Ln)−1

= (1 + Ln+1)−1((AB − 1)Ln)(1 + Ln)−1

yielding (1 + Ln)−1 = (1 + Ln+1)−1(1 + (AB − 1)(1 + Ln)−1Ln).
Therefore

(1 + Ln)−1A−1(1 + Ln+1) − (1 + Ln+1)−1B(1 + Ln)

= (1 + Ln+1)−1((1 + (AB − 1)(1 + Ln)−1Ln)A−1(1 + Ln+1) − B(1 + Ln))

= (1 + Ln+1)−1((A−1 − B) + (AB − 1)(1 + Ln)−1LnA−1(1 + Ln+1))

= (1 + Ln+1)−1(AB − 1)(−A−1 + (1 + Ln)−1LnA−1(1 + Ln+1))

= (1 + Ln+1)−1(AB − 1)(1 + Ln)−1(−(1 + Ln)A−1 + LnA−1(1 + Ln+1))

= (1 + Ln+1)−1(AB − 1)(1 + Ln)−1(LnBLn − A−1).

This completes the proof. �

2.2. Solution formula. To extract scalar solution formulae, some algebraic
terminology will be useful.

A one-dimensional operator T ∈ L(E) is an operator whose range is contained in
a one-dimensional subspace of E. Such an operator T is always of the form a ⊗ c for
a vector c ∈ E and a functional a ∈ E′, where

a ⊗ c(x) := 〈x, a〉c ∀x ∈ E.

(〈, 〉 is the usual dual pairing: for the functional a ∈ E′, 〈x, a〉 is the evaluation of a at
the vector x ∈ E.)

Then the functional τ is well-defined by

τ (T) = 〈c, a〉 for any representation T = a ⊗ c.

Fixing a ∈ E′, we define Sa = {a ⊗ c | c ∈ E}, the subalgebra of L(E) of one-
dimensional operators whose behaviour is governed by the functional a. The restriction
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of τ to Sa has three crucial properties. It is (1) linear, (2) continuous, and (3) multi-
plicative; i.e., τ (T1 ◦ T2) = τ (T1)τ (T2) for T1, T2 ∈ Sa.

Starting from the L-solution Vn obtained in Theorem 2.1, we now derive
�-solutions of (2) according to the following ansatz.

(i) Assume that the solution Ln(x, y) of (4) and the operators A, B are coupled in the
sense that for some (constant) functional a ∈ E′ we have ALn(x, y)B − Ln(x, y) ∈ Sa

for all n ∈ �, (x, y) ∈ �2. This means that there is a vector cn(x, y) ∈ E such that
ALn(x, y)B − Ln(x, y) = a ⊗ cn(x, y) ∀n ∈ �, (x, y) ∈ �2.

(ii) Applying the functional τ to the L-solution Vn = (1 + Ln)−1(ALnB − Ln) =
a ⊗ ((1 + Ln)−1cn), we obtain the �-function vn := τ (Vn) = 〈(1 + Ln)−1cn, a〉. It
remains to verify that vn solves (2). This follows from the above mentioned properties
of τ |Sa .

For a detailed justification of this ansatz we refer to [11].

REMARK 2.2. Note that in (i) it already suffices to assume, say, AL0B − L0 =
a ⊗ c0(x, y). From (4) and the fact that A and B commute, it then follows easily that

ALnB − Ln = (AB)n(AL0B − L0) = (AB)n(a ⊗ c0(x, y)) = a ⊗ ((AB)nc0(x, y)),

which implies ALnB − Ln = a ⊗ cn(x, y) for all n ∈ �.

Let us sum up.

THEOREM 2.3. Let E be a Banach space and A, B ∈ L(E) with [A, B] = 0. Moreover,
let C ∈ L(E) be coupled with A, B such that ACB − C = a ⊗ c.

Then

vn = 〈(1 + MnC)−1Mnc, a〉
with Mn(x, y) = (AB)n exp((A − B−1)x + (A−1 − B)y) (8)

is a solution of the two-dimensional Toda lattice (2) on

� = {(x, y) | 1 + Mn(x, y)C is invertible ∀n ∈ �}.
Proof. Observe that Ln = MnC satisfies the hypothesis of Theorem 2.1. Thus

Vn = (1 + MnC)−1(AMnCB − MnC) is a solution of (3). Since Vn ∈ Sa by the coupling
condition τ |Sa is linear, continuous, and multiplicative, vn = τ (Vn) solves (2). The
following calculation finishes the proof.

vn = τ (Vn) = τ ((1 + MnC)−1(AMnCB − MnC))

= τ ((1 + MnC)−1Mn(ACB − C)) = τ ((1 + MnC)−1Mn(a ⊗ c))

= 〈(1 + MnC)−1Mnc, a〉.
�

REMARK 2.4. Theorem 2.3 can be understood as a linearization procedure since
we have reduced the solution of the nonlinear two-dimensional Toda lattice (2) to the
solution of the set (4) of linear operator equations in L.

2.3. Improvement of the solution formula. If τ is induced by a trace, we can
improve our solution formula (8) considerably. This will be important for the countable
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superposition of line-solitons in Section 4. Here we start with the finite-dimensional
case.

PROPOSITION 2.5. Assume the situation of Theorem 2.3 and E = �N. Then the
solution (8) is given by

vn = det(1 + Mn+1C)
det(1 + MnC)

− 1.

Proof. We can identify operators on E = �N with N × N matrices. Now we observe
that for one-dimensional operators (a) the usual trace tr coincides with τ and (b)
we have 1 + tr(T) = det(1 + T).

Using the notation of Theorem 2.3, we calculate

vn = 〈(1 + MnC)−1Mnc, a〉
= τ ((1 + MnC)−1Mn(a ⊗ c))

= tr((1 + MnC)−1Mn(a ⊗ c))

= (1 + tr((1 + MnC)−1Mn(a ⊗ c))) − 1

= det(1 + (1 + MnC)−1Mn(a ⊗ c)) − 1

= det(1 + (1 + MnC)−1(AMnCB − MnC)) − 1

= det((1 + MnC)−1(1 + AMnCB)) − 1 (9)

= det(1 + AMnCB)
det(1 + MnC)

− 1

= det(1 + BAMnC)
det(1 + MnC)

− 1

= det(1 + Mn+1C)
det(1 + MnC)

− 1.

�
REMARK 2.6. Later we will need to extend Proposition 2.5 to infinite-dimensional

Banach spaces. To this end, the main point is to interpret the expression det(1 + T),
where T is an appropriate operator. Roughly speaking, there is a natural choice if T has
finite-dimensional range. But in our case, the difficulty is that in line (9) the operators
MnC need not be of this kind.

The extension of the notion of determinants is one of the topics of the theory of
Banach operator ideals (see [27]). We shall come back to this in Section 4.

3. Examples.

3.1. Line-solitons. Consider the finite case, E = �N , and take diagonal matrices
A = diag{pj|j = 1, . . . , N}, B = diag{1/qj|j = 1, . . . , N} with 0 < pN < . . . < p1 <

q1 < . . . < qN . In this case it is easy to calculate explicitly a matrix C which satisfies
ACB − C = a ⊗ c, namely

C =
(

ajci

pi/qj − 1

)N

i,j=1

. (10)
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Then Proposition 2.5 implies that

vn = det(1 + Mn+1C)
det(1 + MnC)

− 1 (11)

solves (2). The resulting solution describes the superposition of N line-solitons; it
depends on the 3N parameters pj, qj, aj · cj (j = 1, . . . , N).

The line-solitons (11) are always regular. The reader finds a proof in Appendix A
and a comparison to the representation by Casorati determinants (as used in [5], [6])
in Appendix B. Some recent results on the interaction patterns of line-solitons in the
related case of the KP equation can be found in [14], [15].

3.2. Resonant interactions. The appearance of resonance phenomena for the
two-dimensional Toda lattice is not surprising since its continuum limit yields the
Kadomtsev-Petviashvili equation (see [25]) for which resonance phenomena are well
known and intensively studied (see, for example, [16], [17], [18], and [19]).

In our framework, resonantly interacting solitons arise from inserting diagonal
matrices A = diag{pj | j = 1, . . . , N} and B = diag{1/qj | j = 1, . . . , N} in the limiting
case in which some of the entries coincide (0 < pN ≤ . . . ≤ p1 < q1 ≤ . . . ≤ qN).

In the sequel we shall take a closer look at the smallest case of interest, N = 2.
Assume that

A =
( p1 0

0 p2

)
and B =

( 1/q1 0

0 1/q2

)
with p1 = p2 =: p.

Then it turns out that the matrix C with ACB − C = a ⊗ c, that we calculated in (10),
itself is one-dimensional, namely C = â ⊗ c with âj = aj/(p/qj − 1). Thus

det(1 + MnC) = det(1 + â ⊗ Mnc) = 1 + 〈Mnc, â〉 = 1 + ln
∑
j=1,2

m(j)
n

where we have set âjcj = exp(−βj) and

ln(x, y) = pn exp(px + y/p), m(j)
n (x, y) = (

qn
j exp(qjx + y/qj + βj)

)−1
.

To give a rough idea of the asymptotic analysis, we observe that, for any fixed value
of y, we may expect a soliton contribution to the solution in the following regions:
1. lnm(1)

n ≈ c and lnm(2)
n ≈ 0, 2. lnm(1)

n ≈ 0 and lnm(2)
n ≈ c, and 3. m(1)

n ≈ m(2)
n and

ln ≈ ∞.
The computer graphic confirms these heuristics, which can be treated rigorously

without much effort. More careful analysis shows that also for arbitrary N the choice
A = p I , B a diagonal matrix with N different entries leads to tree-like structures with
N + 1 solitons, one of the branches pointing to −∞, all the others to +∞ in the
x-direction. Vice versa, if A is a diagonal matrix with N different entries, B = (1/q)I
the picture is reflected at the axis x = 0.

4. Countable superpositions of line-solitons. As our main application, we give an
answer to the question whether it is possible to superpose countably many line-solitons.
This question has been raised by Gesztesy et al. [20]. Results for the one-dimensional
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Figure 1. The function fn(x, y) = (1 + vn+1(x, y))/(1 + vn(x, y)) − 1 (‘the force’) is
plotted for y = 0 from two different points of view. For simplicity we have interpreted
n as a continuous variable. The parameters are: p = 0.5, q1 = 1.2 and q2 = 2.

Toda lattice are due to Gesztesy and Renger [21]. To the best of our knowledge,
Theorem 4.3 is the first result of this kind for the two-dimensional Toda lattice.

More precisely, the problem is the following: given sequences

p1, p2, . . . , pN, pN+1, . . .

q1, q2, . . . , qN, qN+1, . . .

the first N parameters always define an N-line-soliton configuration v
(N)
n as in

Section 3.1. Now one would like to find conditions on these sequences that guarantee
the existence of the limit v = limN→∞ v

(N)
n , and, even more, that this limit v still

solves (2).
Within the framework of Theorem 2.3, the answer becomes rather transparent.
Let E = �2 and consider the diagonal operators A(ξj)j = (pjξj)j, B(ξj)j = (ξj/qj)j

given by the bounded sequence (pj)j and the sequence (qj)j with inf j |qj| > 0. Obviously
A, B ∈ L(�2). For a = (aj)j, c = (cj)j ∈ �2 we define

C(ξj)j =
(∑

j

ajci

pi/qj − 1
ξj

)
i

(12)

which also defines a bounded operator if we assume α := inf i,j |pi/qj − 1| > 0. Indeed,
by Hölder’s inequality we have

||C(ξj)j||22 =
∑

i

∣∣∣∣∣
∑

j

ajci

pi/qj − 1
ξj

∣∣∣∣∣
2

≤
∑

i

(∑
j

∣∣∣∣∣ ajci

pi/qj − 1
ξj

∣∣∣∣∣
)2

≤ 1
α2

∑
i

( ∑
j

|ci||ajξj|
)2

= 1
α2

∑
i

|ci|2
( ∑

j

|ajξj|
)2

= 1
α2

||(ci)i||22 ||(ajξj)j||21 ≤ ||(ci)i||22 ||(aj)j||22
α2

||(ξj)j||22;
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in other words ||C|| ≤ ||a|| ||c||/α. Finally, it can be easily checked that ACB − C =
a ⊗ c. Now we can apply Theorem 2.3. Note that

Mn(x, y)(ξj)j = ((pj/qj)n exp((pj − qj)x + (1/pj − 1/qj)y)ξj)j.

As a result we have proved the following result.

THEOREM 4.1. Let (pj)j be a bounded sequence and (qj)j a sequence bounded away
from zero. Assume inf i,j |pi/qj − 1| > 0. Choose a, c ∈ �2 arbitrarily and define C as in
(12). Then

vn = 〈(1 + MnC)−1Mnc, a〉 (13)

is a solution of the two-dimensional Toda lattice (2) describing the countable super-
position of line-solitons corresponding to the parameters pj, qj, aj · cj.

We can even obtain a similar simplification of our solution formula as in Sec-
tion 2.3. To this end, we have to generalize our arguments to infinite-dimensional
Banach spaces; compare Remark 2.6.

LEMMA 4.2. Under the assumptions of Theorem 4.1, the operator C defined in (12)
is trace class.

Proof. ByB1(�2) we denote the trace class operators on �2. Consider the elementary
operator � ∈ L(B1(�2)) which is defined by

�(X) := AXB − X for X ∈ B1(�2).

Then spec(�) = spec(A) · spec(B) − 1 (see for example [26]). Thus the assumption
inf i,j|pi/qj − 1| > 0 yields 0 /∈ spec(�), and � is invertible in L(B1(�2)). Since a ⊗ c
surely is trace class (it is even one-dimensional), also D := �−1(a ⊗ c) is trace class.
Now D solves ADB − D = a ⊗ c. Calculating its matrix entries with respect to the
standard basis, we derive D = C. See [12, Section 4] for more details. �

It can be shown (see [27]) that T is trace class if and only if there is a representation
T = ∑∞

j=1 aj ⊗ cj with
∑∞

j=1 ||aj|| · ||cj|| < ∞; i.e., if T is an infinite sum of one-
dimensional operators.

Then the Fredholm determinant is given by

det1(1 + T) = 1 +
∞∑

n=1

1
n!

∞∑
i1=1

. . .

∞∑
in=1

det




〈ci1 , ai1〉 · · · 〈ci1 , ain〉
...

...
〈cin , ai1〉 · · · 〈cin , ain〉




and the corresponding trace by

tr1(T) =
∞∑

j=1

〈cj, aj〉,

where T = ∑∞
j=1 aj ⊗ cj is an arbitrary representation of T .

Since tr1 coincides with τ on Sa, the arguments of Section 2.3 carry over and yield
the following result.
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THEOREM 4.3. The following reformulation of the solution (13) in terms of the
Fredholm determinant det1 holds:

vn = det1(1 + MnC)
det1(1 + Mn+1C)

− 1. (14)

REMARK 4.4. The conditions can even be sharpened. In the sequel we only assume
that (pj)j, (1/qj)j are bounded sequences with pj, 1/qj > 1. Since the quality of the
operator C was decisive in deriving Theorem 4.3, the main idea is to find conditions on
the sequences a, c such that C still is an operator admitting an appropriate determinant.

Let us mention two results.

1. If (aj/

√
1/q2

j − 1)j, (cj/

√
p2

j − 1)j ∈ �2, then a sophisticated argument shows

that C factors through �1, L2[0,∞) and �∞. Using Grothendieck’s theorem
and a deep result of White [28] on operators with summable eigenvalues, we
can show that Theorem 4.3 still holds, but with the spectral determinant detλ.

2. If (aj)j ∈ �∞, (cj/(p2
j − 1))j ∈ �1, then it turns out that C ∈ N (�1). Therefore,

switching over to operators on the Banach space �1, again Theorem 4.3 holds,
where we now use the nuclear determinant detN on the nuclear operators
N (�1).

Statements 1. and 2. can be proved by similar arguments as in [12, Theorem 6.4] and
Proposition 6.6.

Note that nuclear operators on �1 are defined analogously to the characterization
of trace class operators as infinite sums of one-dimensional operators. But observe
that the corresponding nuclear trace trN behaves rather strangely. Namely, a nilpotent
operator S ∈ N (�1) can be constructed with trN (S) = 1 (see [29]).

Already this example shows that traces and determinants are not straightforward
objects in general. We refer to [12] for an introduction to this topic, and to [27], [30]
for further reading.

Appendix

A. Regularity of line-solitons.

LEMMA A.1. For ajcj > 0, the line-soliton (11) is regular.

Proof. Recall that for the line-soliton (11), we have 0 < pN < . . . < p1 < q1 < . . . <

qN and

MnC =
(

ajci

pi/qj − 1
(pj/qj)n exp((pj − qj)x + (1/pj − 1/qj)y)

)N

i,j=1

.

Therefore a well-known expansion rule yields

det(1 + MnC) = 1 +
N∑

k=1

N∑
j1,...,jk=1
j1<...<jk

det((MnC)j1,...,jk ),
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where (MnC)j1,...,jk denotes the matrix obtained from MnC by deleting the j1, . . . , jk-th
rows and columns. Now with fj(n, x, y) := (

pj/qj
)n

exp((pj − qj)x + (1/pj − 1/qj)y),

det(MnC) =
N∏

j=1

(ajcjfj(n, x, y)) · det
(

1
pi/qj − 1

)N

i,j=1

=
N∏

j=1

ajcj

pj/qj − 1
fj(n, x, y)

N∏
i,j=1
i<j

(pi − pj)(1/qi − 1/qj)
(pi/qj − 1)(pj/qi − 1)

,

where we refer to [31] for the calculation of the latter determinant. From ajcj > 0, we
conclude det(MnC) ≥ 0, and of course the same is valid for the determinant of any
minor (MnC)j1,...,jk . Thus det(1 + MnC) ≥ 1, which shows that the line-soliton (11) is
regular. �

B. Connection to Casorati determinants. In the literature, line-solitons are
derived in terms of Casorati determinants

vn = det
(
(ϕi(n + j))N

i,j=1

)
det

(
(ϕi(n + j − 1))N

i,j=1

) − 1 (15)

with ϕi(n) = (pi)n exp(pix + y/pi + αi) + (qi)n exp(qix + y/qi + βi). More precisely, the
representation (15) follows from [5] combined with [6] if one takes into account
the straightforward transformations linking the different versions of the equations
under consideration. In the following lemma we show how to translate (15) into our
framework.

LEMMA B.1. Every vn as in (15) can be realized as one of the solutions constructed
in Theorem 2.3.

Proof. We explicitly construct a line-soliton (11) leading to the same solution as
(15). Choose A = diag{pj | j = 1, . . . , N}, B = diag{1/qj | j = 1, . . . , N}. In addition,
we consider the Vandermonde matrices V = (pj−1

i )N
i,j=1 and W = (qj−1

i )N
i,j=1. For the

following decisive but rather technical fact we refer to the forthcoming work [32]. The
expression A(VW−1)B − (VW−1) is one-dimensional.

Set C = A0B−1
0 · (VW−1) with A0 = diag{exp(αj) | j = 1, . . . , N} and B0 =

diag{exp(βj) | j = 1, . . . , N}. Then the expression ACB − C is still one-dimensional:
i.e., there exist vectors a, c such that ACB − C = a ⊗ c. By Theorem 2.3, we obtain
the following solution vn of (2),

vn = 〈(1 + MnC)−1Mnc, a〉

with Mn = (AB)n exp((A − B−1)x + (A−1 − B)y). Since we are in the finite-dimensional
case, we may repeat the arguments of Section 3.1 to see that

vn = det(1 + Mn+1C)
det(1 + MnC)

− 1.
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Using MnC = G−1
n Fn · VW−1 where Gn = B−n exp(B−1x + By)B0 and Fn =

An exp(Ax + A−1y)A0, we infer that

det(1 + MnC) = det
(
G−1

n (FnV + GnW )W−1) = det(FnV + GnW )
det(GnW )

.

We easily check that det(FnV + GnW ) = det((ϕi(n + j − 1))N
i,j=1). Thus

1 + vn = 1
det(B)

det
(
(ϕi(n + j))N

i,j=1

)
det

(
(ϕi(n + j − 1))N

i,j=1

) .

Since (2) admits a multiplicative transformation group (as an equation for 1 + vn), we
may eliminate 1/det(B), which means that vn generates the same solution as (15). �
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