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1. Introduction

Let G be a group, written additively with identity 0, but not necessarily abelian and
let S be a semigroup of endomorphisms of G. The set €(S;G)={f: G—»GI fo=df for all
ceS and f(0)=0} is a zero-symmetric near-ring with identity under the operations of
function addition and composition, called the centralizer near-ring determined by the
pair (S,G). Centralizer near-rings are general, for if N is any zero-symmetric near-ring
with identity then there exists a group G and a semigroup S<EndG such that
N =4%(S; G). For background material and definitions relative to near-rings in general we
refer the reader to the book by Pilz [7]. For material on centralizer near-rings we refer
the reader to [4] and [6].

For A, a set of linear transformations on a vector space V with certain conditions, the
structure theory of the ring of linear transformations which commute with every element
of A has.been investigated (e.g., [1], p. 32). In [2], the non-linear analogue for the case
in which V is a finite vector space and A is generated by an invertible matrix is studied.
This is extended in [4] to include the structure of €(A4;V) where V is a finite vector
space and A<AutV. For infinite ¥, the situation is much more difficult. The main
structural results for V infinite deal with the question of the simplicity of %(4;V),
A< AutV. (See [6] and [8].) It is thus the purpose of this paper to investigate the
structure of ¥(%; V) where V is an abelian group and % is the general linear group of
size n over a field F with # <AutV. This study then complements and extends the
results in [2] and [4] as well as providing structural theory information about the
infinite case.

Throughout this paper % will denote the general linear group GL,(F) of nxn
matrices over a field F where we always assume n>2, and V will be an abelian group
such that % < Aut V. Using the fact that the simple ring R = M,(F), i.e., the ring of nxn
matrices over F, is generated by %, the action of % on V can be extended so that V
becomes a faithful, unital R-module. Since R=RE, & --®RE,, where the E;,
i=1,2,...,n, are the orthogonal idempotents E;; with 1 in position (i,i) and O elsewhere,
it follows that Vis the direct sum of irreducible R-modules, V=X®RE,m, where E, is
one of the idempotents E;; and m,e V. If E,=E;;, then the coefficients of m, in RE,m,
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are matrices with at most the ith column different from zero. In representing these
elements we will often omit the zero columns and write

ay; 0 a; O
mfor [ 1 im,

a,; 0 a, O

We have therefore the situation in which V is a unital R-module where R is a simple
ring contained in End V. Since # <R, ¥(R;V)=%(#%;V). The centralizer near-ring
%(R; V) where V is a finite, faithful unital module over the finite simple ring R has been
the object of study in [3]. It was shown there that €(R; V) is a simple near-ring, in fact
a simple ring unless R is a field and dimg V> 1. The proof given in [3] also applies to
the present situation where R =M, (F), F not necessarily finite, so here also one has that
%(R;V) is a simple near-ring and is a ring unless R is a field and dimgz V' >1. One is
thus lead to comsider if these properties are inherited by %(%;V). Our work in this
- paper on the structure theory of €(%; V) will show that in general this is not the case.

In the next section we characterize the pairs (%;V) such that €(%;V) is simple. In
Section 3 we investigate the left ideal structure of €(%;V) which results in
characterizations of v-primitivity for 4(#%;V), v=0,1,2. In Section 4 we study the
radicals, J (4(%; V), v=0, 1/2, 1, 2.

2. Structure of €(%; V)

In this section we obtain several properties of the near-ring €(%; V). We first relate
the decomposition V=> ,@®RE,m, to the group of units %. Recall from vector space
theory that if the ith column of a matrix A is nonzero then there exists a non-singular
matrix P such that AE;;=PE;;. This establishes the following lemma which suggests
that V can be considered as a direct sum of vector spaces of dimension n over F with #
acting on each one naturally. '

Lemma 2.1. Let R=M,(F) and let V be a faithful R-module. Then V=Y ,®U°E,m,
where #°=GL,(F)u {0}, E,e {E,,,...,E,,} and m,eV.

If V is finitely generated over R then the number of nonzero summands in a direct
sum decomposition of V into irreducible submodules is unique (see [1], p. 62) so we
may call this number dim, V. Otherwise we say dimy V = c0.

Fundamental to our study of 4¥(%;V) is the orbit structure of the group V by the
group of automorphisms %. We have V={0} u(| J;#Zv,)where {0} L {v,} is a complete
set of orbit representatives. The set {v,} is called a basis for V over %. For each veV
we define stab(v)={A e % |Av=v}. Clearly stab(v) is a subgroup of % and for Be%,
stab Bv=Bstab(y)B~'. Let V*=V—{0} and let & ={stab(v)|veV*}. Then & is
partially ordered under set inclusion and we say stab(v) is maximal (minimal) if it is
maximal (minimal) in &. The next result due to Betsch (see [6]) points out the
importance of the set & in studying 4(%; V).
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Lemma 22. Let x,yeV. There exists f €G(U;V) such that f(x)=y if and only if
stab(x) = stab(y).

We consider further the set . We observe first that for xe ¥, x=x, + - +x, where
the X, come from different summands of the form RE,m,. If Aestab(x) then x=Ax=
Ax, +:--+ Ax,. Hence A estab(x, ) for each i and so

stab(x) = h stab(x,,).

i=1

We turn now to a characterization of maximal stabilizers. First consider

Then
1 Xl .
stab(x) = X,,X, arbitrary, det X, #0¢.
0 X,

Suppose for 0¥ y=A4,E, m, + ‘- + A,E, m, , stab(y) 2stab(x). Let

blj
AjE¢1m¢l= ; maj.
b,;
Since
stab(x) ©stab(y) &stab(A4 fE"!mai)
and since X, is arbitrary in the elements of stab(x) one finds that b,;=:--=b,;=0.
Hence
bll bls
0 0
y=| . |[mg+ >+ | | | My
0 0

But then stab(y) =stab(x). Now let xe #E,m,, say
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and so

0
stab(x)=A | stab m,| A™L

Hence stab(x) is maximal. Finally let
y=AE,m, + - +A,E,m,.

We note that stab(y) is maximal if and only if stab(y)=stab(4;E,m,) for i=1,2,...,1.
Moreover, for an appropriate A %

1

0 1 X, :
stabAy=stab | |m, = 0 X X,,X, arbitrary, det X, #0.
2

As above this implies
b1 j

0
AA-E,jm¢j= o mg, j=1,2,...,t

7 i
0
. €11
- _1_ — :
and so if A7"=(c;j), A;E,my,=by;| * | Map
Cn1

ie, all the 4;E, are in the same 1-dimensional subspace. Conversely if this is the case
then a direct calculation shows that

stab(y) =stab(AjE,jmaj), j=12...,t

Hence stab(y) is maximal.

Theorem 2.3. Let yeV, y=AE, m, + - + A;E, m, . Stab(y) is maximal if and only if
there exists a; +0 in F such that
a;A;E,m, =AE, m, , i=1,2,...,5s

ie., if and only if rank[A,E, ,...,A;E, ]=1.
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The next lemma will be used later when studying the J,-radical. Since it involves
maximal stabilizers we present it here in a general setting.

Lemma 24. Let o/ <AutG and let
2(g) = {he G* |stab(h) =stab(g)} L {0}

where stab(g) is maximal. Then X(g) is a subgroup of G.
Proof. For h,keX(g),

stab(h— k) 2stab(h) n stab(k) = stab(g).

But stab(g) is maximal so stab(h—k) =stab(g), hence h—ke X(g).
Returning to the partially ordered set (&, =), let 0#we,

w=AE,m, +---+AE, m,

and suppose rank[A4,E, ,...,A,E, 1=j=n. Without loss of generality we assume the
first j columns are independent. Thus there exists an Ae % such that

r '0' )

1 aj +Aj+1Euj+1+'“ +AsEa,ma,'

From this,

-1 I Xj . .
stabAd™'w= 0 X X;1,X;, arbitrary with det X;, #0
j2

which we henceforth denote by S;. This shows that for every nonzero w in V] stab(w) is
conjugate to some S; for a suitable j. Thus the §; are canonical representatives of the
conjugacy classes in &. In particular we see that stab(v) is maximal if and only if stab(v)
is conjugate to §;. We also find that stab(w) is minimal if and only if stab(w) is
conjugate to S, where t=min{dimg ¥;n} which in turn is equivalent to '

s
rank[AE, m, ,...,A,E,m,]J=t where w=) AE,m,.
i=1

Note that S, ={I}, the identity matrix. We complete our discussion of & by showing
that §; and S, are not conjugate if j#k. Thus there will be distinct conjugacy classes if
dimg V> 1.
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To this end suppose for some j#k, j<k, S; is conjugate to S,. Observe that all
matrices in S, have 1 as an eigenvalue of multiplicity at least k and in S; there are
matrices which have 1 as an eigenvalue of multiplicity exactly j. Since eigenvalues are
preserved under conjugation, S; cannot be conjugate to S,.

Summarizing the above, we note that the partially ordered set {&, <} of stabilizer
subgroups has a rather nice structure. Indeed (%, <) can be thought of as being
stratified into t conjugacy layers, t=min{dimg ¥,n}, each layer being uniquely
determined by a suitable S;.

In investigating centralizer near-rings over infinite groups Zeller [8] found the
following finiteness condition very useful.

Definition 2.5. ([8]) Let G be a group and 4 a group of automorphisms of G. The

pair (4,G) is said to satisfy the finiteness condition (F.C.) if stab(x)<stab(ax) implies
stab(x) =stab(ax) for xe G, ac A.

Theorem 2.6. G(%, V) satisfies (F.C.).

Proof. Let ve V and suppose stab(v) cstab{Av) for some Ae%. From our discussion
about &, we know there exists a Be# such that stab Bv=S, for some k and there are
components in Bv having column coefficients of the form

V‘O"
o :
0
0
- b 07 b
: : 0
0
[ 0] :
| 0]

where thé last column vector has a 1 in the kth row. Then
stab(Bv) =stab BAv=stab BAB ™ 'Bv.
Let Bv=v, and BAB~!'=C. If
Cvo=4,E, m, +-+AE,m,

then, since S; Sstab(Cv,), we have

AE,
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C=[C1 Cz]
C; C,
where C,; is a k x k matrix. Then because of the form of the above column coefficients in
vo and because of the form of the column coefficients in Cv, we conclude that C;=0.
Therefore C~! has the same form and consequently stabCv,=CS,C~'<S,. Hence
stab Cv, =stabv, which in turn gives stab(v) =stab(Av) as desired.

Zeller [8] also showed that if (A4,G) satisfies (F.C) and there are at least two
conjugacy classes of stabilizers then the centralizer near-ring determined by (A4, G) is not

simple. From the above theorem and the fact that if dimg V' >1 there are distinct
conjugacy classes we have the following.

Corollary 2.7. If dimg V >1 then €(%;V) is not simple.

Let

The converse of this corollary is also true.

Theorem 2.8. Ifdimg V=1 then €(%;V) is simple and in this case €(%;V)=%(R; V)=
End, VF.

Proof. Since dimgz V=1, V=%°Ea,ma,=%E¢,ma,U{0}- Thus there is one nonzero
orbit. From this and the fact that €(%; V) satisfies F.C. we find that every nonzero f in
%(%;V) is a bijection, hence ¥(%; V) is a near-field. Suppose

a,
f(Ealm,l = E mai and Eai = E“ .

a,

For j#i, E,; is nilpotent, so I+ E;; e%. Further (I + E;;)E;;m, =E;;m, while

[ 81 7

(I+E;})f(Eiymy)= |a;+a;

ai+1
= a" J
From this we conclude that -0 -
0
f(Eiima,)= a; |Mg,
0
Lo
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or f(E;ym,)=a,E;;m,, a;€ F*. Thus for Ae¥, f(AE;;m,)=a;AE;;m, which implies that
S =24, 1e. f is just left multiplication by a;. Hence under the mapping f -1, we have
G (U, V) F. Thus €(%;V) is simple. Since 4, € Endg V we have ¥(%; V)CEndR V. On
the other hand since % =R, 4(R; V)< ¥ (4;V) and clearly Endg V=¥%(R; V).

Recall that the Kern of a near-ring N is the set

Kern N={aeN |a(b+c)=ab+ac for all b,ce N}.

In the case that (N, +) is abelian, Kern N is a subring of N. We conclude this section
by characterizing Kern(4(%; V).

Theorem 2.9. Kern(4(#%; V))=Endg V=%(R; V).

Proof. From the generalization of Theorem 1 of [3] as mentioned in the
introduction we know Endp V=%(R;V) so it remains to verify the first equality. If
dimg V=1 then the result follows from the previous theorem. Thus we suppose
dimg V>1. Let v,e%°E,m, vje%"Eaim,j, i#j and let v=v,+v;. Then
stab(v) Sstab(v,), stab(v)Cstab(v) so there exists functions h;, h;e€(%;V), h(v)=v;,
h;(v)=v;. For deKern(4(%; V)),

d(v; +v;) =d(h;(v) + h;(v)) = d(h; + h;)(v) =(dh; + dh;)(v) = d(v;) + d(v;).

Now let v;, v; e¥°E, m,,. Then there exists w; e¥°E, My, Jj#i such that stab(v;)=
stab(w;). Let w=uy, +w As above there exist g;,g; in ‘6’(% V) such that gi{w)=u;,
gi(w)=w;. Since stab(w,)—stab(v) there exists ge$(%; V) such that g(w;)=v;. Hence
g;=88; takes w to v;. Again if de Kern(%4(%; V)) then d(v; +v;) =d(v;) + d(v;). This suffices
to show deEnd V. Since de4(%; V) we now have deEnd, V. The converse is clear so
Kern(4(%; V))=End, V. Since R is generated by %, End, V =End, V.

3. Left Ideals in €(%; V)

In this section we examine various left ideals in €(%;V). We determine all minimal
left ideals and then use our characterization to show that there are no nonzero nilpotent
left ideals in €(%;V). We further use our characterization of minimal left ideals to
establish when €(%; V) is v-primitive, v=0,1,2.

Notation. For the remainder of this paper we use N to denote the near-ring €(%; V).

For an arbitrary centralizer near-ring 4(4;G)=M, let e, denote the idempotent
mapping in M which fixes the orbit 4x and maps all other orbits to 0. In [5] it is
shown that if L is a minimal left ideal of M then L< Me, for some xe G, and under
certain conditions related to x, the left ideal Me, is minimal. Here we find that all
minimal left ideals of N =%(%; V) are of the form Ne,.

We first give an easy but useful technical result.

Lemma 3.1. Let L be a'left ideal of N=%(%;V) contained in Ne, for some xeV. Let

T(x)={ve V|stab(v) 2stab(x)}
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and let
Lix)={weV|w=Ix) for someleL}.

Then for each
yeT(x)—L(x), y+ L{x)SUy.

Proof. We first note that T(x) is a subgroup of V. Now let ye T(x) — L(x) and assume
for some v in L(x) that y+v¢%y. Thus y, y+v are in different orbits so there exists an f
in N such that f(y)=y and f(y+v)=0. Further there exist le L, ge N such that I(x)=v
and g(x)=y. Since L is a left ideal of N, h= f(g+1])— fge L and so h(x) e L(x). But

h(x)=f(y+v)—f(¥)=—y.

This is a contradiction since L(x) is group and y¢ L(x).

For x in V. Ne,=Ann(l —e,)=Ann(V —%x) so clearly Ne, is a left ideal of N.
Further Anne,=Ann(x) is a left ideal of N with Ne, ® Anne,.=N, hence Ne, is N-
isomorphic to N/Anne,. Consequently, Ne, is a minimal (strictly minimal) left ideal if
and only if Ann(e,) is a maximal (strictly maximal) left ideal. Further, Ne, is strictly
minimal if and only if stab(x) is maximal. For if stab(x) is maximal this is indeed the
case. If stab(x) is not maximal then stab(x)< stab(y) for some ye V*. Hence there exists
a mapping f € N defined by f(x)=y and f(w)=0 if wg%x. But then f € Ne, and Nf is an
N-subgroup of Ne,, (0)& Nf ¢ Ne,.

Theorem 3.2. For each xeV*, Ne, is a minimal left ideal.

Proof. Let L be a nonzero left ideal in Ne,. Hence L(x)#0, say 0+ ye L(x) where
Y=Ya,+ "+, with y, #0 for at least one i, say y, . Since stab(y, ) 2stab(y), y,, € L(x).
If stab{x) is maximal then we know Ne, is minimal and L=Ne,. If stab(x) is not
maximal, x=x, + :-*x, then from Theorem 2.3, there must be at least two non-zero
components. For x, , B;#a,, if x5 ¢ L(x) then since x, € T(x) we have from Lemma 3.1,
xp,+L{x)=Ux, . Hence xg +y, =Ax, for some Ae%. But then (A—I)xz =y, which
contradicts the fact that RE, m, n RE; m; =(0) for a; # B;. Thus we have x; ;€ L(x) for
Bj#a,. For xg, where B;=a, we have ﬂﬁéﬂj such that x; #0 and x4 € L(x). Therefore
as above if x; (=x,)¢L(x), xp +xp=Bxy, BeX, again leading to a contradiction.
From this we f{nd that xﬂJeL(x) for each B; and so

x= i xﬁ}eL(x).

Thus there exists h in L such that h(x)=x, i.e., e,€ L and so L= Ne,.
We now turn to the problem of showing that ¥(%; V) has no nonzero nilpotent left
ideals. :

Theorem 3.3. Let L be a left ideal of N containing no nonzero idempotent elements.
Then for each f in L, for each xeV if f(x) #0, then stab(x) & stab f(x).

E
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Proof. We know stab(x)<stab f(x) for each f € L. If the theorem is false, there exists
an feL and xeV* such that stab(x)=stab(f(x)). Let y= f(x). Thus there exists a map
e., in N such that e, (y)=x and e, (w)=0 for w¢%y. Since e,, €N, e, feL so we
may assume f(x)=x. Similarly e,f €L so we may also assume that f(V)=#°x. Let
K={veV|f(v)e¥x}. Then K+ since #x=K. If K=%x then f(v)=v for ve¥x and
f(v)=0 for vé%Ux; ie, f=e, which is a contradiction. Thus there exist ve K, v¢¥x.
Thus for some Ae%, f(v)=Ax. Let f,=e,(—e,+ f)+e,e, which is in L since L is a
left ideal and feL. Now fi(x)=x, fi(t)=e(—v+ f(v))=e,(—v+Ax) and f,(y)=f(»)
if y¢(#xovUv). Assume —v+AxeUx. Then fi(v)=—v+Ax so (f—f)(v)=Ax—
(—v+Ax)=v while (f — fi)w=0 if w¢¥v. Again this is impossible so we have for all
veK—x, —v+ Ax ¢¥x where f(v)=Ax. We now define a new function A as follows. Let
v, be arbitrary but fixed in K —x. Define h by h(y)=y if ye¥Ux U Uvy, h(y)= —y+ f(y) if
yeK—(¥xu%v,) and h(y)=0 if y¢K. Let g, =e .h—e (h— f,) and g,=e (fi —h)+e.h
Then g,,g,€ L. Now

rOifygréK

yif yedx

g:1(y)=3 0if yelv,

yif ye K—(%Uxow@Uv,) and —yeUx
0if ye K—(¥xuw#v,) and —yé¢Ux

and g,g; =e, which is again impossible. Thus the result is established.

Theorem 3.4. Let L be a nonzero left ideal of N containing no nonzero idempotent
elements. Then there exists some x € V* such that L n Ne, #(0).

Proof. Let f be nonzero in L with say f(x)=y+#0. From the previous theorem
stab(x) & stab(y). Since e, f € L we suppose without loss of generality that f(ncu®y.
Let K={ve V| f(v)ey}. Then y¢K; for if f(y)=Ay for some Ae%, we would have
stab(y) & stab f(y) =stab(4y) which contradicts the finiteness condition of Theorem 2.6.
A similar argument shows that y¢ %x. Let f; =e,(—e, + f)+e,e,. Then f, e L with f,(x) =
e(—x+y) and fi(w)=f(w) for w¢%x. If —x+ye#y then fi(x)=—x+y and
consequently e, = f — f; € L which is a contradiction. Therefore —x+yé¢«y so fi(x)=0.
But then (f — fiy)w= f(w) if we%¥x while (f — fi))w=0 if wg%x. Hence 0+ f — f, = fe, is
in Ne,n L.

Corollary 3.5. If L is a nonzero left ideal of N then L contains an idempotent. Further
there are no nonzero nilpotent left ideals in N.

Proof. Suppose L is a nonzero left ideal that does not contain an idempotent. From
the above theorem, L n Ne, #(0) for some xe V*. But for each xe V*, Ne, is a minimal
left ideal so that Ne,=L n Ne, < L. This contradiction establishes the desired result.

Corollary 3.6. Let L be a left ideal of N. L is a minimal left ideal if and only if
L=Ne, for some xe V*,
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Proof. If L=Ne, then from Theorem 3.2 L is minimal. Conversely, from the above
corollary e, e L for some xe V* and so Ne, < L. Since L is minimal L= Ne,.

We remark that Lemma 3.1 as well as Theorem 3.3 and Theorem 3.4 do not use the
structure of €(%;V) in their proofs and therefore are valid in a more general setting.
Indeed these results will hold in any centralizer near-ring %(4; G), A< AutG, in which
the Ne, are minimal, for x e G* and such that the finiteness condition (F.C.) is satisfied.

We further apply Theorem 3.2 to obtain information about the v-primitivity of
E(U;V), v=0,1,2. For the necessary definitions and background material on this topic
we again refer the reader to Pilz [7].

Theorem 3.7. For N=%(%;V) the following are equivalent:
(1) N is simple,

(ii) N is 2-primitive,

(iii) N is 1-primitive.

Proof. The equivalence of (ii) and (iii) follows from the general results in [7] (p. 104)
since N has an identity.

(i)—(ii). Since N is simple, from Theorem 2.8, N is a field and so is 2-primitive on
(N, +>.

(ii)—(i). It is known that when a near-ring M is 2-primitive with a minimal left ideal
then all minimal left ideals are M-isomorphic [Pilz, p. 130]. In our situation if N is not
simple this is impossible. For if N is not simple, dimg V' 22. Thus if v=E, m,, then
stab(v) is maximal and hence Ne, is a strictly minimal left ideal. On the other hand for

-Oﬂ
0
w=1|  |[m,+]|0|m,
0 :
| 0

stab(w) is not maximal and so as we have seen the minimal left ideal Ne,, is not strictly
minimal. Hence Ne, % Ne,, as N-groups.

To complete the characterizations of v-primitivity it remains to consider the case for
v=0. Here the situation is quite different. In fact €(%; V) is always O-primitive.

Theorem 3.8. % (%;V) is 0-primitive.
Proof. We separate the proof into two cases depending on dimyg V.

Case I: dimg V =n. As we have seen

0

o] *
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is such that stab(v)={I}. But then Ne,=V is a minimal left ideal, monogenic and
clearly the left annihilator of V in N is {0}. Hence the N-module V is of type O, ie.,
6(U; V) is O-primitive in this case.

Case 2: dimgV=t<n. If

-0
1 :
0
0
x=|  |m+-+|1[m
' 0
0
L 0

then we know stab(x)=S, and S, is minimal in &. Moreover for any ye ¥ there exists a
Be% such that stab(By) =S, for some k and so S,<S,. Now Ne, is a minimal left ideal,
and hence an N-group of type 0, clearly monogenic since for each f e Ne,, f = fe,. Let
heAnn(Ne,) and let y be arbitrary in V*. As we showed above, stab(x)=stab(By) for
some B E% so there exists a ge N with g(x)=By. But then 0=h(ge,) implies 0=h{By)=
Bh(y) so h(y)=0. Since y was arbitrary h=0. Hence N is O-primitive on Ne,.

4. Radicals in 4(%; V)

In this section we investigate the structure of the various radicals J (N), v=0,1/2,1,2
for the near-ring N=%(%;V). For the necessary definitions we again refer to [7]. As in
the case of primitivity, since N contains an identity J,(N)=J,(N).

From Theorem 3.2, Ne, is a minimal left ideal for each xe V*. Thus Anne, is a
maximal left ideal for x e V*. Therefore

J12(N)= n {K| K is a maximal left ideal of N}< () Anne,={0}.

xeV*

Thus Jy,,=(0) and since Jo(N)=J,;5(N), Jo(N)=(0). Of course this latter result was
known already since N is O-primitive.

It remains to consider J,(N). We first establish some bounds. Let Z={x,;} U {0} be a
basis for V over %. Let M ={x,€98* |stab(x,) is maximal in &} and let M=% — M. For
x,€M, Ann(x;) is a strictly maximal left ideal so J,(N )gﬂ,qe amAnn(x;). We note that
(x,emAnnx;=Ne 5 where eg(x)=x if xe M and eg(x)=0if xe M.

If L is a strictly maximal ideal not of the form Annx; for x,e M then for each x, L
+ Ne,=N. If for some x, L~ Ne,=(0) then one finds that L=Ann(x). Since Ne, is
minimal, Ann(x) is maximal so Ann(x)=L, a contradiction. Thus for each x,
L Ne,#(0) so Ne,< L. This also follows from results in [5]. Consequently for every
strictly maximal ideal L not of the form Annx;, for x;eM, we have L2), ., Ne,.
Further, Neg2) ;. #® Ne,,. Since J,(N) is the intersection of all strictly maximal
left ideals of N we have J,(N)2) . . ® Ne,,.
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Theorem 4.1. ). 5@ Ne, SJ,(N)SNey
Corollary 4.2. If M is finite, J,(N)=Negyz =), . ® Ne,,.

The left ideal ), .;® Ne,, is precisely the collection of functions f in Neg with
finite support, i.c., supp(f) < oo where

sup(f)={xe V| f(x)£0} n B={xeB| f(x)£0}.
We now characterize when this set is J,(N).

Theorem 4.3. (i) Let F be an infinite field. Then Jy(N)=Y, .z ® Ne,, if and only if
dimg ¥ <2.
(ii) Let F be a finite field. Then J,(N)=Y ., . ® Ne, if and only if dimg V is finite.

Proof. (i) If dimg V=0 then V =(0) while if dimy V=1, ¥(%; V) is simple so in both
of these cases J,(N)=(0)=), ,en®Ne,, since M={0}. Thus suppose V=
RE, my @ RE, m,. From our investigations of the set ¥ we know that in this case
ve M if and only if stab(v) is conjugate to S,. But this means there exists Ae% such
that stab(4v)=S, and

07
0
AU=U0= . m;+ 0 m,
0 .
[0

This in turn implies that if stab(w) is not maximal then we%v,. Thus M has one
nonzero element so from Corollary 4.2, J,(N) =Z, @D Ne, .
Conversely suppose dimg V = 3. For ae F*, let

0
a
1
0 0
X, = m+1|0|m+ my
0 ) 0
L0

We claim %x,#%x, if a#b. Otherwise there would exist A=[a;;], B=[b;;] in % such
that Ax, = Bx,. Thus

ay, ag, aagy by by, bb,,

Ax,=| : [my+] @ {my+| ¢ fmy=|  mp+] C [my4| 1 ma.

Qpy a,> aa,, bnl bn2 bbnl
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From the uniqueness of representation of elements in V we find that a=b, a
contradiction. From Theorem 2.3, stab(x,) is not maximal. We use the x,, ac F* as part
of a basis # for V over %. Since F* is infinite, so is M. We define a function f in N as
follows. For each x,e M let

[0

fx)=1] . |m+|0|my=w,

| 0]
and let f(x)=x for xe M —{x,},cp». Finally define f(y)=0 for ye M. Then feN and
f(V)SUM. Further, since woeM, e, €J,(N) and so e, feJ,(N). But suppe, f=
{Xa}xcp is infinite so e,, feJ(N)—> . .5 ® Ne,,.

(ii) Let F be a finite field. Then R is finite. If dimz V is finite then V is finite and the
result follows from Corollary 4.2. If dimgz V is not finite then for j=3, the elements
x;=E,m+E, m, +Eajmj are in distinct orbits and so can be used as part of a basis. Also
x;€M and {x;};,, is infinite. As in the first part of the proof one can find a function
O#geJZ(N)_leeb_l@Nexz'

If J,(N)#Y ., ,er® Ne, , what can be said about the functions in J,(N)? We give a

partial answer to this question. Thus for the remainder of this section we take M to be
infinite and dimg V = 3.

Lemma 4.4. Let L be a strictly maximal left ideal of N. Either e, or ey is in L.

Proof. Suppose ey ¢ L. Since L is strictly maximal, L+ Ne,, =N so there exist seL,
neN such that s+ney,=1. Let s, =eys. Then s,(V)S¥M and since s(x)=x for xe M,
sy is a nonzero element in L. Let h=eg(s, + e)) —egey. Then h=eg(s,; +e,,) is in L with
h(x)=x for xe M while h(y)=ez(s,(y)+y) for ye M. Since ye M, stab(y) is maximal so
stab f(y) =stab(y). From Lemma 2.4, 5,(y)+y€%M so h(y)=0. Thus ez =geL.

Theorem 4.5. J,(N)=n {LI L is a strictly maximal left ideal containing ep} N Ney.

Proof. Let £={L,|L, is a strictly maximal left ideal}. By Lemma 4.4, =X, UZ,
where £, nZ,=Fand Z, ={L,eX|eyeL,}, Z,={L,eZ|ezeL,}. By definition J,(N)=
(Voez L, and since Neg2J,(N) we have Jo(N)=(V,ez L, " Ney. For L,eZ,, Ney <L,
so Ney =L, Negy. Thus

JAN)= L,,r\( N L,)nNe;,= () L.~ Ney
anl gel, aeEl

as desired.
Let f € N. We define the rank of f to be the cardinality of the set f(V) n #* where #
is a basis for V.
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Theorem 4.6. J,(N)={f e N|supp(f)=M and rank f is finite}.

Proof. Let f € Ney such that f has finite rank. Let x; ,...,x;,, x,lHl,...,x,l,,_be the
basis elements in f(V) where x; e M, i=1,2,...,k and x,lj,j=k+1,...,t are in M. Thus
f can be represented as f=f,+f, where fi=){_,e, f and f2=Z§=,‘+1e,%f. Since
ex“er(N), j=k+1,...,t so does f,. Hence if f ¢J,(N) then f, ¢J,(N). This in turn
implies that one of the summands, say without loss of generality e, f, is not in J,(N).
Let g=e,, f and let suppg=M,. If M, is finite then geJ,(N) so we assume M, is
infinite. Since ge Nejy but is not in J,(N) there exists a strictly maximal left ideal L in
X, such that g¢ L. Hence L+ Ng=N and so there exist se L, ne N such that s+ng=1.
Therefore s(x)=x for x¢ M, and for xe M, s(x)=x—n(Ax; ) for some Ae%. Clearly
n(Ax; )#0. Thus n(Ax,)e#M since x, e M. Let h=eylez, —5)—eyes, =emley, —3)
since M, <M. Then he L and for xe M, h(x)=ep(x—s(x))=x —s(x) since n(Ax,) e UM
while for x¢ M,

—xif xeM
h(x)ze“(_x)z{ 0if xe M—M,
Since he L, h, +s is also in L and
xif xeM,
hi(x)=< 0if xeM
xif xeM-—-M,.

Therefore ez =h, € L which is a contradiction. Consequently f € J,(N).
In a similar manner we now show that J,(N) contains all functions with support in
M and range in M U {0}.

Theorem 4.7. J,(N)2{feN|feNey and f(M)=UM L {0}}.

Proof. Let f € Ney with f(M)=¥M u {0}. Further let M, =supp f. If f¢J,(N) then
as in Theorem 4.6 there exists a strictly maximal left ideal L with ¢,,eL and seL, neN
with s+nf = 1. Since f(x) € M so does nf(x) for all xe M ;. Now h=ey(ez, —5) —epes, =
exlesr,—5) is in L. As above h;=h+s is in L and h,=ey a contradiction. Thus
S eJx(N).

The problem of characterizing the elements in J,(N) remains open. That the above
two results do not give this characterization is pointed out in the following example in
which we give a function f in J,(N) with f(M)=%M and f is not of finite rank.

Example 4.8. Let dimg V be at least 3 and F an infinite field. Let

F 0
a
1
0 0
Xg = m1+ 0 m2+ ms,
0 ) 0
Lo
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ae F* as in Theorem 4.3. Define f; by
o

0
Silxg)= . mi+ | 0 |m,

0 :
|0
and f; to be zero on the other basis elements. Since f; is of finite rank, f; e J,(N). Define
J2 by
a
f2(xa) = : my
0

and f, to be zero on the other basis elements. Since f,(M)=#M v {0}, f, € J,(N). Hence
f=fi+f2€J,(N) where f is the identity on {x,},.r and f is zero on the other basis
elements.

We conclude with a definite result for the situation in which dimg V is finite.

Theorem 4.9. Let dimg V be finite and let f € Ney. Then feJ,(N) if and only if f is
the sum of rank 1 functions.

Proof. Suppose f=)7., f; where f; is a rank 1 function. Since each f; is in J,(N),
so is f. Conversely let feJ,(N) and let n; be the ith projection map i=1,2,...,t where
t=dimg V. Since n; c Endg ¥, ;;e N so n;f € J,(N) and m, f is of rank 1. But f =Y _, m; f
so the proof is complete.
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