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1. Introduction

Let G be a group, written additively with identity 0, but not necessarily abelian and
let S be a semigroup of endomorphisms of G. The set <%{S;G) = {/:G->G| fa = af for all
aeS and/(0)=0} is a zero-symmetric near-ring with identity under the operations of
function addition and composition, called the centralizer near-ring determined by the
pair (S, G). Centralizer near-rings are general, for if N is any zero-symmetric near-ring
with identity then there exists a group G and a semigroup S^EndG such that
N^%>{S;G). For background material and definitions relative to near-rings in general we
refer the reader to the book by Pilz [7]. For material on centralizer near-rings we refer
the reader to [4] and [6].

For A, a set of linear transformations on a vector space V with certain conditions, the
structure theory of the ring of linear transformations which commute with every element
of A has been investigated (e.g., [1], p. 32). In [2], the non-linear analogue for the case
in which V is a finite vector space and A is generated by an invertible matrix is studied.
This is extended in [4] to include the structure of ^(A; V) where V is a finite vector
space and / isAutK For infinite V, the situation is much more difficult. The main
structural results for V infinite deal with the question of the simplicity of ^(A; V),
AzAutV. (See [6] and [8].) It is thus the purpose of this paper to investigate the
structure of <if(45r; V) where V is an abelian group and °U is the general linear group of
size n over a field F with "ll c Aut V. This study then complements and extends the
results in [2] and [4] as well as providing structural theory information about the
infinite case.

Throughout this paper % will denote the general linear group GLn(F) of n x n
matrices over a field F where we always assume n^2, and V will be an abelian group
such that ^ s A u t V. Using the fact that the simple ring R = Mn(F), i.e., the ring of nx n
matrices over F, is generated by %, the action of "U on V can be extended so that V
becomes a faithful, unital i?-module. Since R = REll®-- (&REnn where the £,,,
i= 1,2,...,n, are the orthogonal idempotents EH with 1 in position (i,i) and 0 elsewhere,
it follows that Fis the direct sum of irreducible J?-modules, V=Y.@REama where £„ is
one of the idempotents Eu and mxe V. If Ea = Eu, then the coefficients of ma in RExma
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are matrices with at most the ith column different from zero. In representing these
elements we will often omit the zero columns and write

m, for

0 au 0'

0 ani 0

We have therefore the situation in which V is a unital /^-module .where R is a simple
ring contained in End V. Since %^R, <g(R;V)^<#(<%;V). The centralizer near-ring
^(R; V) where V is a finite, faithful unital module over the finite simple ring R has been
the object of study in [3]. It was shown there that <#(R; V) is a simple near-ring, in fact
a simple ring unless R is a field and dimR V> 1. The proof given in [3] also applies to
the present situation where R = Mn(F), F not necessarily finite, so here also one has that
^(R;V) is a simple near-ring and is a ring unless R is a field and dimRK>l. One is
thus lead to consider if these properties are inherited by %>{%; V). Our work in this
paper on the structure theory of 'Wtfl; V) will show that in general this is not the case.

In the next section we characterize the pairs C%; V) such that ^{fll; V) is simple. In
Section 3 we investigate the left ideal structure of #(<^; V) which results in
characterizations of v-primitivity for #(^; V), v=0,1,2. In Section 4 we study the
radicals, •/„(<<?(<&; V)), v=0, 1/2, 1, 2.

; V)2. Structure of

In this section we obtain several properties of the near-ring #(<^; V). We first relate
the decomposition V=Yja.@REama to the group of units <%. Recall from vector space
theory that if the ith column of a matrix A is nonzero then there exists a non-singular
matrix P such that AEii=PEii. This establishes the following lemma which suggests
that V can be considered as a direct sum of vector spaces of dimension n over F with %
acting on each one naturally.

Lemma 2.1. Let R = Mn(F) and let V be a faithful R-module. Then F = ^ © ^ ° £ a m a

where °U° = GhJJ) u {0}, Eae{Elu...,£„„} and maeV.

If V is finitely generated over R then the number of nonzero summands in a direct
sum decomposition of V into irreducible submodules is unique (see [1], p. 62) so we
may call this number dim^ V. Otherwise we say dim^ V= oo.

Fundamental to our study of #(<^; V) is the orbit structure of the group V by the
group of automorphisms %. We have ^={0} u ({Jx°UvJwhere {0} u {t̂ } is a complete
set of orbit representatives. The set {vx} is called a basis for V over %. For each veV
we define stab{v) = {A e <% \Av = v}. Clearly stab(u) is a subgroup of % and for B&^U,
stabBt) = Bstab(u)B~1. Let V* = V-{0} and let S? = {stab{v)\ve V*}. Then Sf is
partially ordered under set inclusion and we say stab(u) is maximal (minimal) if it is
maximal (minimal) in y . The next result due to Betsch (see [6]) points out the
importance of the set Sf in studying #(<2r; V).
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Lemma 2.2. Let x,yeV. There exists f e ^{fU; V) such that f(x)=y if and only if
stab(x)sstabO>).

We consider further the set Sf. We observe first that for xeV, x = xaj + • • • + xXi where
the Xx. come from different summands of the form REjna. If A e stab(x) then x = Ax =
AxXi + --- + Ax<li. Hence Aesta.b(xa.) for each i and so

t

stab(x)= fl stab(xaj).
i = l

We turn now to a characterization of maximal stabilizers. First consider

x =

0

Then

stab(x) = <\ * I/Xt,X2 arbitrary, det X2£0k

Suppose for 0=fcy=AlEXimXi+ ••• +AsEamas, s t ab ( y )2s t ab (x ) . Let

Since

and since
Hence

stab(x)£stab(j>)£stab(/l,-£a;m .)

is arbitrary in the elements of stab(x) one finds that b2i-

y=

_ o J . 0 .

But then stab(y)£stab(x). Now let xe*£^ i , , say

"1"

0

.Oj
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*

stab

1"

0

0

mastab(x) = /4 stab m. A"1.

Hence stab(x) is maximal. Finally let

We note that stab(y) is maximal if and only if stab(y) = stab(y!1£a7n£t.) for i=l,2,...,t.
Moreover, for an appropriate A e <%

stab Ay = stab

As above this implies

1

m, " = ILO x\lXuXlarbitrary>

and so if A 1= (ctJ), AjEx.ma. = bl}

i.e., all the AjEx. are in the same 1-dimensional subspace. Conversely if this is the case
then a direct calculation shows that

stab(y) = stab(AjEx.mXj), j=l,2,...,t.

Hence stab(y) is maximal.

Theorem 2.3. Let yeV, y = AlEXimlli+ ••• +AsExmXs. Stab(y) is maximal if and only if
there exists at^=0 in F such that

aiAiEx.mx. = AlExniXi, i = 1,2,. . . , s,

i.e., if and only j/rank[/41£ai,...,/ls£aj] = l.
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The next lemma will be used later when studying the J2-T&dical. Since it involves
maximal stabilizers we present it here in a general setting.

Lemma 2.4. Let sat £ Aut G and let

Zfe) = {h e G* | stab(A) = stabfe)} u {0}

where stab(g) is maximal. Then Z)(g) is a subgroup of G.
Proof. For h,kel.(g),

stab(/i-/c)2stab(/i) n stab(/c) = stab(g).

But stab(g) is maximal so stab(/i — fc) = stab(g), hence h —

Returning to the partially ordered set (Jf, £>, let O^we V,

w = aimai +•••+ AsEamas

and suppose Tank[A1EXi,...,AsEa~]=j^n. Without loss of generality we assume the
first j columns are independent. Thus there exists an Ae "U such that

j + i Ex

From this,

stab .4
U_0 X:J

XJUXj2 arbitrary with

which we henceforth denote by Sj. This shows that for every nonzero w in V, stab(w) is
conjugate to some Sj for a suitable j . Thus the Sj are canonical representatives of the
conjugacy classes in Sf. In particular we see that stab(t>) is maximal if and only if stab(i;)
is conjugate to S1. We also find that stab(w) is minimal if and only if stab(w) is
conjugate to S, where t = min {dinij, V, n} which in turn is equivalent to

s

rank[AlEaimai,...,AsEamais'] = t where w= £ AiE^.m,,..

Note that Sn = {/}, the identity matrix. We complete our discussion of Sf by showing
that Sj and Sk are not conjugate if j=fck. Thus there will be distinct conjugacy classes if
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To this end suppose for some j=f=k, j<k, Sj is conjugate to Sk. Observe that all
matrices in Sk have 1 as an eigenvalue of multiplicity at least fc and in Sj there are
matrices which have 1 as an eigenvalue of multiplicity exactly j . Since eigenvalues are
preserved under conjugation, Sj cannot be conjugate to Sk.

Summarizing the above, we note that the partially ordered set {£?, £} of stabilizer
subgroups has a rather nice structure. Indeed << ,̂ £ > can be thought of as being
stratified into t conjugacy layers, t = min {dimR V, n), each layer being uniquely
determined by a suitable Sj.

In investigating centralizer near-rings over infinite groups Zeller [8] found the
following finiteness condition very useful.

Definition 2.5. ([8]) Let G be a group and A a group of automorphisms of G. The
pair (A, G) is said to satisfy the finiteness condition (F.C.) if stab(x) £ stab(ax) implies
stab(x) = stab(ax) for xeG, cue A.

Theorem 2.6. <€{%; V) satisfies (F.C).

Proof. Let veV and suppose stab(u)csta.b(Av) for some Ae"U. From our discussion
about Sf, we know there exists a B e * such that stabBv = Sk for some k and there are
components in Bv having column coefficients of the form

0

:

.oj

"0"

1

0

.0 .

, . . .,

"0"

0

1

0

1
. 0 .

where the last column vector has a 1 in the fcth row. Then

stab(Bv) £ stab BAv = stab BAB~ lBv.

Let Bv = v0 and BAB~1 = C. If

then, since St£stab(Cu0), we have

L o J
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Let rCi c2i
lc3 cj

where Cj is a k x k matrix. Then because of the form of the above column coefficients in
v0 and because of the form of the column coefficients in Cv0 we conclude that C3=0.
Therefore C"1 has the same form and consequently stabCvo = CSkC~l^sk. Hence
stab Cv0 = stab v0 which in turn gives stab(u) = stab(4u) as desired.

Zeller [8] also showed that if (A, G) satisfies (F.C.) and there are at least two
conjugacy classes of stabilizers then the centralizer near-ring determined by {A, G) is not
simple. From the above theorem and the fact that if dimR V > 1 there are distinct
conjugacy classes we have the following.

; V) = <%(R; V) =

Corollary 2.7. //dimR V > 1 then ̂ {fll; V) is not simple.

The converse of this corollary is also true.

Theorem 2.8. / / dimR V = 1 then #(<^; V) is simple and in this case

Proof. Since dimRF = l, V=att°Exmai = allEllmlli u {0}. Thus there is one nonzero
orbit. From this and the fact that ^("U; V) satisfies F.C. we find that every nonzero / in

; V) is a bijection, hence #(<#; V) is a near-field. Suppose

and £„. = £,,.

For jj=i, Eu is nilpotent, so . Further (/ + £1J)£;im(Ii = £11mai while

From this we conclude that

0

0

LO
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or/(Efimx.) = a,,£,• fma., a^F*. Thus for Ae'%,f(AEiim0l.) = aiAEiimai which implies that
/ = Aa., i.e. / is just left multiplication by a{. Hence under the mapping f-*ka. we have
«"(t ;F)^F. Thus <£(<%; V) is simple. Since Aa.eEndRF we have <#(<%; V)^EndRV. On
the other hand since f c R , #(fl; F) c <«£(#; F) and clearly EndR F <= ̂ (R; F).

Recall that the Kern of a near-ring N is the set

KernN = {aeN\a(b + c) = ab + ac for all b,ceN}.

In the case that <N, + > is abelian, Kern AT is a subring of N. We conclude this section
by characterizing Kern(#(<^; F)).

Theorem 2.9. Kern(^(^; F)) = EndR V = #(R; F).

Proof. From the generalization of Theorem 1 of [3] as mentioned in the
introduction we know EndRV='£(R;V) so it remains to verify the first equality. If
dimR F = 1 then the result follows from the previous theorem. Thus we suppose
d im R F>l . Let Ujet^.m, , . , Vje^0Ea.mx., ij=j and let v = vt + Vj. Then
stab(t7)£stab(vj), stab(i;)£stab(i;y) so there exists functions ht, hje<g(<%;V), hi{v) = Vi,
hj{v) = Vj. For <ie Kern(#(<&; F)),

d(Vi + Vj) = d(ht(v) + hj(v)) = d(ht + hj)(v)=(dht + dhj)(v) = d(vt) + d(Vj).

Now let Vi, Vje<%°Ea.ma[. Then there exists wJ-6*°£a.maj jj=i such that stab(u7) =
stab(w7). Let w = vi + wj. As above there exist gt,gj in ^{fU; V) such that g,-(w) = «;,-,
gj(w) = Wj. Since stab(vv,-) = stab(^), there exists ge^{^l\V) such that g(Wj) = Vj. Hence
gj=ggj takes wto û . Again if deKernC^^; F)) then d(vi+vj) = d(vi) + d(vj). This suffices
to show d e End F Since d e #(<^; F) we now have d e End# V. The converse is clear so

)) = End^ F Since R is generated by * , EndR F = End* V.

3. Left Ideals in ^ ( * ; F)

In this section we examine various left ideals in %>(<%; V). We determine all minimal
left ideals and then use our characterization to show that there are no nonzero nilpotent
left ideals in ^(fU; V). We further use our characterization of minimal left ideals to
establish when #(<^; F) is v-primitive, v=0,1,2.

Notation. For the remainder of this paper we use N to denote the near-ring #(<^; F).

For an arbitrary centralizer near-ring ^(A;G) = M, let ex denote the idempotent
mapping in M which fixes the orbit Ax and maps all other orbits to 0. In [5] it is
shown that if L is a minimal left ideal of M then L £ Mex for some xeG, and under
certain conditions related to x, the left ideal Mex is minimal. Here we find that all
minimal left ideals o f N = ^ ; F) are of the form Nex.

We first give an easy but useful technical result.

Lemma 3.1. Let L be a left ideal of N~ ^{^l; V) contained in Nex for some xeV. Let

T{x) = {v e V | stab(u) 3 stab(x)}
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and let

Ux) = {w e V | w = l(x) for some leL}.

Then for each

Proof. We first note that T(x) is a subgroup of V. Now let y e T(x) — L(x) and assume
for some v in L(x) that y + v^tfty. Thus y,y + v are in different orbits so there exists an /
in N such that f(y)=y and f(y + v) = 0. Further there exist leL, geN such that l(x) = v
and g{x)=y. Since L is a left ideal of N, h = f(g + l) — fgeL and so h(x)eL(x). But

h(x) = f(y + v)-f(y)=-y.

This is a contradiction since L(x) is group and y £ L(x).
For x in K Ncx = Ann(l —c;c) = Ann(K—^x) so clearly Afex is a left ideal of N.

Further Annex = Ann(x) is a left ideal of N with Nex(&Atmex = N, hence We* is JV-
isomorphic to N/Annex. Consequently, Nex is a minimal (strictly minimal) left ideal if
and only if Ann(eJ is a maximal (strictly maximal) left ideal. Further, Nex is strictly
minimal if and only if stab(x) is maximal. For if stab(x) is maximal this is indeed the
case. If stab(x) is not maximal then stab(x) ̂  stab(_y) for some y e V*. Hence there exists
a mapping/eN defined by f(x) = y and/(w) = 0 if w^%x. But then feNex and Nf is an
iV-subgroup of Nex, (0) ̂ Nf^ Nex.

Theorem 3.2. For each x e V*, Nex is a minimal left ideal.

Proof. Let L be a nonzero left ideal in Nex. Hence L(x)^0, say 0=^=yeL(x) where
3'=>'«l+ "•• +y*. w i t h y,t£Q f°r at least one i, say y^. Since stab(yXi)2stab(>>), yXieL(x).
If stab(x) is maximal then we know Nex is minimal and L = Nex. If stab(x) is not
maximal, x = xPi + • • • x^ then from Theorem 2.3, there must be at least two non-zero
components. For xf , flj ^o^, if x^ ^L(x) then since xp. e T(x) we have from Lemma 3.1,
xP] + Ux)^aUxfij. Hence x^+^a i = .4x^ for some Ae<W. But then (A-I)xPj = yIXl'which
contradicts the fact that REXimXi nREfijmp =(0) for ct^fij. Thus we have xfijeL(x) for
fij^tti. For xPj where PJ = <xl we have /?,=£/?,• such that xPj =/=0 and x0jeL(x). Therefore
as above if xp ( = xXi)£L(x), xfij + xPi = BxPj, Be%, again leading to a contradiction.
From this we find that xp e L(x) for each fa and so

5

a = l

Thus there exists h in L such that ft(x) = x, i.e., cxeL and so L = Nex.
We now turn to the problem of showing that #(<^; V) has no nonzero nilpotent left

ideals.
Theorem 3.3. Let Lbe a left ideal of N containing no nonzero idempotent elements.

Then for each f in L,for each xeV i//(x)=^=0, then stab(x) £ stab /(x).
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Proof. We know stab(x) £ stab /(x) for each/eL. If the theorem is false, there exists
a n / e L and xeV* such that stab(x) = stab(/(x)). Let y = f(x). Thus there exists a map
exy in N such that exy{y) = x and exy(w) = 0 for w£%y. Since exyeN, exyfeL so we
may assume f(x) = x. Similarly exfeL so we may also assume that f(V)^^°x. Let
K = {veV\f(v)e<%x}. Then K^0 since fccX. If K = ̂ x then/(«;) = t> for ue^x and
f{v) = 0 for u^^x; i.e.,f = ex which is a contradiction. Thus there exist veK, v^tftx.
Thus for some A e °U, f(v) = Ax. Let /i=ex(—ev + f) + exev which is in L since L is a
left ideal and feL. ~Nov/ fl(x) = x, fl(v) = ex(-v + f(v)) = ex(-v + Ax) and fi(y) = f(y)
if ^ ( f x u « i ) ) . Assume - u + ^ x e t x . Then f1(v)=-v + Ax so (/-/i)(i>) = Ax-
( — v + Ax) = v while ( / —/i)w = 0 if w^^u. Again this is impossible so we have for all
veK — x, —v + Ax£tyx where f(v) = Ax. We now define a new function h as follows. Let
v0 be arbitrary but fixed in K — x. Define h by h(y) = y if y e t x u f i ) 0 , h(y)= —y + f(y) if
j e K - ( « x u t i ) 0 ) and h(y) = 0 if y<£K. Let g1=exh-ex(h-f1) and g2 = ex{fi
Then g1,g2eL. Now

if

yif y € K - ( t x u t c 0 ) and -

Oif )>eX-(fcut t ) 0 ) and -

and g ^ ! = ex which is again impossible. Thus the result is established.

Theorem 3.4. Let L be a nonzero left ideal of N containing no nonzero idempotent
elements. Then there exists some x e V* such that L n Nex =/= (0).

Proof. Let / be nonzero in L with say /(x) = y^0. From the previous theorem
stab(x)^stab(y). Since eyfeL we suppose without loss of generality that /(V) c<%°y.
Let K = {veV\f(v)e<%y}. Then y<£K; for i(f(y) = Ay for some A&m, we would have
stab(y)^ stab f(y) = stab (Ay) which contradicts the finiteness condition of Theorem 2.6.
A similar argument shows that y^^Ux. hetfi = ey( — ex + f) + eyex. Then/j eL wi th /^x^
ey(-x + y) and /i(w) = /(w) for w£%x. If -x+yeWy then fi(x)=-x+y and
consequently ex = f — f1eL which is a contradiction. Therefore — x + y ^ y so/1(x) = 0.
But then ( / - / i )w =/(w) if we<%x while ( / - / 1)w = 0 if w^^x. Hence 0^f-fl = fexh
in Afex n L.

Corollary 3.5. / / L is a nonzero left ideal of N then L contains an idempotent. Further
there are no nonzero nilpotent left ideals in N.

Proof. Suppose L is a nonzero left ideal that does not contain an idempotent. From
the above theorem, L n Nex £ (0) for some x e V*. But for each x e V*, Nex is a minimal
left ideal so that Nex = Ln Nex £ L. This contradiction establishes the desired result.

Corollary 3.6. Let L be a left ideal of N. L is a minimal left ideal if and only if
L = Nex for some x e V*.
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Proof. If L = Nex then from Theorem 3.2 L is minimal. Conversely, from the above
corollary exeL for some xe V* and so Nex^L. Since L is minimal L = Nex.

We remark that Lemma 3.1 as well as Theorem 3.3 and Theorem 3.4 do not use the
structure of ^HfU; V) in their proofs and therefore are valid in a more general setting.
Indeed these results will hold in any centralizer near-ring ^(A;G), A^AutG, in which
the Nex are minimal, for x e G* and such that the finiteness condition (F.C.) is satisfied.

We further apply Theorem 3.2 to obtain information about the v-primitivity of
^(^;V), v = 0,1,2. For the necessary definitions and background material on this topic
we again refer the reader to Pilz [7].

Theorem 3.7. For N = <6{aU\ V) the following are equivalent:

(i) N is simple,

(ii) N is 2-primitive,

(iii) N is l-primitive.

Proof. The equivalence of (ii) and (iii) follows from the general results in [7] (p. 104)
since JV has an identity,

(i)-^(ii). Since N is simple, from Theorem 2.8, N is a field and so is 2-primitive on
<JV,+>.

(ii)-»(i). It is known that when a near-ring M is 2-primitive with a minimal left ideal
then all minimal left ideals are M-isomorphic [Pilz, p. 130]. In our situation if N is not
simple this is impossible. For if N is not simple, dimR V ̂  2. Thus if v = EXimXi then
stab(u) is maximal and hence Nev is a strictly minimal left ideal. On the other hand for

w =

stab(vv) is not maximal and so as we have seen the minimal left ideal New is not strictly
minimal. Hence Nev £ New as N-groups.

To complete the characterizations of v-primitivity it remains to consider the case for
v=0. Here the situation is quite different. In fact ^(^U; V) is always 0-primitive.

Theorem 3.8.

T
0

0

0

1

0

0

; V) is 0-primitive.

Proof. We separate the proof into two cases depending on dimR V.

Case 1: dimR V ̂  n. As we have seen

v =

1
0

0

»»«, + ••• +

0

0

.1

Wl-
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is such that stab(i;) = {/}. But then Nev = V is a minimal left ideal, monogenic and
clearly the left annihilator of V in N is {0}. Hence the AT-module V is of type 0, i.e.,

t; V) is 0-primitive in this case.

Case 2: dimK V = t<n. If

x = m,

L0 J

then we know stab(x) = S, and St is minimal in Sf. Moreover for any yeV there exists a
B e t such that stab(By) = Sk for some k and so S,^Sk. Now Nex is a minimal left ideal,
and hence an AT-group of type 0, clearly monogenic since for each / e Nex, f = fex. Let
heAnn(Nex) and let y be arbitrary in V*. As we showed above, stab(x) £ stab(By) for
some BE% so there exists a geN with g(x) = By. But then 0 = /i(gex) implies 0 = h{By) =
Bh(y) so /i(y) = 0. Since y was arbitrary /i=0. Hence N is 0-primitive on iVex.

; F)4. Radicals in

In this section we investigate the structure of the various radicals JV(N), v = 0,1/2,1,2
for the near-ring N = (€{aU; V). For the necessary definitions we again refer to [7]. As in
the case of primitivity, since N contains an identity J\(N) = J2(N).

From Theorem 3.2, Nex is a minimal left ideal for each x e V*. Thus Ann ex is a
maximal left ideal for x e V*. Therefore

J1/2(N) = n{K\K is a. maximal left ideal of JV}£ f) Annex = {0}.

Thus J1/2 = (0) and since J0(N)^J1!2(N), Jo(N)=(0). Of course this latter result was
known already since JV is 0-primitive.

It remains to consider J2(N). We first establish some bounds. Let & = {xx} u {0} be a
basis for V over %. Let M={xxe@*\stab(xx) is maximal in S?) and let M=@-M. For
X , E M , Ann(xA) is a strictly maximal left ideal so J2(N)cf^XieMAnn(xx). We note that
(~]xxeM Ann x^ = Ne & where e^x) = x if x e M and e#(x) = 0 if x 6 M.

If L is a strictly maximal ideal not of the form Ann xx for xx e M then for each x, L
+ Nex = AT. If for some x, LnATe* = (0) then one finds that L = Ann(x). Since Nex is
minimal, Ann(x) is maximal so Ann(x) = L, a contradiction. Thus for each x,
L n Nex =/= (0) so Nex £ L. This also follows from results in [5]. Consequently for every
strictly maximal ideal L not of the form AnnxA, for xxeM, we have i 2 ^ i e K i V e r

Further, Nea^Y,^M®Nexx- Since J2(N) is the intersection of all strictly maximal
left ideals of N we have
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Theorem 4.1. £xAe*© NeXlE J2(N) £Nea-

CoroUary 4.2. / / M is finite, J2(N) = Nea = £ , , . u 0 NeXi.

The left ideal Y.xxeM@NeXi is precisely the collection of functions / in Ne^ with
finite support, i.e., supp(/) < oo where

sup(/) = {xe V|/(*)=£0} )f 0}.

We now characterize when this set is J2{N).

Theorem 4.3. (i) Let F be an infinite field. Then J2(N)=Y,xleM®Nexx if and only if

(ii) Let F be a finite field. Then J2{N) = '£xleSt®Nexx if a»d only if dimR V is finite.

Proof, (i) If dimR V=0 then V={0) while if dim* V=l, ^{91; V) is simple so in both
of these cases J2(N) = (Q)=YJ*ieM®NeXx since M = {0}. Thus suppose V =
REa,m1@REaim2. From our investigations of the set y we know that in this case
ueM if and only if stab(u) is conjugate to S2. But this means there exists AB°U such
that stab(/li;) = S2 and

-
1

0

- 0 -

m1 +

0 '

1

0

. 0 .

m2.

This in turn implies that if stab(vv) is not maximal then
nonzero element so from Corollary 4.2, J2(N) = Y,zie

Conversely suppose dinij, V ̂  3. For a e F*, let

0. Thus M has one

T
0

. 0 .

ml +

"0

1

0

'•

0 .

m2 +

a

0

. 0 _

We claim %xaj=<%xb if a^b. Otherwise there would exist
that Axa = Bxb. Thus

= [_au\ B = [b0-] in % such

"flu"

;

anl

'ai2'

\

_an2_

m2 +

'aa^

\

aani

m3 =

•frn"

bnl

~b12'

_bn2_

m2 +

'bbii

bbnl

m3.
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From the uniqueness of representation of elements in V we find that a = b, a
contradiction. From Theorem 2.3, stab(x0) is not maximal. We use the xa, aeF* as part
of a basis 3& for V over aU. Since F* is infinite, so is M. We define a function / in N as
follows. For each x.eM let

/(*») =

T
0

. 0 .

mi +

0

1

0

. 0 .

and let/(x) = x for xeM — {xa}aeF,. Finally define f(y) = 0 for yeM. Then feN and
/ ( F ) s ^ M . Further, since woeM, eWoeJ2(N) and so eWQfeJ2(N). But suppeWQ/ =
W x e r is infinite so ewjeJ2(N)~YjXleM®NeXx.

(ii) Let F be a finite field. Then R is finite. If dimR V is finite then V is finite and the
result follows from Corollary 4.2. If dimR V is not finite then for ; ^ 3 , the elements
Xj = E^niY + Eaim2 + £„ wi; are in distinct orbits and so can be used as part of a basis. Also

and {Xj}7g3 is infinite. As in the first part of the proof one can find a function

If J2{N)i=-YJxleM@NeXk, what can be said about the functions in J2{N)1 We give a
partial answer to this question. Thus for the remainder of this section we take M to be
infinite and dimR V ̂  3.

Lemma 4.4. Let L be a strictly maximal left ideal of N. Either eu or e^ is in L.

Proof. Suppose eM£L. Since L is strictly maximal, L + NeM = N so there exist seL,
neN such that s + neM = l. Let st = eMS. Then s1(F)s^TM and since s(x) = x for xeM,
st is a nonzero element in L. Let h = e^(sl + eM) — eMeM. Then h = egl(sl+eM) is in L with
h(x) = x for xeM while h(y) = ejil(sl(y)+y) for yeM. Since yeM, stab(y) is maximal so
stab f(y) = stab(y). From Lemma 2.4, st(y) + ye%M so h(y) = 0. Thus e^=i

Theorem 4.5. J2(N) = n {L | L is a strictly maximal left ideal containing eM} n Ne^.

Proof. Let T, = {LX\LX is a strictly maximal left ideal}. By Lemma 4.4, Z = Z 1 u Z 2

where £ t n Z2 = 0 and Zx = {Lo e S | e M eLj , E2 = {Lff e Z | e^ 6 Lff}. By definition J2(N) =
[\oSzK and since Negf^J2(N) we have JzW^ri^i^nNenf. For LoeZ2,
so NeM = LanNeM. Thus

= n
as desired.

L e t / e TV. We define the rank of / to be the cardinality of the set/(F)
is a basis for V.

where 38
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Theorem 4.6. J 2 ( N ) 2 { / e i V | s u p p ( / ) £ M and rank f is finite}.

Proof. LetfeNe^ s uch t h a t / h a s finite r a n k . Le t xXi,...,xXt, xXk+i,...,xXi, b e the
bas i s e l e m e n t s i n / ( K ) w h e r e xx.eM, i = l,2,...,k a n d xx,j = k + l,...,t a r e in M. T h u s
/ can be represented asf = fl + f2 where fi=Yj = iex^f and f2=Jj=k + 1eXXjf. Since
eXxeJ2(N), j = k + l,...,t so does/2. Hence if/£J2(iV) then f^ J2(N). This in turn
implies that one of the summands, say without loss of generality cXji/, is not in J2(N).
Let g = eXif and let s u p p ^ M ^ . If Mt is finite then geJ2(N) so we assume M1 is
infinite. Since geNe& but is not in J2(N) there exists a strictly maximal left ideal L in
Zt such that g£L. Hence L+Ng=N and so there exist seL, neN such that s + ng = l.
Therefore s(x)=x for x^Mx and for xeMt s(x) = x — n(AxXi) for some Ae%. Clearly
n(AxXi)J=0. Thus n(Axx)e<%M s incex^eM. Let h = eM(eKfi-s)-eMeMi=eM(eM1-s)
s ince A ^ E M . T h e n heL a n d for x e M t , h(x) = eM(x — s(x)) = x—s(x) s ince iA^WM
whi le for

— x if x e M

0 if

Since heL, h1 +s is also in L and

{ x if xeMt

Oif xeM

x if xeM — M1.

Therefore em = h1eL which is a contradiction. Consequently/eJ2(N).
In a similar manner we now show that J2(N) contains all functions with support in

M and range in %M u {0}.

Theorem 4.7. J2(N) 2 {/ eN \ f e Ne^ and f{M) <= WM u {0}}.

Proof. LetfeNeu with/(M)<=*Mu {0}. Further let M1 = supp/ If f£J2(N) then
as in Theorem 4.6 there exists a strictly maximal left ideal L with eMeL and seL, neN
with s + nf = 1. Since/(x) E %M SO does n/(x) for all x e Mt. Now h = eM[eall — s) — eM

eMl =
eM(cSi—s) is in L. As above hl = h + s is in L and /j! = eĵ  a contradiction. Thus
/6J 2 (N) .

The problem of characterizing the elements in J2(N) remains open. That the above
two results do not give this characterization is pointed out in the following example in
which we give a function / in J2(N) with f{M)^^lM and / is not of finite rank.

Example 4.8. Let dinij, V be at least 3 and F an infinite field. Let

" l •

0

. 0 .

0
1

0

. 0 .

m2 +

' a '

0

. 0 .

m3 >
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aeF* as in Theorem 4.3. Define ft by

' r
0

. 0 .

ml +

• 0 "

1

0

. 0 .

/ 2 b y

m2

fi to be zero on the other basis elements. Since/x is of finite rank, fleJ2(N). Define

a

0

LoJ

and/2 to be zero on the other basis elements. S i n c e / 2 ( M ) s W u {0};/2
6^2(A0. Hence

/ = / 1 + / 2 G J 2 ( N ) where / is the identity on {xa}aeF. and / is zero on the other basis
elements.

We conclude with a definite result for the situation in which dimK V is finite.

Theorem 4.9. Let dimR V be finite and let f eNe^- Then feJ2(N) if and only if f is
the sum of rank 1 functions.

Proof. Suppose f=Yj = i fj where/) is a rank 1 function. Since each fj is in J2(N),
so i s / Conversely let feJ2(N) and let 7r; be the ith projection map i = \,2,...,t where
£ = dimR V. Since 7r, F EndR V, nt eN so nj eJ2(N) and ntf is of rank 1. But /=£{ = 17r,/
so the proof is complete.
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