POINCARE THETA SERIES AND SINGULAR
SETS OF SCHOTTKY GROUPS

TOHRU AKAZA

Introduction

In the theory of automorphic functions for a properly discontinuous group
G of linear transformations, the Poincaré theta series plays an essential role, since
the convergence problem of the series occupies an important part of the theory.
This problem was treated by many mathematicians such as Poincaré, Burnside
[2], Fricke [4], Myrberg [6], [7]1 and others. Poincaré proved that the ( —2m)-
dimensional Poincaré theta series always converges if s is a positive integer
greater than 2, and Burnside treated the problem and conjectured that ( —2)-
dimensional Poincaré theta series always converges if G is a Schottky group.
This conjecture was solved negatively by Myrberg. As is shown later (Theo-
rem A), the convergence of Poincaré theta series gives an information on a
metrical property of the singular set of the group.

In this paper, we shall investigate the convergence problem in the case of
a Schottky group and the metrical property of the singular set of the group
from the viewpoint of their connection. In §1, we prove Theorem A which
states some equivalent propositions for the convergence of Poincaré theta series.
This theorem gives a relation between the convergence of the series and Haus-
dorff measure of the singular set of the group. In §2, a Schottky group of
Ford type [3] is treated by using isometric circles. We have some criteria
(Theorem B) for the convergence of Poincaré theta series for such a group
and we reprove Myrberg’s result which gives the negative answer to Burnside’s
conjecture. In §3, we give an example of a Schottky group whose singular set
has positive 1-dimensional measure (Theorem C) and an analogue of Schottky’s
result. It seems that results in §3 suggest us a close relation between the
convergence problem and the metrical property of the singular set of the group.
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§1. Convergence Problem of Poincaré Theta Series

1. Let B, be a domain bounded by 2p circles {H;, Hi}?-, in the complex
z-plane which are disjoint from each other. We suppose that B, contains the

point at infinity. Let S; be a hyperbolic or a loxodromic transformation

(2= XiZTBi (s p
(1) S:(Z) —Ti2+5i' (a;io; BIT!—l)y

which transforms the outside of H; onto the inside of H!. We denote by S;i!
the inverse transformation of S;. Obviously S;i' transforms the outside of H!
onto the inside of H;. In general, we denote by ST the transformation ob-

tained by composition of transformations S and 7, that is,
ST(z) = S(T(2)).

We put SS = S’ and S* = SS*™* inductively for any integer i(>1). For a negative
integer 1, S* denotes (S™*)'.

Consider the totality G of all linear transformations in the from
() S=SNSH ... S, viz, S(z) =SE(SEI ... (SI2)) ... ))

together with the identical transformation, where A; are integers and i1,
for j=2,..., k Asis easily seen, G is a group and B, is a fundamental
domain of G which is called a Schottky group generated by S;, ..., S, (Maurer
[5]1, Myrberg [61).

2. We consider the Schottky group G generated by S; (=1, ..., p). Any
element S different from the identity of G has the form (2). We call the sum
k
m= p 1451
grade of S. The image S(B,) of the fundamental domain B, of G by S (€G)
with grade m (%0) is bounded by 2p circles S(H;) and S(H}) (i=1,2, ...,
b), the one C” of which is contained in the boundary of the image of B,
under some T (€ G) with grade m — 1. For simplicity, we say that 2p—1
boundary circles of S(B,) different from C™ " are circles of grade m. Circles

{H;, H/}!-,, which bound B, are of grade zero. The number of circles of grade
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m is obviously equal to 2p(2p —1)".

Denote by D.; the 2p(2p —1)"-ply connected domain bounded by the whole
circles of grade m. Evidently {Dn} (m=0,1,...) is a monotone increasing
sequence of domains. The complementary set Dj of D, with respect to the
extended z-plane consists of 2p(2p —1)™ mutually disjoint closed discs. These
closed discs are called discs of grade m. The set E= l’mlefn is perfect and
nowhere dense. We call E the singular set of G. Th:_group G is properly
discontinuous in the complementary set of E. It is well known that, in the
case p=2, the logarithmic capacity of E is positive (Myrberg [8]) and that
the 2-dimensional measure of E is equal to zero (Sario [10], Tsuji [12]).

3. Let H(z) be a rational function none of whose poles is contained in the
singular set E of the Schottky group G generated by S; (=1...., p) in (1).
Denote by z; = (ajz+bj)/(cjz+d;) (7=0,1,...) all the elements of G. The
identical transformation of G is denoted by z,.

Consider the series

(3) 6,(2) =j2:’H(Zj)(CjZ+dj)—v,

where » is a positive integer. This is a so-called (— »)-dimensional Poincaré
theta series.

Let D be the complementary domain of the set £ and D' be a relatively
closed subdomain of D. Since the point —dj/c; (7%0) is the image of infinity
by the inverse transformation z;' of z; (%0) and since G is properly discon-
tinuous in D, there are only finitely many points — dj/c; (7%0) in D'. Denote
by D" a non-empty subdomain of D’ obtained by deleting suitable neighborhoods
of points —dj/c; and .

Letei (i=1,..., k) and f; (é=1, ..., k) be poles and zeros of H(z)
in D respectively and let U, and V; be neighborhoods of e; and f; respectively
such that |H(z)|=M; on the boundary of U; and |H(z)|=M,>0 on the
boundary of Vi, where M;> M,. By using the proper discontinuity of G and
by taking M, sufficiently large and M, sufficiently small, we may assume that

ey k2
D*=D"—-\U US(U;) and D**=D*— U U S(V;) are not empty. In D** each

8Eq i=1 SEG =1
term H(z;)(cjz+d;)™" of (3) has no zero and no pole and

M. < |H(z)| <M.
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If Eo | (¢jz+d;)|™" converges uniformly in D", then 6,(z) converges absolutely
=
and uniformly in D¥, since
| H(2;) | | (cjz+di) |7 < My| (cjz+d;) |7
in D*.
Next, suppose that 6,(z) converges absolutely and uniformly in D* Since

Ml (ciz+d;) 1" < |H(z) || (cjz+d;)|™"

in D**(CD*), the series >) (cjz+ d;) ™" also converges absolutely and uniformly
=0

in D**. Take a point 2’ in any S(V;) or in any S(U;) which has points in

common with D"”. We can take a sufficiently large number K such that, for

any 2" in D** and for all points — dj/¢c; which are exterior to D',
l2' +dj/c;|” < K|2" +djle;j| ™.
Therefore, if >\|cjz+ d;|™ converges uniformly in D**, it converges uniformly
i=0

in D".

Hence we have

TuaeoreM 1. The ( —v)-dimensional Posncaré theta series

_w . . )TV ~-—ajz+bj—
0,(z) = EOH(ZJ)(CJZ-}- )™, 2= ciz+di = ¢

converges absolutely and uniformly in D* if and only if the series
};; (cz+dj)™"
=

converges absolutely and uniformly in D".

©
Poincaré showed that > (cjz+d;)™" converges in D" when » is an even
2=0

integer greater than 2. Hence, we have

Theorem of Poincaré. The ( —v)-dimensional Poincaré theta series converges

absolutely and uniformly in D* if v is an even integer greater than 2.

Burnside [2] proved that, in the case of Fuchsian groups of the first class
or of Schottky groups with some restriction, the series 6.(z) converges in D*
and conjectured that the ( —2)-dimensional Poincaré theta series for a Schottky
group always converges absolutely and uniformly in D*. Fricke [4] investigated
the convergence problem of ©,(z) in the case of Fuchsian group of the first
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class. Myrberg [6] showed that the ( —2)-dimensional Poincaré theta series
0,(2) with respect to Schottky groups does not always converge absolutely
and uniformly in D* and gave a negative answer to Burnside’ conjecture. The
Myrberg theorem will be reproved in No. 14 (See Theorem 9).

4. We put
P,(2) =Zo|0jz+djl'”,
5=

where » is a positive number. We call P,(z) the (—7)-dimensional P-series.
Petersson [9] showed that if G is a Fuchsian group, P.(z) converges for »>2,
and that if G is a Fuchsian group of the second class, P,(z) diverges for »<2.

Let d(>0) be the minimum distance from the boundary of D' to points
— dj/c; which are poles of zj =Sj(z) (€G) and are exterior to D'. Obviously
we have

|z+djlecilzd  (ze D)
for these indices j, so we get

Stllciz+d;ilI™"<ad > >V ejl™  (»b>0),
%0 %0

where > denotes the sum of terms which exclude a finite number of — d;/c;
contained in D'. Since X|¢j|™" §lec,-l“”, the series >\'|c;jz+d;j|™" converges
%0 J= J30
uniformly in D', provided that >)|¢;|™" is convergent. Hence, if >)|c;j|™ con-
Jj=1 =1
verges, then P,(z) converges uniformly in D".
Let z be any point of D". Since we can describe a circle C with center at

the origin and radius o so that the point z and {H;, H}}’-, lie inside C, we have
= -v 1\'< -v
Slez+di™>(55) Sleil™ >0,
J=1 Pl =1
Therefore, we see that >)|cjz+d;|™ diverges in D", provided that the series
=0

0
Sile; ™ diverges.
=1

Thus we obtain the following

THEOREM 2. The series P,(z) converges uniformly in D" if and only if the

series

(4) 2ilel™ >0
;=
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converges.
5. Let

(my . _ lm) _az+b
S™: =8 (Z)_cz+d

be a transformation of grade m in G. Then, the radius 7, of a boundary circle
C of S"™(B,) is given by

2aro=| |52 1l L]cl;fclzlz

where H is a suitable one in {H;, H}}}., which S™ carries to C. Hence, we
have

 ldz|
Zary= 16|2§1112+(d/0) [

Again we note that the point —d/c is outside of B,. If we put

d=max|z+ (d/c)] and d=min|z+ (d/e)l,
ZE€H ZEH
then

(5) Z‘;' ]‘;llz SN

where 7 is the radius of H.
Such inequalities hold for all circles of grade m — 1. Hence, there exist
two positive constants 2(G) and K(G) such that

k(G)illc,-r“ gi‘.lt‘,;’ < K(G)ﬁ}lcjl‘“, (»>0).
J= m= J=

Here, Iy’ is the sum of terms (" ")*? obtained for radii ™" of all circles of
grade m—1 and z; = (@jz2+b;)/(cjz+dj), (j=1,2, ... ) are all transformations
of G different from the identity. In fact, we may take 2(G) as the minimum
of (#/4)*"? and K(G) as the maximum of (#/6%)"% when H runs in {Hi, Hi}i-:
and S™ (m>1) varies in G.

Accordingly, we have the following

THEOREM 3. The series J}i}llcﬂ"“ converges if and only if El,‘%’ converges.

m=1

Combining Theorems 1, 2 and 3, we have
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TueorREM A. Let v be a positive integer. The following four propositions
are equivalent to each other: (i) The ( —v)-dimensional Poincaré theta series

0,(2) converges absolutely and uniformly in D*. (ii) The ( —v)-dimensional P-

series P,(2) converges uniformly in D'". (iii) The series >)ic;|™> converges.
j=1

-3
(iv) The series S\l converges.

m=1

6. It is evident that, if lim Iy’ =0, then the singular set of G is of g—

m-»o

dimensional measure zero. Hence, from the above theorem, we get

CoROLLARY. If any ome of the conditions (i), (ii), (iii) and (iv) in Theorem

A 1is valid, then the singular set of G is of f;dimensional measure zero.

Noting Poincaré’s theorem stated in No. 3, we can easily see that the singu-
lar set of a Schottky group is of area zero.
As to the convergence of the sequence {/i'}m-1, we obtain the following

which yields a result of the author [1].

PropositioN 1. Let 7™ (i=1, ..., 2p—1) be radii of circles of grade m
lying inside a circle of grade m—1 and with radius r™ V. If there exists a
positive constant ¢ (<1) such that

2p-1

2 (r,(.m))»/2<c(r(m—1)\./?
i=1

for every circle of grade m —1, then limly = 0.

m->wo

As to the divergence of the series >, I, we get

m=1

ProrosiTION 2. Take any one H of circles {H;, H:}?., and fix this H. Denote
by C" P (j=1,...,2p(2p—1)"") the circle with radius "> of grade m—1
inside H. For all C{"™", suppose that the sum of radii of circles of grade m

@
inside C{" " is not less than ;" V. Then )13 diverges.
m=1

§2. Schottky Group of Ford Type

7. First we shall state the concept of isometric circles of linear transfor-
mations due to Ford [3] and some important properties of them.
For a linear transformation of the form

T(2) = Z::;, ad—bc=1, ¢x0,
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the circle I: |cz+d| =1 is called the isometric circle of the transformation.

The radius of I equals 1/|c]|.

(I) By a transformation lengths and areas inside its isometric circle are
increased in magnitude, and lengths and areas outside the isometric circle are
decreased in magnitude. A transformation carries its isometric circle into the
isometric circle of the inverse transformation. The radii of the isometric circles
of a transformation and its inverse are equal. ‘

Let G be a properly discontinuous group of linear transformations. We
suppose that, if an element of G transforms the point at infinity into itself,
then the element is the identity of G. Consider two arbitrary transformations

of G
. _az+b o
T: T(z)= cotrd’ ad—bc=1, cx0,
and
. _az—i—@ — Ay —
S: S(Z)_‘rz—i—& ad—pBr=1, r=0.

For a moment we assume that S= 7"%. The isometric circle of ST = S(T(z))

is the circle
[ (ya+dc)z+ b+ d0d| =1.

Denote by Is, Is, Ir, I and Iy isometric circles of S, S, T, T°' and ST,
respectively. Let gs, gb, gr, g+ and gsr be their centers, and let Rs, Rr and R
be redii of Is, Ir and Iqr.

As to these values, relations

1 Rs* Ry

6) R'= = ’

( = [ratdc|~ gh— gs|
and

_ _&Q'RT_ RJZ

(7) |gsr — gz = Rs —_ﬁlg;'—gsl
hold.

From this we can see the following:

(II) The radii of isometric circles of the group G are bounded and the
number of isometric circles with radii exceeding a given positive quantity is

finite.
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As to the location of isometric circles, we have the following from (I).

(IIf) If Iy and Ir are exterior to each other, then Iy is contained in Ir. If
Iy and I; are tangent externally, then Iy lies in Ir and is tangent internally.

8. Now consider a group G whose elements are linear transformations

a;jz + b . .
= cj‘z+d;’ aidj —bjc;=1, j=0,1,..., (¢;*0, j=1),

where 2z, is the identical transformation. From the definition of isometric circles
follows :

TrEOREM 4. The convergence of the series > |c;|™" is equivalent to the
i=1

convergence of the sum of v-th powers of radii of isometric circles for all the
elements of G.

Take two positive numbers » and »' such that » <»!. Since |c;| are greater

than 1 except a finite number of |¢j| from the property (II), we have
leil™ < leil™

for almost all j. This yields

TueoreM 5. Let 0<v<v'. If 2)|c;|™" converges, then >\ |cj|™" (0<» <yp')
=1 i=1

also converges.

9. From the viewpoint of combination groups, a Schottky group is con-
structed as follows: Let {H;, H:}f-, be p pairs of circles external to each other.
Let S; be a linear transformation (loxodromic or hyperbolic) carrying the ex-
terior of H; onto the interior of H. The transformation S; generates a cyclic
group Gi, for which the domain F; exterior to H; and H; is a fundamental
domain. By combining G; (=1,2, ..., p), we have a Schottky group G whose
fundamental domain B, is bounded by circles {H;, H:}?’.,, that is, B, = (Ile,
(cf. Ford [3]) -

Now, we consider the case when H; and H! are isometric circles of S; and
Si* (i=1, ...,p). In such a case, we shall call G a Schottky group of Ford
type.

10. Consider a domain bounded by 2 mutually disjoint circles {H;, H}}-,
(p=2). Denote these circles by
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H: |\z—q:|=7, H;: |z*qfl=r;~. (i=1,..., p).

Let S; be a linear transformation which maps the outside of H; onto the inside
of H; and let G be the Schottky group generated by S; (=1, ..., ). The
domain bounded by {H;, Hi}’., is a fundamental domain of G. In the case
when {H;, H;} and S; (i =1, ..., p) satisfy some conditions, we may take the
domain bounded by isometric circles {I;, I!} of {S; Si't as the fundamental
domain of G.

Suppose that S; has the form

= — ’

2(2—aqi)

L — (ot L
Si: z;:S;(z)~’“‘<q’z (gigi + 7irie”) ) (¢=1,...,9),

where p=e" " /Jrs: and 0 is real.
From the definition, isometric circles I; and I; of generators S; and their

inverse S;! are
Ii: lz2—qil=Vrr'=Riand I.: |z—q\|=Vrirtl=Ri, Gi=1,...,p)

respectively. It follows from properties of isometric circles that, if the 2p
circles {I;, I!}?., are exterior to each other, then the outside of these circles

can be considered as a fundamental domain of G.

11. Hereafter we consider a Schottky group G of Ford type. We may
suppose that the fundamental domain B, of G is bounded by isometric circles
{I, I} of generators S;, ..., Sy and their inverses.

If the grade of the transformation in G is m, its isometric circle is called
an isometric circle of grade m.

Take a transformation S” of grade m, which is represented by the form

(8) S(m) = Tme—1 « o e TzT],

where T (1<% =m) is a generator or its inverse and T%= T%2:.. We apply the
transformation S to a point zo of B,. Since z, is exterior to Ir,, Ty carries z
into 2z, inside I}, = Ir-:. Since I7, is exterior to Ir, from T, T7', z; is exterior
to Ir, and T carries z; into 2z, inside I7, and so on. At each step, lengths in
the neighborhood of the point are decreased. Hence S¥ = TpTk-: ... TuTi,
(1< k< m) transforms z, with decrease of lengths, from which we see by (I)
in No. 7 that z, is outside Isx). Since every point in B, is also outside Ige) =

I, we sce the circle Ise) is contained in Iso = Ir,. By analogous arguments,
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the circle Igym) is contained in Jgm-1).
After all, we see that the isometric circles of

Ty, T2Ty, T5TTh, - . o, TinTom-1 + + » ToTh

form a sequence such that each circle encloses the circle which follows it and
an isometric circle of grade m —1 (m>1) surrounds 2p —1 isometric circles
of grade m. The number of the isometric circles with grade m is obviously
equal to 2p(2p—1)™.

Denote by Rgm the radius of the isometric circle Igm. Since S can be
written in the form (8), we obtain from (7)
(9) Roimy = Repginesy = Xm " Ronn)
lgsxm"‘) — &ry
where S™ ¥ = Tpn-y . . . Ti. Repeating this procedure and putting S® =T . . .
TzT], we get
m-1 R'
Ryom = Ry, TT ———e .
k=1 | g4 _gi’knl
If we suppose that all radii of isometric circles of generators S;, ..., Sy

of G are equal to R, then we have finally

(10) Rgim) = .’?m"i:I1 ; LS
k=1 gty — @rpy |
From
850~ @rysy = G50 — @y Bl ~ iy = 40 — Gt + Bnit ~ Brienns
follows

(11) |g7'k—1 = &1yt | - Igéuc) “grrll = Igém - gT,ml = Ign_l “gr,ml + lgém — grix—? |
Using (7), we have

R (s(k=1)=1.75-1* Rpje~1
R stk=1))=1

|g,;(k) - ng‘ll = lg(s("’)‘l - grk—xl = Ig(s(k—ﬂ)-!a'k—l - ng"ll =

which implies from (I)

(12) Ig.;(k\ - g'rk"‘l = Ef‘j’%)'_) ¢

We put
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o= max {dis(L, Iy, dis(I}, 1}), dis(L;, It)}

(13) 14,5 k=0

= _min {dis(L;, I}), dis(I% I}), dis(L;, It)}
=i, j kEp 4
1¥j

where dis(Z;, I;) denotes the distance between [; and [;. Then we can prove

the following

TueoreM 6. The radius Rsim) of the isometric circle of grade m correspond-
ing to S'™ (& G) satisfies the inequality

{ R(R+7)

m—1 -1
(2R+d)(R+r)+R2} 'R<Rs<m><(i )m ‘R

R+

Proof. Since S™ is written in the form TwmS™ ™ = TpTm-1S™"?, where
Tm=Tmty, two points geum-1 and gr, are contained inside of the different
boundary circles of B,.

(i) Since

|gsom-1 — gr,,| > R+,

we see

Rs(m) R
14 2 L -
(14) Rym-11 R4+t

Repeating this process, we have

R m-1
Rs(m)<<R+T> "R
(ii) We obtain from (9) and (11)
Rs(nz) > R

Rym-1 = |g%m-1 - ngl + [gé(”"l) - g;'m-x I.

Obviously |grm-, — &ml| =2 R+ 0 and from (12) and (14),

' , Rgim-1) R?
m-1) — = 'R< .
[gS( 1 ng 1 ] Rs(m_z) R + -
Hence
Rgim) R _ R+

5 = - R.
Rgm-11" 2R+0)+ (R/(R+7)) (2R+0)(R+7)+ R

By the same argument as in (i),
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{ R(R+ ) "

-1
CR+p)(R+7)+ R - R< Rom.

12. "Denote by L, the sum of radii of 2p(2p —1)” isometric circles of
grade m.

Suppose that r=R. Then we have

1 1
g = 8renl = 5 R=lgsw = grn| < 180 — greul + 5 R

from (11), (12) and (14). This and (10) yield

m—1 1 m—1 1
Rmr,[ éR(m éRmH A
k=llg4’k _ngnl‘*‘(l/Z)R st k=1 lg;‘lc_ngi-xl—(l/Z)R

which gives

m—1 m—1
(2R+o+£‘(1/2>1e> .RéRS(M)§(2R+r—{e(1/2)R) k.

As L, is the sum of radii of all isometric circles of grade m, we see

2p-DR\™™, _1){2p- R\,
2p(2p—1){(€/~2)R+6} RELn=2p12p 1){(3/2)R-|-T}

Thus we have following two theorems.
TaEOREM 7. If
t>(2p - (5/2))R,
then gle converges.
Tueorem 8. If t<R and
o= (2p- (7/2))R,
then Lm is not less than 2p(2p —1)R for any m.
From Theorem A together with Theorems 5, 7 and 8, we have the following

TueoreEM B. Let G be a Schottky group of Ford type with the fundamental
domain B, whose 2p boundary circles are the isometsic circles {Is, Isl.—l)‘,?ﬂ with
all equal radii R of generators of G and their inverses and let v and ¢ be defined
by (13).

(D If
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then the ( —1)-dimensional Poincaré theta series with respect to G converges

absolutely and uniformly in D*. Accordingly, the singular set E of G is of

1 . .
o5 -dimensional measure zero.

(I Ir
Réréaé(zﬁ"%>& (rz2),

then the ( —1)-dimensional Poincaré theta series does mot comverge absolutely

and uniformly in D*.

Remark. 1t is not difficult to see the existence of the case satisfying the
condition in (II) of Theorem B.

Draw a circle C with center at the origin whose radius is slightly smaller
than 25/4. We can describe 12 circles with unit radius whose centers are on
C and two circles with unit radius in C so that the mutual distances between
any two of these 14 circles are greater than 1. The domain bounded by these

14 circles with unit radius satisfies the condition.

13. In No. 12 we have shown that there exists a case where the (—1)-
dimensional Poincaré theta series does not converge. Now, by using isometric
circles we treat an analogous problem for the ( —2)-dimensional Poincaré theta
series, which Myrberg [6], [7] discussed without using isometric circles. If we
can show the existence of the Schottky group such that ilel_z diverges, we
see from Theorem A that the ( —2)-dimensional Poinc;;é theta series with
respect to the Schottky group does not converge absolutely and uniformly in D*.

First take a positive number ¢ (0<e<1) and draw six circles
Cij: z2—2|=1—-¢ (j=0,1,...,5).
Next, draw 12 circles C,; (7=0,1, ..., 11)

) |z—4€"*®7| =1—¢, for even j,

AP -3 | =1—¢, for odd j.
Further draw 18 circles C;; (j=0,1,...,17)

) lz—6€ ™| =1—¢ if j=0 (mod 3)
P = T & | 21—, if 7=1 or 2 (mod 3).

Let S;,» (0=7m=2) be the hyperbolic transformation which maps the outside

https://doi.org/10.1017/50027763000011338 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011338

POINCARE THETA SERIES AND SINGULAR SETS OF SCHOTTKY GROUPS 57

of Ci,» onto the inside of Cy n+s and S;,» (0 < #=<5) be the one which maps the
outside of C,,» onto the inside of Czn+s and let S;» (0<% <8) be the one
which maps the outside of Cj; . onto the inside of Csa+s. Denote by Sik
(i=1,2,3) the inverse of S;». Obviously {S; .} generate a Schottky group G
of Ford type. The fundamental domain B, is a domain bounded by these
36 circles Ci,j.

Take a transformation S™ (& G) of grade m (>0). Then S™ is written

in the form
S(m) = Tms(m-—l) = Tme_ls(m—Z)

where T, or T,,-; is a generator or the inverse of some generator of G.

The center gim-1 = g stm-n),-17;%, of the isometric circle Ism-1 is contained
in the isometric circle Ir,_, of Ty, different from the isometric circle Ir,, of
Tm which can be verified by using Twm= Tm-:. Since Rr, =1—¢, it follows from
(9) that

— )2
Rim = (1-e) Iz'Rfs(m—n.

Ig{q(m—l) = &rm

Fixing S™? and summing up these equalities for isometric circles Igm

contained in Iym-1, we get

E Rg(m) = R?g(m—l) . (]. - e) 2 __*_1*__ .
Tm

Tm | @htm=1) — Grm|®

Assuming that

1 1
(15) = )
szlgé(m—n — g’ (1—¢)?
we obtain
(16) TER§<m> = Rim-1).

Denote by L the sum of squares of radii of the isometric circles of grade m.

The inequality (16) implies that
L = L.

14. We shall prove that the inequality (15) holds for sufficiently small e.
There are three cases: (i) Thmi; is an Si,» (0= #n<2) or its inverse, (ii) Tm-1

isan S;,» (0< 7 =5) or its inverse, (iii) Tm-,is an S, » (0 <7 <8) or its inverse.
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(I) First let us consider the case (i). Since B, is symmetric with respect
to the origin, it suffices to prove (15) in the case Tmi;=Sie. Then the point
gsm-1 lies inside If,,_; = Ci,o and the point gy, in (15) is the center of a circle
among C.,; (1£/7<5), C,,; (0=<7=<11) and C;; (0= 7=<17). Thus, in this case,

1 12,11, 7
szlgs(m ST +5,+72+92 >1.34.

(II) Next, let us consider the case (ii). It suffices to prove (15) in the

case Tm-1=S:0 and S ;. Similarly, in the case (I), we get

1 6.6 9 7.7 -1 _
e m]z > 32 -+ 52 + 72 =+ g2 + 112>1.23, (f()r Tm»l = Sg,o)
and
1 6,8.8 9 4 L
< mz > ‘?7 + 52 + 72 + 92 + 112> 1.29, (fOI‘ Tm-l = Sz,1).
(III) Finally, let us consider the case (iii). It suffices to prove (15) in the
case Tyt =Ss0 and Ss,;. Similarly, we get, for S 1, the following inequality

1 4 3 3 2 4
ot s 24 (2. S5 AT S
R g —gmF 3 (5+ <2vs+1)2)+(72+ 27 +1)2)

2 4 2 1. 38 L 3
+ <W+ (2~/1“:3+1)2+ (4«‘3‘+1)2) + ( et (2«/19+1)2+ (2«/21+1)2)

1 2 1
= = = >1.07.
+<(6«/3 +1)2+(4v7+1)*+(2v31+1)2) 07

For S;,0, we need some consideration about the range of gym-1. The hyper-
bolic transformation S;i, which maps the outside of Cs,s onto the inside of Cj,o,
is composed by an inversion with respect to C;s and a reflection with respect
to the imaginary axis. Therefore the images of circles C; j (= Cs,9) by S;s are
contained in the domain F bounded by the left semi-circle of Cs, and its dia-
meter orthogonal to the real axis. Since the centers of isometric circles are
equivalent to infinity, which is an interior point of B,, gsm-1 are contained in
the images of circles Ci,; (% Cs9) by Si% and hence also in the domain F.

Therefore, we get, for S;,o, the following inequality

1 1 2 1 1 2
glgsm-n — grm <5 + 5+2~/§)+<17+ 17+4v‘§+13+2¢'3‘)

+(g+ % 74+1>2) +(g+ (Ts?im * za‘;?;;‘ﬂi) (i
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4 2 1 2 2
== + e -\ 353 —_— R

* evior) (2\/21+1)2)Jr <13’+(643 PSRNV R IRl
2

+ gateay) 710

Thus, in all cases, we have the inequality (15) by taking ¢ sufficiently
small. Therefore, in our example, L? = L{¥ | for all m (>1). Thus the follow-

ing theorem is obtained from Theorems A and 4.

THeEOREM 9. Let B, be the domain bounded by the above 36 circles. Suppose
that the generators Si» of a Schottky group G of Ford type are constructed
as stated above. If ¢ is taken sufficiently small, the ( —2)-dimensional Poincaré

theta series with respect to G does not converge absolutely and uniformly in
D*.

§3. Measure of Singular Sets of Schottky Groups

15. Given a set & of points in the z-plane and a positive number §, we
denote by I (9, ©) a family of a countable number of closed discs U of dia-
meter Iy <0 such that every point of & is an interior point of at least one U.

We call the quantity

A"E=lim[ inf X Iy ]

50 (I1(8,%)) UE1(5,%)
the »-dimensional measure of &.
16. Let us consider a Schottky group G generated by p linear transfor-
mation in (1).
For two circles with radii R and » in the z-plane, the quantity

(RE+ 7" - 0°)?
4 R*?

-1=K

is invariant under any linear transformation, where p is the distance of centers
of above two circles. There are three cases: (i) K is zero, if they are tangent,
(ii) negative, if they intersect themselves and (iii) otherwise, positive. In the

third case we obtain
(17) R+7 —p*= +2RW1+K,

where plus sign is used in the case where a circle is contained in the inside

of the other and minus sign in the other case.
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Denoting by 77" and by #™ (i=1,...,2p—1) the radius of the outer
boundary circle C/* " and the radii of 2p — 1 inner boundary circles ;™ (i =1,
.ve.,2p—1) of the image B,» of the fundamental domain B, by a transfor-

mation S (€ G) with grade m, we have
P (MY = (™) =20 VYT K,  (i=1,...,2p-1),

where o™ denotes the distance from the center C{*™" to the center of C{™.

From this we see that there exists a constant 2 depending only on B, such that

whence follows

1
(18) r™ < —;ﬂ——k+df—r}"’“’, (i=1,...,2p-1).

Next we shall give an estimate 7{™/7{® " from below. We put

S™(z) = ‘Zié’ (ad—bc=1).

From (5), we have

EG) el r™
and

K(G)lel?zr™,

which imply

(19)

(m-1) ()
= 1 ’

u(G)
where #(G) = K(G)/k(G) is dependent of B,.
From (18) and (19) we obtain the following

TueoreM 10. There exist positive constants K, (<1) and k, depending only
on By such that

k"D <7 < K™ (i=1,...,2p-1),
where 7"V and v (i=1,...,2p~1) are the radius of the outer boundary

circle C{"™" and the radii of 2p—1 inner boundary circles C™ (i=1, ...,

2p—1) of Bu=S"(By), (™ G).
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17. Denote by ¥, the family of all closed discs bounded by circles of grade
n (=mp). It is easy to see that Fn, is a covering of the singular set of G and
that the diameter of any disc of ., is less than a given ¢ (>0) for a sufficient-
ly large n,. This fact is verified by Theorem 10.

Consider a family I (4, E) of coverings of E stated in No. 15. Since E is
compact, the set E is covered by a finite number of discs €;, . ... @, of a
covering of E in I (8, E). Take an arbitrary €; among these % circles and let
l; (=£48/2) be the radius of €;.

Let & be sufficiently small. For a @, fixed, we can find closed discs ‘C"™,

. o™ @ in J §, satisfying following conditions :
n=1

(1) The radius ‘" of ‘C"™ (1<j=<N(i)) of grade m; is larger than I;
(ii) There exists at least one circle of grade mj+ 1 lying inside the
boundary of ‘C"™’, meeting €; and of radius ‘#™*" not greater than /;
N(i) |
(iiiy U'C"™ D6 NE.
=1
It is easy to see that there exists a constant x indepent of i such that N(i)=«.
We can prove £ =5 by some geometrical consideration.

By the preceding theorem,
koir(m,) < z'r(mjﬂ) < li<ir{7llj).

Construct such discs {{C"™} for every €; (i=1, ..., k). Then it is obvious
k N(i

),
that U U ‘C" DF and

i=1 j=1

13 1)

. k
PPN U ACHREGY "I AN

t=1

%

—

[

Thus we have

TueoreMm 11. Let §%% be a covering of E constructed by discs in Fn, whose
radii are not greater than 0/2 k, and let rc be the radius of a disc C in '&f{f".
Then it holds

-n
(20) L'E=lim inf 3 (21’5)"§x<*) A'E.

] {%5“‘0} Ce‘{f‘s/k”
ngp ny
By Theorem 11, we can prove

TueoreMm 12. Given a Schottky group G, if
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2n ST (Rsem)* = (Rym-1)%, (0<p <4, S™ = T,,S™1)

I'm

for radius Rgm-1 of any isometric circles Isom-1; of grade m —1 and radii Rgm
of the 2p — 1 isometric circles Isomy of grade m contained in Iym-1), then the

—2"— -dimensional measure of the singular set E of G is positive.

Proof. Take a covering %f{f’ of E constructed by a finite number of discs

c™, ..., C"™. We assume that C¥' is bounded by a circle with grade m;.

Denote by ™ the radius of C‘”%’. Then, from (5),
N N
S EZR(G) 2 (R™Y,
i= i=1

where R™" is the radius of the isometric circle of the transformation S™', of
the group, mapping By onto S"’(B,). Using the properties (III) of isometric
circles stated in No. 7 and noting our assumption (21), we get

N
21 (R™)" = 2)(Rs(rno>)“,
=

s(mo
where m, = min m; and the summation in the right hand side is taken over all
1=7SN

transformations in G with grade m,. By a similar argument, we see

ST (Rsimn)* = >3 (Rs)”,

s(mg) 3(0)

where 2 denotes the sum with respect to all generators and their inverses.

5(0)
Here the quantity in the right hand side is a positive constant. Thus, for any
covering o of E, we have
N
SV ZR(G) S (R ).
i=1 80)
Putting » = —'2’— in (20), we can prove our theorem from the above inequality

and Theorem 11.
Noting the example of a Schottky group of Ford type given in No. 13, we
have the following theorem from Theorem 12.

TueoreMm C. There exists a Schottky group whose singular set has positive

1-dimensional measure.

Remark. (i) In the case p=3, Myrberg [6] gave the example where /7
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is monotone increasing. Hence we see by Theorem 11 that the singular sets
of such Schottky groups have positive 1-dimensional measure.

(ii) In our example of a Schottky group of Ford type stated in No. 13, if
we take a sufficiently small number § (>0), the condition (20) is satisfied for
v=2+46. So the (1+ %}-dimensional measure of the singular set E of this

group is positive. Hence E is not a Painlevé null set.

18. In [1] we obtained a sufficient condition for the 1-dimensional measure
of the singular set E of a Schottky group to be zero. Here we shall give a
more precise form as an application of Proposition 1.
(m-1)

For radii 7;
2p —1 inner boundary circles C;i"™ (i=1, ..., 2p—1) of an image B, = S"™(B,)

(m=-1)

of the outer boundary circle C;" " and radii 7{" of the
by S™, we have proved the inequality (18). Summing up (18) with respect
to s from 1 to 2p — 1, we obtain

it (1) 2p—-1 (m-1)
(m) < —1  men
2 E TR AvE”

Under the assumption

2p—1

—2P7 L,
~N1+Ek+~NE

the 1-dimensional measure of E is zero from Proposition 1. Hence we have

TueoreMm 13. If

2
(22) k>{?§—%’:T1’}. (p=2),

the 1-dimensional measure of the singular set E of a Schottky group is zero.

19. Let us compare our condition with the condition of Schottky [11]:
Suppose that 2p — 3 circles Cy, Cs, . . ., Cap-3 can be described so that each Cj
is disjoint from each other, C; contains two circles of 2p boundary circles
{H;, H!}-, of B,, C; and C; surround a domain together with a circle of {H;,

H!}?., and so on, and finally there are two circles of {H:, H}}’., outside C;p-s.

o 2p(2p-1)™
Then >, > 7™ < . This Schottky theorem implies that, under the same
m=1 1=1
assumption as in the above, the 1-dimensional measure of E is equal to zero.
Schottky’s condition is geometric, but our condition is quantitative.

If p=2, we obtain £>16/9 from (22). If we assume that B, is bounded
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by four circles with unit radius, the mutual distances between any two circles
are greater than 0.309 ... by (17). In such a domain the condition of Schottky
is always satisfied. But in the case of four circles with unequal radii, there
are many examples which satisfy our condition but do not satisfy Schottky’s.

Consider two pairs of circles Hy, H; and H., H; with radii 1 and 1/15
respectively. We take the mutual distance between H; and H, is slightly greater
than 0.309 . ... We see that in general the mutual distance between circles
C and C* with radii 1 and 1/N respectively is greater than £/2(N+1) by (17).
For N =15, it is greater than 0.055 ... . Draw two common tangents L; and
L, between H; and Hj, and let the point of intersection be the origin and further
draw H. and H} near enough the origin such that they intersect L; and L,, and
the distance of {H;, Hi} from {H,, H,} is greater than 0.055 . . . . Obviously such
a domain B, does not satisfy the condition of Schottky.

Remark. (i) In the case of p =3, even if we assume that B, is bounded by
six circles with unit radius, there are many examples which satisfy our con-
dition but do not satisfy Schottky’s.

(ii) Our theorem is not necessarily an extension of the Schottky theorem.
Because it is easy to get the fundamental domains, which do not satisfy our
condition but do Schottky’s.
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