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GENERALIZATIONS OF THE SIMPLE TORSION 
CLASS AND THE SPLITTING PROPERTIES 

MARK L. TEPLY 

In this paper all rings R are associative rings with ident i ty and all modules 
are members of R-mod, the category of unital left i^-modules, unless the con­
t ra ry is specifically s ta ted. 

A subclass 3?~ of i^-mod is called a heredi tary torsion class if 3T is closed 
under submodules, homomorphic images, direct sums, and extensions [14; 15]. 
With each heredi tary torsion c l a s s a , there corresponds a unique class J^~ such 
tha t (£T,^) is a heredi tary torsion theory [2; 12; 14; 15]. Such a c l a s s a " is 
called a torsion-free class and is closed under submodules, direct products , 
extensions, and injective hulls. (^~, J ^ ) is called stable if ST is closed under 
injective hulls [14; 15; 17]. 

Since simple modules play an impor tan t role in ring theory, one heredi tary 
torsion class which is natural to s tudy [2; 3 ; 5; 15; 16; 17] is 

5f = {M Ç R-mod\ every non-zero homomorphic image of M has 
non-zero socle}. 

£f is called the simple torsion class. (Elsewhere in the l i terature (e.g. [4; 13]), 
modules in 5^ have also been studied under the name of Loewy modules.) 

A heredi tary torsion c l a s s a " is called a generalization of the simple torsion 
c l a s s a \i37~ 3 y . (This terminology comes from [7].) 

T h e heredi tary torsion classes, which arise from Krull dimensions, are im­
por tan t generalizations oîS^. T h e Krull dimension of M G R-mod, which will 
be denoted by K dim M, is defined by transfinite recursion as follows: if M = 0, 
K dim M = — 1 ; if a is an ordinal and K dim M < a, then K dim M = a 
provided tha t there is no infinite descending chain M = Mo D Mi D . . . of 
submodules Mt of M such tha t , for i = 1, 2, . . . , K dim (Mi-i/Mt) < a. 
(I t is of course possible t ha t there is no ordinal a such t ha t K dim M = a.) 
Given an ordinal a, we can define a heredi tary torsion class ^~a by 

3Ta — \M ^ i?-mod| every non-zero homomorphic image of M has 
a non-zero submodule with Krull dimension < a}. 

For any non-zero M (E R-mod, K dim M = 0 if and only if M is an Art inian 
module. Hence it is an easy exercise to see t ha t J^~i = j ^ 7 . Clearly, if a < /3, 
then 37~a £ ^"/s; so 3/~a is a generalization of $f whenever a ^ 1. For properties 
of Krull dimension a n d j ^ the reader should consult [10]. 
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SPLITTING PROPERTIES 1057 

Let £T be a hereditary torsion class with associated torsion theory (« "̂, J^~). 
For M G R-mod, let 3T(M) denote the (necessarily) unique largest submodule 
of M in &~. Ai^-module M is said to split if J~(M) is a direct summand of M. 
Then (£T, J^~) is said to have the cyclic splitting property (CSP) if every 
cyclic module splits. {£T, &~) is said to have the finitely generated splitting 
property (FGSP) if every finitely generated module splits. ^(M) is said to 
have bounded order if I3T(M) = 0 for some (left) ideal I such that R/I £ ^ ; 
hence (^T^) has the bounded splitting property (BSP) \i3T{M) is a direct 
summand of M whenever3T(M) has bounded order. Finally, {ST, #~) is said 
to have the splitting property (SP) if every module splits. For further discus­
sion of these definitions, the reader is referred to [15; 17]. 

The above splitting properties have been studied for the case J?7" = S^, but 
not for the case where$~ is a generalization of 5^. In particular, the splitting 
properties of (Sf,^) are discussed for commutative rings in [3; 5; 15; 17]; a 
result [16, Theorem 3.5] on SP for (j^7, J^~) has also been obtained for rings 
which have sufficiently many finitely generated, two-sided ideals. Also [9] and 
[17] give some general results on SP which may be applied to (5^,^) under 
certain restrictive ring conditions. 

In section one of this paper, we shall obtain theorems on the various split­
ting properties of generalizations of «5 .̂ In section two, these theorems are 
specialized to the caseJ^ = «5 ;̂ these resulting specializations generalize the 
main results of [3; 5; 15; 17]. An example is given to show that the theorem of 
section two on SP applies to certain non-local, non-commutative rings that 
satisfy neither the hypotheses of Gorbachuk's theorems [9, Theorems 2 and 3] 
nor the author's results [16, Theorem 3.5]. 

In order to do this, we will be interested in the following two conditions that 
R may satisfy for a hereditary torsion class 3T\ 

(*) Every two-sided idempotent ideal, which is finitely generated as a left 
ideal, has the form Re, where e2 = e. 

(?3/~) Every non-zero principal left ideal Rx properly contains 
a two-sided ideal / such that Rx/I £ 3T. 

If R satisfies (*S^) and if $~ is a generalization of Zf, then R also satisfies 
(*^). The following classes of rings satisfy both (*) and (*Sf): 

(1) commutative rings; 
(2) von Neumann regular, left duo rings; 
(3) von Neumann regular, left semi-artinian rings; 
(4) local right perfect rings, where ''local" means that the ring has unique 

maximal left ideal; 
(5) left and right noetherian, hereditary integral domains with no two-sided 

idempotent ideals (e.g. the ring £>[[x]] of all power series with coefficients in a 
division ring D). 

Several other interesting examples of rings which satisfy both (*) and (*Sf) 
are given in section two. 
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1058 MARK L. TEPLY 

It is possible t ha t a generalization 37~ of $f may satisfy (*J^~), bu t not (*5^)-
To illustrate this fact, we now show how to construct a ring R which satisfies 
(*) and (*^r

a+2) for a given non-limit ordinal a, bu t does not satisfy (*J^~0) for 
any /3 ^ a + 1. 

Example 0.1. Let a b e a non-limit ordinal. Let Z2 be a commuta t ive integral 
domain of Krull dimension a such tha t D has an automorphism $ of infinite 
period. (The existence of such a domain D is justified in the remark following 
this example.) Let T = D[x; </>] be the twisted polynomial ring; i.e. the addi­
tive group is the addit ive group of the polynomial ring D[x], and multiplica­
tion in D[x; 0] is defined by xd = <j>(d)x and its consequences. T is a left Ore 
domain and hence T is a left order in a division ring F. Let R be the subring 
of power series ring ^[Qy]] such tha t the "cons t an t " term of every member of R 
is in T; i.e., 

R = {/+ E wV eT9at e Fj. 

We now outline a proof for showing tha t R has the desired propert ies: R 
satisfies (*) and ( * ^ a + 2 ) , bu t R does not satisfy ( t ^ ) for any (3 ^ a + 1. 

(1) Each two-sided ideal of T is either generated by an element of the form 
xn for some integer n or else contains a nonzero element of D. (Consider an 
element which has least degree among members of the ideal.) 

(2) Let 

oo 

z = t + E atyl-

lit F^ 0, then for each b £ F and each positive integer k, there exists 2Z?=i biy
i G 

7? such tha t 

(X^*) (' + Ë «</) = &/• 
(Solve the coefficient equations inductively.) 

(3) By (2), fe contains the two-sided ideal M generated by the set {by\b Ç F}. 
(4) If the degree of t = X^=o rf,-x* G 7" is positive (i.e., n ^ 1) and d0 ^ 0, 

then Tt contains no two-sided ideals by (1). Hence, if the degree of / is positive 
and dG ^ 0, then every proper two-sided ideal I of R which is contained in 
Rz is contained in M. 

(5) Let z' = 1 + x £ R. If / i s a two-sided ideal such tha t J R Z ' / ^ £ ~̂/*> then 
by (4), Rz'/M Ç ^ . 

(6) There is a latt ice isomorphism between the 7^-submodules of Rz'/M and 
the T-submodules of Tz'. Moreover, Tz' is an a-critical T-submodule of T. 
(See [10, Lemma 6.3].) Hence KdimRRz'/M = KdimTTz' = (K dimD D) + 1 
= a + 1, and K dim f l N = K d i m r TV = a + 1 for any submodule TV of 
Rz'/M by [10, Proposition 2.3]. 
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(7) By (6), Rz'/M G Ta+2, bu t Rz'/M g ^ for any 0 ^ a + 1. Hence 
i? does not satisfy (?^~p) for any /3 ^ a + 1 by (5). 

(8) By factoring out the highest power of y in z and applying (2), we see 
tha t every principal left ideal of R contains Mn for some integer n. 

(9) Since K à\mR R/M = K d i m r T = a + 1, then by (8), R/L G ^a+2 
for every non-zero left L of R. 

(10) From (8) and (9) it follows tha t R satisfies (*^\,+2). 
(11) Let I be an idempotent , two-sided ideal of R which is finitely generated. 

T h e coefficients of y° of members of I form a finitely generated idempotent 
ideal I' of T; so by (1), V must contain an element of D. The coefficients of x° 
of members of V form a finitely generated idempotent ideal I" of D. Since D is 
a commuta t ive domain, I" = 0 or I" = P . If 7 " = £>, then the existence of 
an element of V in D implies tha t 1 6 / ' and hence / ' = T; from (2) it now 
follows tha t / 2 Af, and hence i" = i?. If 7 " = 0, then F = 0 and hence 
7 Ç M; by considering the least positive integer in the set {h\yh has nonzero 
coefficient for some member of I), it is easy to see tha t P = I implies 7 = 0. 
Hence R satisfies (*). 

Remark. T h e example above depends on the existence of certain integral 
domains D having an automorphism </> of infinite period. We now indicate two 
constructions for such D, one for finite ordinals and one for the general non-
limit ordinal case. 

(1) Let C be the algebraic closure of Z2, the field of two elements. Let p be 
the automorphism of C defined by p(a) = a2 for each a Ç C. If a = w is a finite 
ordinal, extend p to an automorphism <t> of the polynomial ring D = 
C[%i, X2, . . . , xn] by <t>(Xi) = Xj for i = 1, 2, . . . , n. Then K dim D = n = a, 
and </> has infinite period. (Note: if a = 0, let D = C and </> = p.) 

(2) Let a be a non-limit ordinal. By [10, Theorem 9.6], there exists a com­
muta t ive integral domain C with Krull dimension a — 1. By examining the 
proof of [10, Theorem 9.6], we also see tha t if the base field in the construction 
for C has characteristic zero, then so does C. (The construction of C is done 
by forming a big polynomial ring over the base field, localizing at a prime ideal 
generated by a " g a n g " of indeterminates, and then passing to a homomorphic 
image.) Now let D = C[u], the polynomial ring in the indeterminate u. Then 
K dim D = a, and 

n n 

<t>:D->D: ]T Ciu
l - * £ ^(w + 1)' 

is the desired automorphism of infinite period. 
Now let (^~, J^~) be a hereditary torsion theory of 1^-modules, and let 7 be 

a two-sided ideal of R. Then ( ^ , J^~) induces a torsion theory &~', ^') of 
i?/7-modules in a natural way: ^ = {M G i£/JT-mod|M G ^~ , where M" is 
viewed as an i^-module via xm = (x + 7)ra for all x £ i£ and m £ M} . Since 
an i ? / 7 module is a simple Tî/7-module if and only if it is simple as an i^-module 
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in the natural way, then the torsion class j ^ 7 ' induced by j ^ , is jus t the simple 
torsion class for i^ / / -mod. 

L E M M A 0.2. Let (£T, J r ) be a hereditary torsion theory for R-mod, let I be 
a two-sided ideal of R, and let (&~r, &~') be the torsion theory of R/I-mod in­
duced by (T,^). 

(1) If (ST,&~) has CSP (FGSP, BSP, SP)y then (^ r 7 , ^~ / ) has CSP (FGSP, 
BSP, SP) for R/I-modules. 

(2) If I is a finitely generated idempotent left ideal and if R satisfies (*) and 

(*^~), then R/I satisfies (*) and (*J~f). 

Proof. (1) is known (e.g., see [17, p . 72] or [15, p . 452]). Both (1) and (2) are 
s traight forward to prove from the appropr ia te definitions. 

1. S p l i t t i n g propert ies for g e n e r a l i z a t i o n s of Sf. Before we can give 
characterizations of the split t ing properties for generalizations of Sf, we need 
several e lementary lemmas. 

L E M M A 1.1. Let^T be a generalization of' Sf \ and let (^~,^) be a hereditary 
torsion theory with CSP. If R/I £ ^~ , then P = / . 

Proof. R e p l a c e d b y ^ ~ in the proof of [15, Proposition 2.1]. 

L E M M A 1.2. Let3T be a generalization of *?', and let (ST ,^) be a hereditary 
torsion theory for R-mod. Let R £ ^~ , and let R satisfy (*Jr). If R/I £ &~ and 
if ® m«e^ Rxa ^ I, then there exists a collection {Ia}a^^ of two-sided ideals 
satisfying the following conditions: 

(1) Rxa ÇZ Ia (Z I for each a Ç s/; 
(2) R/Ia e &'for each a £ j / ; 
(3) IJRxa G 3T for each a G J / ; 
(4) Y.a^h is direct. 

Proof. By (*F~) there exists, for each a. £ £#, Ja C Rx<x such tha t Ja is a 
two-sided ideal of R and Rxa/Ia £ 3~. Define Ia by Ia/Ja = ^~(R/Ja) for each 
a£s/. Clearly Rxa C Ia, (2) holds, and (3) holds. Since (Ia + / ) / / Ç & and 
since (Ia + / ) / / = Ia/(I C\ Ia) is a homomorphic image of Ia/Ja ê <^~, then 
(Ia + / ) / / = 0; hence Ia C / . Since Ja is a two-sided ideal for each a, so is Ia. 

If 0 ^ x G //3 H Jlae^-{p\ la, then 0 ^ x = a$ = J^^B^a, where B is a 
finite subset of s/ — {/3}. Since R £ J^~, (Rxa : aa) is an essential left ideal for 
each a £ B \J {($}. Hence there exists 

y (z H (Rxa:aa) 
a£B U 1/3} 

such tha t 0 9e yx = yap = 2]«ÇB 3>a« G Rxp C\ J2<*ÇB Rxa = 0, which is a con­
tradiction. Hence (4) holds. 

L E M M A 1.3. Let R, (&~^), and {Ia\ afitf be as in Lemma 1.2. If R satisfies (*) 
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and (tr,^) has CSP, then, there exists a set of orthogonal idempotents {ea}a^^ 
such that Ia = Rea for each a ^sé'. 

Proof. By Lemma 1.1, Ia = Ia
2 for each a G se. By CSP, Ia/Ja is a cyclic 

module; so from par t (1) of Lemma 1.2, it follows tha t each Ia is generated by 
two elements. Hence the result follows from (*). 

L E M M A 1.4. Let {ty~,&~) be a hereditary torsion theory for i^-mod such that 
R G ^ and R satisfies (*^~). Then every (module) direct summand of R is a 
two-sided ideal of R. 

Proof. Let RR = A © B, and suppose tha t b G B. The map A —» Ab given 
by right multiplication is an i^-epimorphism. By (*^) there is a two-sided 
ideal T of R such tha t T Q A and A/T G ^ . But Tb C 4 H 5 = 0; so the 
induced epimorphism ^4/7" —> 4̂Z? implies tha t Ab G ^~ . As i? G ^~ , then 
4J3 = 0. 

We now can s ta te our first main result, which characterizes CSP for general­
izations of £f. 

T H E O R E M 1.5. Let37~ be a generalization of ¥', and let {f7~, J ^ ) be a hereditary 
torsion theory for i^-mod. If R G J^~ and R satisfies (*) and (*^~), then the 
following statements are equivalent. 

(1) (J",^) has CSP. 
(2) If R/K G ^~ , then K is a ring direct summand of R. 
(3) Every cyclic in ^ is projective. 

Proof. (2) => (3) => (1) is trivial. 
Assume (1) holds. Let R/K G ^ , and let © 2Z«€^ Rx<* be a direct sum of 

cyclic modules such tha t © J2ae*f Rx is an essential submodule of K. By Lemma 
1.3, there exists a family {ea\a^^ of orthogonal idempotents such tha t Rea = Ia, 
where Ia is as in Lemma 1.2. Let I/® J2<*€s* Ia = <^~(R/J2ae^ Ia) define the 
two-sided ideal / . Since 1/T.a^ L e ^ and (J + K)/K£ #~, it follows from 
the existence of an epimorphism 

i/T, i«-* i/d r\K)^(i + K)/K 
a£stf 

t ha t / Ç K. By (1), I/Yl^e^Ia has an idempotent generator g+ J2<x£^ Ia in 

P/z2aes# la-
Case 1. If Rg = I, then by (*) / = Re for some e = e2. Since / is essential 

in K it follows tha t / = K; so (2) follows from Lemma 1.4. 
Case 2. If Rg = 0, then I = © Xl«6^ £*• Let M a be a maximal submodule of 

7a = Rea for each a ^_ s/. Then 

must be finitely generated by (1). Hence s/ is a finite set; so / is finitely 
generated and a summand of R. Consequently (2) follows from Lemma 1.4. 
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Case 3. If 0 ^ Rg 5* I, then by (*J^~) there exists a two-sided ideal G such 
tha t G Ç Rg and 0 9e Rg/G G ^~\ As in the proof of Lemma 1.3 there exists 
an idempotent e such t ha t Re/G = $~{R/G) and i?e Ç / . 

Wri te R = Re 0 F, where F = i ? ( l - e). Note t ha t I = Re + Z « ^ i ^ « . 
By the modular law I = Re ® ( J H F). But 

by Lemma 1.4. Hence I = Re ® [ ( S « ç ^ ^ « ) H F] . 
By the modular law, 

E **«=r( s ^«) ̂  *«i © re E Re«) ̂  *i • 
By [11, Theorem 1], ( ^ « ^ i ^ ^ a ) C\ F is a direct sum of countably generated 
modules. If (J2ae^Rea) (^ F is not finitely generated, then (J2ac^ Rea) ^ ^ h a s 
a countably generated direct summand W which is not finitely generated. By 
closure under extensions and by R G J^~, R/W G ^ * Let W be generated by 
the set {xi}%i. For each positive integer n, there exists a least positive integer 
k(n) such tha t xfc(„) G Rxi + i?X2 + . . . + Rxn. By Zorn's Lemma, choose Kn 

maximal with respect to xk(n) Q Kn and 23"=i i?xw C Kn ÇZ VF. Then (Rxh(<n) + 
Kn)/Kn is an essential simple submodule of R/Kn; so (Rxk(n) + Kn)/Kn G J7". 
Since (<^~, J O has (C5P) , then (^~, J ^ is s table; hence R/Kn £<T. Define 

n = l n 

where <pn : W —* W/Kn is the canonical epimorphism given by w —> w + i£„. 
If # = ker <?, then W/H ^ image of p. Since R/W G ^ , t h e n ^ C f t / t f ) Ç 
W/H, which is a direct summand of R/H by (1). Hence ^"(R/H) is finitely 
generated. But^f~(R/H) = ^~(W/H) cannot be finitely generated; for other­
wise the isomorphic copy oi^ (W/H) in the image of (p would have non-zero 
coordinates in finitely many W/Kn. This contradiction shows tha t (2Zaç^ Rea) 
H F must be finitely generated. 

Therefore, / = Re © [ ( S a ç r f ^ a ) ^ F] is finitely generated. By Lemma 1.3 
and (*), / is generated by an idempotent element and hence is a direct sum­
mand of R. Since / is an essential submodule of K, I = K\ so (2) follows from 
Lemma 1.4. 

One widely studied torsion theory is Goldie's torsion theory (^' ,J/)\ e.g., 
see [6; 8; 15] and their references. *& is the smallest torsion class containing 
the singular m o d u l e s ; ^ is precisely the class of nonsingular modules. If R is 
a commuta t ive integral domain, then & coincides with the class of modules 
which are torsion in the classical sense. 

By Theorem 1.5 and an argument of [15, p . 459], we have the following 
result. 
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COROLLARY 1.6. Let (£T,^~) and R be as in the hypotheses of Theorem 1.5. 

If (Zr,^) has CSP, then J' = &. 
As a consequence of the corollary, when R is a commutat ive integral domain 

a n d ^ is a generalization of 5^ , (<^~, &~) has CSP if and only if S~ contains 
the usual torsion class. In particular, if R has Krull dimension a, then i&'p^p) 
has CSP if and only if /3 ^ a. 

But, for the ring of Example 0.1, ( ^ 4 2 , ^ + 2 ) has CSP by Theorem 1.5 and 
par t (9) of Example 0.1. H o w e v e r , ^ ^ ^ « + 2 ^ i£-mod. 

LEMMA 1.7. Let3T be a hereditary torsion class for R-mod. / / R satisfies (t^7"), 
then every left ideal I contains a two-sided ideal I' such that I/I' Ç 37~ \ moreover, 
if 3T(R) = 0, then V is essential in I. 

Proof. For each x 6 / , we use (*ê
7") to find a two-sided ideal Ix such tha t 

Rx/Ix G ^~ . Set / ' = J2x£ ih- I t is easy to see t ha t F has the desired properties. 
We now can use Corollary 1.6 and Lemma 1.7 to apply results of [6] and [8] 

in order to obtain results about FGSP and BSP for generalizations of S^. 

T H E O R E M 1.8. Let 3^ be a generalization of y , and let {f7~,^F) be a torsion 
theory for R-mod. If R £ ^ and if R satisfies (*) and (*^~), then the following 
statements are equivalent. 

(1) ( ^ r , J r ) has FGSP. 
ifl) 3T = ^ , and each finitely generated module F £ ^ has the following 

properties', (a) F is finitely related', (b) hd F ^ 1; (c) Tor i^(Hom 2 (y l , D), F) = 
Ofor any A ^ 3T and any divisible Abelian group D. 

(3) (a) (A : x) is finitely generated for every x £ E(R) and every finitely 
generated A Ç E(R), where E(R) denotes the injective hull of R; 

(b) if I is any right ideal which contains a two-sided, essential left ideal of R, 
then IR is flat and Tor1

R(R/I, E(R)) = 0; and 
(c) if L is an essential left ideal of R, then R/L £ 37~. 

Proof. By Corollary 1.6, J?7" = ^ ; so the equivalence of (1) and (2) follows 
from [6, Corollary 2]. By R £ &~ and Lemma 1.7, every essential left ideal of 
R contains an essential two-sided ideal of R; so the equivalence of (1) and (3) 
follows from [8, Theorem 4.9]. 

COROLLARY 1.9. Let R be a commutative ring, let3T be a generalization of y , 
and let (ST, J r ) be a torsion theory for R-mod. / / R £ ^~ , then the following 
statements are equivalent. 

(1) (ST,^) has FGSP. 
(2) R is semihereditary, R C\ A is finitely generated for every finitely generated 

A C E(R), and R/L £ ^for every essential left ideal L of R. 

Proof. Combine Corollary 1.6 and [8, Corollary 4.10] to obtain this result. 

Before we can deal with the BSP for ($T, J r ) , we must introduce a Loewy-
type construction and prove a technical homological lemma. 
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Suppose that T is a two-sided ideal of R and that R/T is a right semiartinian 
ring (which occurs whenever R/T is left perfect). Define the two-sided ideals 
Ta of R inductively as follows: To = T; if a is not a limit ordinal, then Ta/Ta-\ 
is the right socle of R/Ta-i\ if a is a limit ordinal, then Ta = U/3<<* Tp. Hence 
the set {Ta/T}ae^ forms a right Loewy series for R/T, wTheres/ is an index 
set of ordinals such that Tp/T = R/T for some /3 £ se. 

LEMMA. 1.10. Suppose that R/T is a left perfect ring and that K is a right ideal 
of R satisfying Ta £ K Ç Ta+ifor some ordinal a. If Ta and Ta+\ are flat as 
right R-modules, so is K. 

Proof. Since Ta+i is flat, we have the exact sequence 

Tor2
R(Ta+1/K, _) -> Tor^CK, _) -» T o r ^ ( r a + 1 , _) = 0; 

so it suffices to show that Tor2R(Ta+i/K, _) = 0. Since Ta+i/Ta is semisimple, 
then as a right i^-module 

Ta+1/Ta^ (K/Ta) © (Ta+1/K), 

and hence 

Tor 2 ^ ( r a + 1 / r a , _) ^ Ton*(K/Ta, - ) © Tor2*(Ta+1/K, _) . 

Consequently, it is sufficient to show that Tor2R(Ta+i/Ta, _) = 0. But this 
follows from the flatness of Ta+i and Ta and the exact sequence 

Tor2*(ra+1> _) - + T o r 2 * ( r a + 1 / ^ , - ) -> T o r ^ ( r a , _) . 

THEOREM 1.11. Let3T be a generalization of ¥*, and let (&~, ^) be a torsion 
theory. If R £ ^~ and if R satisfies (*) and (*J^~), then the following statements 
are equivalent. 

(1) (<̂ ~, #") has BSP and is stable. 
(2) R is a finite direct sum of left Ore domains Dt(i = 1, 2, . . . , ri), each of 

which has the following properties'. 
(a) for each two-sided ideal I of D u Dt/I is a left perfect ring and D t/1 £ 37~', 
(b) if H is any right ideal of D{ which contains a two-sided ideal, then H is 

flat and Tov^^DJH, E(Dt)) = 0. 
(3) R is a finite direct sum of left Ore domains Dt(i — 1, 2, . . . , n), each of 

which satisfies the following properties'. 
(i) for each two-sided ideal I of Du Dt/'I is a left perfect ring and Dt/I Ç $~\ 

(ii) each two-sided ideal of Dt is flat as a right module) 
(iii) if M is a maximal right ideal of Dt which contains a two-sided ideal, then 

TorS'iDi/MtEiDi)) = 0. 

Proof. (1) =» (2). Let i f be a finitely generated module. By (1) and [17, 
Lemma 3.2], there exists a left ideal I of R such that every element of ^~(M) 
has an annihilator of the form C^n

i=i(I : rt), where rx, r2, . . . , rn Ç R and R/I £ 
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3?~. By (*e5
r) and Lemma 1.7, 7 contains a two-sided ideal V such tha t 7 / 7 ' 6 

3T. Hence I'3~{M) = 0; so « ^ ( M ) has bounded order. By (1) M splits. 
Therefore, (f, &) has FGSP and hence CSP. 

T h u s 3T = ^ by Corollary 1.6. Moreover, since (*J^~) holds, it follows from 
Lemma 1.7 t ha t our definition of BSP for @ coincides with the definition for 
BSP given in [8] (in this case). Whenever R is a direct sum of rings, then 
{*&, JV) has BSP if and only if the Goldie torsion theory for each direct 
summand has BSP (see [15, p. 452]). I t now follows from [8, Theorem 5.3] t ha t 
it is sufficient to show tha t R is a (ring) direct sum of finitely many left Ore 
domains. 

Let ^a£stfRxa be any essential submodule of R with xa 9e 0 for each a 6 s/. 
By the proof of Lemma 1.3 and by Lemma 1.4, there exist two-sided ideals 
{Ja)a£^ and orthogonal idempotents {ea}ae^ such tha t Ja $= Rxa Q Rea. By 
[8, Theorem 5.3], R/Y*«ZJ*J* 1S a left perfect ring. Since {ep + Yla^Ja]^^ is 
a set of non-zero orthogonal idempotents in R/J2a^^ 7«, then s/ must be a 
finite set by [1, Theorem P] . Hence RR is finite dimensional. 

Let 0 ^Ji=iRyi be a maximal direct sum of nonzero uniform left ideals of R. 
By Lemma 1.3, there exists a set {e<}l=i of orthogonal idempotents such tha t 

thus R = © Y7i=iPei is a r m g direct sum by Lemma 1.4. Set Dt = Ret. 
Since R £ ^~ , then Ryt is an essential uniform submodule of Ret = Dt; thus Dt 

must be an integral domain (asJ^~ = &). 
(2) =» (1). Condition (t^7") and R ^ ^ imply tha t the set of essential left 

ideals has a cofinal subset of two-sided ideals (by Lemma 1.7). Hence our 
definition of BSP for (&,JV) coincides with tha t of [8] in this case. From (2) 
and [8, Theorem 5.3] it follows tha t the Goldie theory for each Dt has BSP, 
and hence {&,J/) must have BSP (as R = D{ + D2 + . • . + Dn). Also 
fê, JV) is stable. But condition 2(a) and Lemma 1.7 imply tha t a cyclic 
module is in & if and only if it is i n ^ ; hence 3T = ^ . 

(2) => (3). This is trivial. 
(3) => (2). First, we let H be a right ideal of D, where D is any D t. Assuming 

t ha t 77 contains a two-sided ideal T, we wish to show tha t (i) and (ii) imply 
tha t 77 is a flat right D-modu\e. This will be done by transfinite induction. 
By (i) D/T is left perfect; so we define Ka = 77 H Tp for all 0 £ j / . (7> is 
defined jus t prior to Lemma 1.10.) 

Since T = To Ç i£i Ç JHI, then Lemma 1.10 and (ii) imply tha t i£i is a 
flat right 2)-module. 

Suppose tha t fi = a + 1 is not a limit ordinal, and suppose Kp-i is a flat 
right Z>-module. By Lemma 1.10 and (ii), K is a flat right 7>-module whenever 
K is a right ideal such tha t Ta Q K Q Ta+1. Set K = K0 + Ta = (77 H T a + i ) 
+ Ta. Then X is a flat right P-module , and the exact sequence 

0 -> ^ -> K -> TC/i^ -> 0 
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yields the exact sequence 

Tor 2
D(K/K0, _) -> TonD(Kfi, _) -» Tor^CK, _) = 0. 

Thus it suffices to show that Tor 2
R(K/K&, _) = 0. Now K/Kfi È ( ( H H 7 » 

+ Tf>-x)/(Hr\ 7 » ^ T^/iHnT^nT?) = T^/{Hr\ 7>_i). Since 7>_i 
is flat by (ii) and since H C\ Tp-i is flat by our induction hypothesis, then there 
is an exact sequence 

0 = T o r ^ T V x , _) ->Tor,B(7>_,/(ff H T^), _) 

->ToriB(/fn 2Vi,_) = o. 
Hence TorS{K/KS, _) £* T o r A ^ - i A i * H 7>_,), _) = 0. 

Let |3 be a limit ordinal, and assume that Ka is a flat right £>-module for 
all a < 0. Since Kf, = H n T0 = \Ja<p (H C\ Ta) = \\m H C\ Ta, then 

• 

T o r ^ i ^ , . ) = Tor^Clim Xa,_) = lim T o r ^ i ^ , . ) = 0. 

Hence K$ is a flat right J9-module. 
Since D/T is left perfect, H = H C\ Tp for some ordinal ft; hence H must be 

a flat right D-module. 
Next, we wish to show that if H is a right ideal of D which contains a two-

sided ideal T, then (i) and (iii) imply that Torl
D(D/H, E(D)) = 0, where D 

is any Dt. By (i), D/T is left perfect; so every nonzero homomorphic image of 
the right D-module D/H has nonzero (right) socle. Moreover each simple right 
module which appears in the (right) Loewy series for D/H (see [4; 13; 16]) 
must be annihilated by T\ i.e. the annihilator of any element of a simple right 
module which appears in the Loewy series for D/H must be a maximal right 
ideal which contains a two-sided ideal. Hence if D/M is a simple right module 
which appears in the Loewy series for D/H, then ToriD (D/M, E(D)) = 0 by 
(iii). Since Tori^ commutes with direct sums and direct limits, an easy trans-
finite induction on the (right) Loewy series of D/H shows that Tor iD (D/H, 
E(D)) = 0. 

Remarks. (1) The proof of Theorem 1.11 is actually the first time that we 
needed to use the property that / is proper in Rx in condition (*J^~). In par­
ticular, we needed the "proper" hypothesis to insure that the idempotents 
ie0 + 2«€^ Ja}fi£s/ were all nonzero. 

(ii) If R = D[[x]] is the ring of all power series with coefficients in a division 
ring D, then (//f ,^) has BSP and is stable by Theorem 1.11. 

(iii) If R is the ring of Example 0.1, then^""«+2 = ^ by Corollary 1.6 and 
its subsequent comments. Therefore ^«+2 is stable. Since R has no nontrivial 
idempotent elements and since R/M = T is not a left perfect ring, then 
(<$r

a+2,3r
a+2) does not have BSP by Theorem 1.11. 

The following corollaries of Theorem 1.11 show that it is very difficult for 
(^a^a) to have (BSP) u n l e s s ^ = y or R-mod. 

https://doi.org/10.4153/CJM-1975-111-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-111-9


SPLITTING PROPERTIES 1067 

COROLLARY 1.12. Let R be a left and right duo ring satisfying (*). Let a ^ 1 
be an ordinal, and suppose that3Ta{R) = 0. / / i^a^a) has BSP and is stable, 
then3Ta = y = &. 

Proof. Since R is a left duo ring, then R satisfies (*5f) and hence ( * ^ a ) . 
By Theorem 1.11, R = Dt + D2 + • • • + L>n (ring direct sum) such tha t , 
for each i = 1, 2, . . . , n and each two-sided ideal Kt of Dt, Df/Ki is a left 
perfect ring. Since Dt/Ki is left perfect and R is left and right duo, then DJKi 
is right perfect; hence DJKt Ç y by [1, Theorem P] . 

From Corollary 1.6, 3Ta = &. Let I be an essential left ideal of R. By 
Lemma 1.7 there exists a two-sided ideal I' Q I such tha t J / / 7 G ^"« = ^ . 
Then J ' = X)n«=i (£>< H / ' ) . Set i£ , = Dt H J ' . I t follows tha t 

i?// '^(e Ê £<)/ (® £*<) = © £ £</#i e^, 
hence R/I (E 5^ . Therefore, every cyclic module i n ^ a \sS^, so it follows tha t 

ra = y. 
COROLLARY 1.13. Let R be a commutative ring. Let a ^ 1 be an ordinal, and 

suppose that <Ta(R) = 0. If {$~a, #"«) has BSP and is stable, then 3r
a = y =&. 

COROLLARY 1.14. Let R be a commutative Noetherian ring. Let a ^ 1 be an 
ordinal, and suppose that 3Ta (R) = 0. If (^~a, &a) has BSP, then 3~a = y = ^ . 

Proof. Since R is commutat ive and Noetherian, every hereditary torsion 
theory is stable [14]; so the result follows from Corollary 1.13. 

COROLLARY 1.15. Let R be a commutative ring. Let a ^ 1 be an ordinal. Then 
0r'a,^a) has SP if and only if R is a semiartinian ring. 

Proof. This corollary is immediate from Lemma 0.2, [14, Proposition 4.2], 
Corollary 1.13, and [17, Theorem 5.1]. 

COROLLARY 1.16. Let R be a ring which has Krull dimension as a right R-
module. Suppose that a ^ 1 is an ordinal,$~a(R) = 0, and R satisfies (*) and 
(*^~~«). If (^a^a) has BSP and is stable, then ya = y = S?. 

Proof. By Theorem 1.11, R = D\ + D2 + . . . + Dn (ring direct sum) such 
tha t , for each i = 1, 2, . . . , n and each two-sided ideal K of Di} Dt/K is a 
left perfect ring. Since RR has Krull dimension; so does (Dt/K)R. But a semi­
art inian (right) /^-module with Krull dimension is art inian. Therefore, 
rad (Di/K) is nilpotent, and hence Dt/K is also right perfect. Thus Dt/K Ç y . 
The Corollary now follows from the same argument used in the second para­
graph of the proof of Corollary 1.12. 

2. T h e case J?7" = y . We begin section two with the following generaliza­
tion of [15, Theorem 4.3]. 
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THEOREM 2.1. If y (R) = 0 and if R satisfies (*) and (*y), then the following 
statements are equivalent. 

(1) (y,^) has CSP. 
(2) R is a (ring) direct sum of finitely many left Ore domains and y = &. 

Proof. (2) => (1). Let D = A + £>2 + . . . + Dn be a ring direct sum. It is 
known that & = y has CSP if and only if, for each i = 1, 2, . . . , n, the 
torsion theory induced on Drmod by & = y has CSP (see [15, p. 452]). 

Since each Dt is a left Ore domain, then ^ induces the classical torsion theory 
on Drmod for each i — 1, 2, . . . , n. But then each induced torsion theory has 
CSP. 

(1) =» (2). We have 5^ = ^ by Corollary 1.6. Temporarily assume that i? 
is left finite dimensional. Then let JTUiifo* be a maximal direct sum of cyclic 
submodules of R. By Lemma 1.3, there exist orthogonal idempotents ei} e2, . . . , 
en, such that 

n n 

© E RxtQ © E ^ ç p. 

Since © X " = i ^ < IS a direct summand of R, then E l = i ^ * = ^- Since R G ^~ 
and y = &, then (0 : x) = ^i^jRej for any nonzero # G Pe*. Hence each 
i?£z- is an integral domain. 

Consequently, it is sufficient to show that R is left finite dimensional. Let 
© YlaesfRxa be a direct sum of principal left ideals which is essential in R. 
By Lemma 1.3, we obtain an infinite set of orthogonal idempotents {ea\ae^ such 
that L = ^2a^^Rea is an essential submodule of R. By Corollary 1.6, A = 
R/L G y . Hence rad A is right T-nilpotent; so in A idempotents can be 
lifted modulo rad A. Let 5 be a simple module in Soc (A/rad A). Then 5 is 
generated by an idempotent e lement / ' of A /rad A, which can be lifted to an 
idempotent / " of A. Let / G R such t h a t / " = / + L. Hence for some finite 
subset <% of J / , / 2 - / G Y,i&Re+ Let R' = R/T.i^Reu and let yf be the 
torsion theory for R'-mod which is induced by y . Then y' (R() = 0, and by 
Lemma 0.2, R' satisfies (*yr). Hence (Rf + ^ti^Re)/^li^Rei is a two-
sided ideal of R' by Lemma 1.4. Thus Rf + J2ie^Rei 1S a n idempotent two-
sided ideal of R; so by (*) there exists an idempotent e such that Re = Rf + 
£<€*-foi- Hence (Re + L)/L = (2?/ + L)/L and 

Consequently, Re/(Re Pi L) = (ife + Z) /L has a unique maximal ideal. 
Since R/Re G ^ and £/2fca G & for a G J / , then R/(Re C\ Rea) G ^ for 

a G ^ . Hence by Theorem 1.5, there exist orthogonal idempotents {ha}ae^ 
such that Rha = Re C\ Rea. If B = {a G J^|Aa ^ 0} were finite, then 

0 ?± Re/(Re H L ) = i t e / £ ^*« 
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is a direct summand of Re Ç J r . But Re/(Re H L) Ç «5 ,̂ which gives a con­
tradiction. Hence 5 must be infinite. We partition B into disjoint infinite sets 
A and T, each with infinite cardinality. Choose M Q Re maximal with respect 
to 

MC\J2 RK = o 

and 

I 3 E «ha. 

Then R/M £ &~\ so M is a (ring) direct summand of R (and Re) by Theorem 
1.5. Let Re = M 0 A/". Since M and iV are finitely generated left i^-modules, 
then M $£ L and N $£ L. Since M and iV are generated by orthogonal 
idempotents, we obtain the non-trivial ring direct sum 

(Re + L)/L = ((M + L)/L) 0 ((N + L)/L). 

This direct sum forces a contradiction to the fact that (Re + L)/L has a 
unique maximal (left) ideal. 

Example 2.2. Let F be a field, and let <j> be an automorphism of F. Extend 
<t> to F[x] by 0(x) = x. Let D be the quotient field of F[x]. Let 

* = {[S *]|«e/T*],6<=J>} 

with addition given coordinatewise (in the usual way) and multiplication 
defined by the rule 

[ a b~\ Yc d~] __ Yac <j>(a) • d + bc~] 
0 a] |_0 c] ~ L 0 ^ J 

Then i? is a ring. (We note that R is commutative if and only if <j> is the identity 
map if and only if the multiplication above is the usual matrix multiplication!) 
We observe that 

rad R = < jj J 1 6 € Z>> , and (rad R)2 = 0. 

The reader can now verify the following statements. 
(1) If y £ R and y (2 rad R, then Ry 3 rad R. 
(2) If P = I 9^ 0, then / $£ rad R\ so / / rad i? is an idempotent ideal of 

R/rad R. Since R/rad R is (ring) isomorphic to F[x], then / / rad i? = i^/rad i£; 
so R satisfies (*). 

(3) If y £ R — rad R, then by (1) we may choose a two-sided ideal K 
maximal with respect to rad R Q K and y Q K. Then Ry/K Ç «5̂  (as i^/rad i? 
is isomorphic to F[x]). 

(4) Any left ideal contained in rad R is two-sided. Thus if y £ rad R and 
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if K is a left ideal chosen such that K Ç1 Ry and K is maximal with respect 
to y £ K, then K is a two-sided ideal and Ry/K Ç 5^. 

(5) Combining (3) and (4), we see that R satisfies (*^~). 
(6) j^( i? / rad R) = 0, and rad R is not a direct summand of R. 
(7) Since j^7(R) = 0, Theorem 2.1 implies that R does not have CSP. 

Example 2.3. Let D' be a subdivision ring of the division ring D. Let R be 
the subring of the power series ring D[[x]] consisting of those series whose 
constant term is in Dr ; i.e. 

R = Y + J d,xV € D',dt Ç £>j . 

The reader can verify the following statements. 
(1) R is an integral domain; so j ^ ( J \ ) = 0. 
(2) If d' + YlT=idiXi G R and d' 3̂  0, then, by solving coefficient equations 

of x* in the usual way, df + YlT=idiXi has an inverse in R. 
(3) The left ideal M generated by {dx\d £ Z)} is the unique maximal left 

ideal of R. M is a two-sided ideal. 
(4) Every principal left ideal contains a power of M ; hence (*5^) holds for i?. 
(5) R contains no nontrivial idempotent ideals by a "least degree" argu­

ment; so (*) holds for R. 
(6) Therefore Theorem 2.1 applies to show that («5^,^"") has CSP. 
(7) We also note that D is (left) Noetherian and has Krull dimension if and 

only if D is a finite dimensional vector space over D''. 
In view of [1, Theorem P], Theorem 1.11 becomes the following generaliza­

tion of [15, Corollary 4.5] whenever^7" = 5^. 

THEOREM 2.4. Let 5f{R) = 0, and suppose that R satisfies (*) and (*j^). 
Then the following statements are equivalent. 

(1) (y7, #") has BSP and is stable. 
(2) R is a finite direct sum of left Ore domains Df(i = 1, 2, . . . , n), each of 

which satisfies the following properties: 
(i) for each two-sided ideal I of Du Dt/I is a left and right perfect ring. 

(ii) each two-sided ideal of Dt is flat as a right module. 
(iii) if M is a maximal right ideal of Df which contains a two-sided ideal, 

then TorfiiPi/M, E(Dt)) = 0. 

COROLLARY 2.5. Let R be a left duo von Neumann regular ring. Then (S^,<^~) 
has BSP and is stable if and only if Ris a left semiartinian ring. 

Proof. The "if" part is trivial. The "only if" part follows from Lemma 0.2 
and Theorem 2.4 (as a regular integral domain is a division ring). 

In order to prove our main result on SP for («5^,^"), we need the following 
result of Gorbachuk. 

PROPOSITION 2.6 [9, Theorem 2]. Let (&~,£r) be a hereditary torsion theory. 
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Then (ZT ,^) does not have SP provided that there exists a sequence Pi, P2 , . . . 
of left ideals of R satisfying the following properties: 

(i) R/Pn e^forn = 1, 2, . . .; 
(ii)#/(n;r-iPn) €^~; 

(iii) for each « = 1 , 2 , . . . , there exists an integer m(n) and a pn £ Pn such 
that pn has zero as its left annihilator and 

Pn+lplp2 • • • Pn 3 Plp2 • • • Pm(n)R' 

We now can state a generalization of the main results of [3; 5] and the 
characterization of (SP) for (y ,^) given for commutative rings in [15] and 
[17]. 

THEOREM 2.7. Suppose that R satisfies (*) and (*y). Then (y,^) has SP 
if and only if R is a left semiartinian ring. 

Proof. The "if" part is trivial. "Only if": Since R has (*) and (*y) and (y, 
J^) has SP, then, by passing to the ring R/y (R) and applying Lemma 0.2, 
we may assume that y (R) = 0. By Theorem 2.4 and Lemma 0.2, we may 
assume that R is a left Ore domain such that (a) R/I is a left and right perfect 
ring for all nonzero two-sided ideals I oi R and (b) R satisfies (*) and (*y). 

Suppose that d is a nonzero element of R and that d does not have a left 
inverse. Then 

Rd =2 Rd2 =2 Rd* 2 • • • • 

Let K = C\™=iRdn. UK ^ 0, there exists a nonzero, two-sided ideal H Ç K 
by (*y). Thus the set {Rdn/H) is an infinite descending chain of principal left 
ideals of R/H. But R/H is right perfect, and hence R/H can have no infinite 
descending chain of principal left ideals by [1, Theorem P]. This contradiction 
forces K to be 0. 

Consequently, Gorbachuk's result (Proposition 2.6) will imply a contradic­
tion to the hypothesis, (y, &~) has SP, provided that we can construct a 
sequence of (left) ideals Pn and a sequence of nonzero elements pn such that 

(i) R/Pn G 5^, 
Oi) Dn=lPn = 0, 

(iii) pn 6 Pn, and 
(iv) Pn+ipip2 . . . Ai 2 Pip* • • • A*+2^. 

To do this, we proceed inductively to define pn £ Pn Q Rdn. 
By (*^) there exists a two sided ideal T £ Pd. Since R t ^ , T 9* 0. 

Since P / T is right perfect, R/T £ y . Set Pi = T, and let pi be any nonzero 
element of P\. 

Now suppose that pk-i G P^-i Ç Pd* -1 has been defined appropriately. Let 

0 9* x £ RdkC\ Pk-ipip2 . . . pk-2, 

which is possible since R is a left Ore domain. (In case k = 2, po = 1.) By 
(*JT~) there exists a two sided ideal P ' £ Px. Since R/T' is right perfect, 
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R/r e y.S'mceRt # " , V F^O.Set Pk = T', and let pk be any nonzero element 
of Pk. Since Pk is two-sided, then pxp2 . . . pkR Q Pk C Rx Ç Pk_1pip2 . . . ^*_2. 

Moreover, 

OO OO 

n p , ç n M " = if = o; 
w = l w = l 

so we have constructed the desired sequence. 

T h e following corollary may be viewed as a generalization of [5, Theorem 
3.9]. 

COROLLARY 2.8. Let Rbe a von Neumann regular, left duo ring. Then {¥,$~) 
has SP if and only if Ris a left semiartinian ring. 

We now give an example of a ring R such t ha t (j^7, <&~) can be tested for 
SP by Theorem 2.7, and R does not satisfy the hypothesis of any other theorem 
onSP. 

Example 2.9. For each integer m ^ 2, let m* denote the least prime factor 
of m. Let Am be the algebraic closure of the field Z / ( m * ) , where Z denotes the 
integers. Then Am has an automorphism <f>m defined by <j>m{a) = am* for each 
a £ Am. Set 

/ °° t \ 
-Lm = = J / J ^m i%m \ Q"m i vl A m ( . 

Then elements of Pm can be added in the obvious way and multiplied as power 
series subject to the twisting rule, xa = <f>m(a) x for all a 6 Am, and its con­
sequences. Now define 

R = {C + 7Tmi + 7Tm2 + • • • + 

where the m< range over the integers ^ 2. Again elements of R can be added 
in the obvious way. Define multiplication for R by the following rules and 
their consequences: 

(i) irmiTmj = 0 for wmi G Pmi, TTmj G Pmj, mt ^ ra;-; 
(ii) for c £ Z and 7rm- G Pmi, cirmi = (c + (tnt*)) irmi and icmic = 7rmt 

(c + (?»i*)), where the multiplication on the right side of each equation 
is the multiplication of Pmi; 

(iii) any two elements of R in Pmi mult iply as elements of Pmi. 
Then R is a ring. 

Let X be the ideal of R defined by X = P2 + Ps + P 4 + If J is an 
ideal of R contained in X, it follows easily (by considering the term of least 
degree t ha t can appear a member of / ) t ha t I = I2 implies / = 0. If J2 = J 
and J ^ I , then ( / + X)/X is an idempotent (left) ideal of R/X. Since 
R/X is (ring) isomorphic to Z, then J + X = R. Hence / contains an element 
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of the form 

= t l + 7Tmi + 7Tm2 + . . . + TTmn} 

where wmi £ Pt. But by the method of comparing coefficients of twisted power 
series, it is straightforward to construct an inverse of this element. T h u s 
1 £ J',soJ = R. Therefore, R satisfies (*). 

Since R/X is ring isomorphic to Z, then R is not local; so the results of [17, 
Section 3] cannot be applied to R. Also, if c ^ 1 and c + Tmi + irm2 + . . . + 
irmn £ R, then choose a prime number p and positive integer ft such tha t p 
divides c and pk > max jwi , w2 , . . . , ww}. Hence 

Xpk(c + 7Tmi + . . . + 7Tmn) = 0 = (C + 7Tmi + . . . + TT^Jx^. 

From this fact and an argument in the previous paragraph, it follows tha t 
every element of R with zero left or right annihilator is invertible. Thus R 
does not satisfy the hypotheses of [9, Theorem 2 or 3]. 

If 0 9^ r £ R, then there exists an integer m such tha t 0 ^ xmr Ç Pm. 
Hence Rxm

2r is a proper nonzero submodule of Rr. Therefore, soc R = 0. 
But then, if R/I £ y , I C\ Rxn ?K) for every n è 2. Let ft 6 Z such tha t 
(Pft + Z ) / X = (J + X ) / Z . If / ^ P , then we may assume ft ^ 2; so, for 
each j = 1 , 2 , . . . , there must be a generator of / of the form 

Sk + TTmi + • • • + TTrae + ?T(A;*)i + ^mf + • • • + TTmnj 

where 5 Ç Z, 7rmî £ Pmi-, and 0 ^ 7rfc £ P{k*)j> Hence / cannot be finitely 
generated as a left ideal. Thus R does not satisfy the hypothesis of [16, Theorem 
3.5]. 

Since soc R = 0, we can apply Theorem 2.7 to show tha t R does not split, 
provided tha t R satisfies (*«5^). Let 

OO OO OO 

Y ^ "I / J ^mii^mx i / J ^mii^mi "l • • • "I / j ^mni^mn t -*M 
i=l i=l z=l 

where a £ Z and ^T=iamjixmj
i 6 P ; for j = 2, 3, . . . , n. We wish to find a 

two-sided ideal T properly contained in Rr such tha t Rr/T £ 5^ . If a = ± 1 , 
r is invertible; so we assume tha t a 9^ ± 1 . If a ^ 0 , set 

H = ^{Pk\k* relatively prime to a} ; 

if a — 0, set H = 0. For each m/* which divides a, let /; be the least positive 
integer t such tha t amjt ^ 0. Then some laborious computat ion shows tha t 
T = Ra2 + H + P m / 1 + Pm2t2 + • • • + Pmn

tn is the desired two-sided ideal 
of P . 

In fact, since 1 and 0 are the only idempotent elements of R, (S^,^ ) does 
not even have CSP for P-mod by Theorem 2.1. 
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