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Abstract

For a positive integer n, let o(n) denote the sum of the positive divisors of n. Let d be a proper divisor
of n. We call n a deficient-perfect number if o(n) = 2n — d. In this paper, we show that there are no odd
deficient-perfect numbers with three distinct prime divisors.
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1. Introduction

For a positive integer n, let o(n) and w(n) be the the sum of the positive divisors of n
and the number of distinct prime divisors of n, respectively. Let d be a proper divisor
of n. We call n a near-perfect number with redundant divisor d if oo(n) = 2n + d and a
deficient-perfect number with deficient divisor d if o-(n) = 2n — d. In particular, we call
n an almost perfect number if o-(n) = 2n — 1. We know that if n is a power of 2, then n
is an even almost perfect number. In 1978, Kishore [4] proved that if n is an odd almost
perfect number, then w(n) > 6. In 2012, Pollack and Shevelev [5] presented an upper
bound on the count of near-perfect numbers and constructed three types of near-perfect
numbers. Recently, Ren and Chen [6] determined all near-perfect numbers with two
distinct prime factors, and one sees from this classification that all such numbers are
even. Following this, Tang et al. [8] proved that there is no odd near-perfect number
with three distinct prime divisors and determined all deficient-perfect numbers with at
most two distinct prime factors. For related problems, see [1-3, 7, 8].
In this paper, we obtain the following result.

Tueorem 1.1. There are no odd deficient-perfect numbers with three distinct prime
divisors.

Throughout this paper, let m be a positive integer and a be any integer relatively
prime to m. If 4 is the least positive integer such that " = 1 (mod m), then £ is called
the order of @ modulo m, denoted by ord,,(a).
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2. Lemmas

Levma 2.1, Let n = []_, p{" be the normal prime factorisation of n. If n is an odd
deficient-perfect number, then the exponents «; are even for all i.

Proor. Let d be a proper divisor of n. Then d is odd. Since o(n) =2n—-d, o(n) =1
(mod 2). Since o(n) is a multiplicative function and the p; are odd primes,

o(n) = ]_[ o(p®) = ]_[(1 +pi++p)=a;+1 (mod 2),
i=1

i=1
Thus the exponents «; are even for all i. O

LemmA 2.2. If n =315 p% with 7 < p <29, then n is not an odd deficient-perfect
number.

Proor. Assume that n = 3%'5%p® is an odd deficient-perfect number with deficient
divisor d = 3%15% pP where 7 < p < 29. Then

0’(3“1502pa3) =2. 3a15dzpf13 _ 3ﬁ15,32p33’ (2.1)
where 8; < a@;, 1 <i<3and 0 < By + B2 + B3 < a1 + @y + a3. Write
Dy = 31-hi Saz—ﬁzparﬁs‘

Then d 1 1
_om) d_ow) AU, 2.2)
n n n 301-B15@=P2 pas—ps n D,

By Lemma 2.1, ; =0 (mod 2),i=1,2,3. Let

1 1 1
flan o = (1= g 1= 7)1 - )

2 (p-1 2 (p-1)
3 . 5 . p 3(l|—ﬁ|+1 . 5(12—ﬁ2+1 . p(13—ﬁ3+1 .

2

glay, az,a3) =

Then, by (2.1),

f(alsQZ, a3) g(alsaz’ a3)' (2‘3)
Case ]. p - ;. Then
a1, dr, @ = l - 3 I by I .9 ey

25
glay, az, @3) < ﬁ =09142...,

so (2.3) cannot hold.

Case 2. p =11. Since ord;(5) = ord3(11) =2 and @; =0 (mod 2), i = 2, 3, we have
3t o(3*15%11%). Thus, by (2.1), 8; = 0.
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If @y > 4, then

| 1 1
Flar, @ az) > (1 - ¥)(1 - 5)(1 - ﬁ) ~0.9871. ...
5

2
glay, az,@3) < 311 =0.969...,

so (2.3) cannot hold.
If @y =2 and Dy > 99, then, by (2.2),
o) d o3 5 11 1

2= 4 L
n nS T3 1710 99 °”

which is a contradiction.
If @) =2 and Dy = 45, then a; — B = 1 and a3 = 3. Thus, by (2.1),

13- 0-(501211&3) — 0_(325021103) — 5(12_1110[3 . 89,

which is impossible.
If @; =2 and Dy =9, then «; = §; for i = 2,3. Thus, by (2.1),

13- (52 11%) = (325 11%) = 5211% - 17,
which is impossible.

Case 3. p = 13. Since ords(3) = ords(13) =4 and @; =0 (mod 2), i = 1, 3, we have
51 o(3*15%213%), so, by (2.1), 8, = 0.
If @ > 4, then

1 1 |
flan, asas) > (1 _ ﬁ)(l - g)(l - 1—33) ~0.9874.. ..

6

R =0.9846....

glay, ap,a3) <

Thus (2.3) cannot hold.
If @; = 2, then, by (2.2),
o d oc3? 5 13 1

2= + - =+ =<2
n a3 i ni:so

which is a contradiction.

Case4. p=19. Since ords(3) = 4,0rd;(19) =2 and @; =0 (mod 2),i = 1,3, we have
5t o(3*15%219%), so, by (2.1), 8, = 0.
If Dy > 75, then, by (2.2),
_onm)y d 3 5 19 1
S NI TR T

which is a contradiction.
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If Dy = 25, then @; = B; fori = 1,3 and a, = 2. Thus, by (2.1),
31-0(3919%) = (31 5219%) = 3%119% . 72,
which is a contradiction.

Case 5. p=117,29. Since ordz(5), ords(p), ords(3), ords(p), ord,(3), ord,(5) are even
and@; =0 (mod 2),i=1,2,3,wehave3:-5: pt o(3%15%p%), s0, by (2.1),81 =5 =
B3 =0. That is, n is an almost perfect number. By the result of Kishore [4], this is
impossible.
Case 6. p =23. Since ord;(5) = ord3(23) = 2, ords(3) = ords(23) =4, and a@; =0
(mod 2),i=1,2, we have 3 - 5 ¥ 0(3915%223%), so, by (2.1), 81 =52 = 0. By (2.2),
om)y d 3 5 23 1
2= Ty
" n 2 amiEes

which is a contradiction. |

2,

3. Proof of Theorem 1.1

) . @y . Q3

Assume that n = p|"' p,;*p5* is an odd deficient-perfect number with deficient divisor
d= pf'pgzpéﬁ. Then
Ty Py ) =2 PP PSP P (3.1
where B; < @;, 1 <i<3,and 0 < B + 6, + B3 <a; + @ + @3. By Lemma 2.1, a; =0
(mod 2),i=1,2,3. Write

D= p(lll—ﬁl plez—ﬁzp;h—/i’}'
Then
d 1 1
2= i o= 7o “Bi P ar Py i D (3.2)
n n n py P s n D

If p; =5, then

_om d 5 7 11 1
R A AR TR

which is impossible. Thus p; = 3. If p, > 19, then
_a'(n)+d<3 19 23+1
n n 2 18 22 3
which is also impossible. Thus p, < 17.

Case 1. py=17.1If p3 > 23, then

<2,

which is impossible. Thus p3 = 19.
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Subcase 1.1. D > 9. Then
om) d 3 17 19 1

2= 22

P R TR TR ks

which is impossible.
Subcase 1.2. D =3. Then @) — 8y = 1 and a; = B; for i = 2,3. By (3.1),

o(37117%219%) = 5. 31171179219, (3.3)
Noting that ords(3), ords(17), ords(19) are even and @; =0 (mod 2), i =1,2,3, we
have 5 1 07(3*117%219%3), so (3.3) cannot hold.
Case 2. p, =13.1f p3 > 41, then

which is impossible. Thus p3 < 37.
Subcase 2.1. D > 9. Then

which is impossible.
Subcase 2.2. D =3. Thena; — ) = 1 and @; = B; fori =2,3. By (3.1),
(3" 13”2p‘§3) =5.3u"! 13“2p§’3. (3.4
If p3 =17,19,23,29 or 37, then ords(p3) is even. Moreover, ords(3) = ords(13) = 4
anda; =0 (mod 2),i=1,2,3,505 ¢ c(3" 13“2p§’3). Thus (3.4) cannot hold.
If p3 =31, then since ords;(3) = ord3;(13) = 30 and @; =0 (mod 2) for i = 1,2,
31 4 o(3*113%231%3), so (3.4) cannot hold.
Case 3. pp =11.If p3 > 101, then
o-(n)+d<3 11 ﬂ+1<2’
n n 2 10 100 3
which is impossible. Thus p3 < 97.
Subcase 3.1. D > 9. Then
_om d 3 11 13 1
S A TR R

which is impossible.
Subcase 3.2. D =3. Then @) — 8y = 1 and @; = B; for i = 2,3. By (3.1),

o3 11%pF) = 53171117 pF, (3.5)
Let

1 1 1
3

225 (p3- 1)

gi(@1, @, @3) = ——1 T
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Then, by (3.5),
filay, a2, @3) = gi(ay, az, @3). (3.6)

If p3 =17,23,29,41,47,53,59,71, 83 or 89, then ords(p;) = ord3(11) = 2. Since
a; =0 (mod 2),i=2,3, we have 3 { o(3" 11“2p;'3), so (3.5) cannot hold.

If p3 = 31,37,61,67,73 or 97, then ord,(3) and ord,,(11) are even. Since a; =0
(mod 2),i=1,2, we have p;3 )(0'(3“111"217‘3“), so (3.5) cannot hold.

If p3 = 13 or 19, then

1 1 1
filar, an,a3) = (1 - g)(l - ﬁ)(l - 1—33) ~0.9618.. ..

22.52.18

gilay, a2, a3) <

so (3.6) cannot hold.
If p3 =43 or 79 and @ = 2, then 13 | 0'(3211"2;7;’3), s0 (3.5) cannot hold.
If p3 =43 or 79 and a; = 4, then, by (3.5),

o(112p$)=5-37 - 11272pg. 3.7)

Ifay =2,then7-19 - o(p3*) =5-3% - p3*, which is impossible. Hence a; > 4.

Noting that ord;;(43) =2, ord;;(79) = 10 and @3 =0 (mod 2), we have 11 ¢
(11?2 p%?), so (3.7) cannot hold.

If p3 =43 or 79 and «; > 6, then

fl(al,az,ag)z(l - l)(1 ] )(1 —4]?)=0.9987...,

LATE
23.52.13

, @2, <—=09973...,
gi(ar, a2, @3) 31179

so (3.6) cannot hold.

Case4. p,=T1.
Subcase 4.1. D > 21. Then

2:_U(H)+€<§.z.ll 1

— + — <2,
n n 2 6 10 21

which is impossible.

Subcase 4.2. D = p3. Thenasz — B3 =1 and a; =B; fori = 1,2. If p3 > 13, then
omn) d 3 7 13 1
2= — <z —=+—=x<2

" n 26 12 137

which is impossible. Thus p3 = 11 and, by (3.1),
o(3117%11%) = 3ntlgetlyje-l (3.8)

Noting that ords(11) is even and @3 = 0 (mod 2), we know that 3 { o(11¢"). By (3.8),
3] 0(7%), 50 9 | 7*! — 1. Since ordg(7) = 3, we have 3 | @ + 1. Thus o<(7%) | o/(7%),
but 19 | o(7%), so (3.8) cannot hold.
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Subcase 4.3. D=9. Then a; — ) =2 and a; = B; fori =2,3. If p3 > 17, then

o) d 37 17 1
2=t S35 69>

which is impossible. Thus p; = 11 or 13. By (3.1),
o317 py) = 17317277 p3. (3.9)

Noting that ord;7(3), ord,7(7), ord;7(p3) are even and @; = 0 (mod 2) fori = 1,2, 3, we
have 17 4 o(3% - 7%2 - pé”), and thus (3.9) cannot hold.
Subcase 4.4. D="7. Thena; — 5, =1 and @; = B; fori = 1,3. By (3.1),

0'(3"‘7“2p‘3”) =13. 3“‘7“2_1p‘3'3. (3.10)
If p3 > 19, then, by (3.2),

o) d 37 19 1
e A TR

which is impossible. Thus p3 = 11,13 or 17.
Let

1 1 1
=1~ i - )
3

22.13-(p3— 1)
glay, @, 03) = ———.
7% p3
Then, by (3.10),
folay, az, a3) = g2(a1, az, @3). (3.11)

If p3 =11 and @ > 4, then

| | |
Blay, aaz) > (1 _ ¥)(1 - %)(1 - F) =09922. ...

23.5-13

—— =0.9647...,
7711

(e, ap, a3) =

so (3.11) cannot hold.
If p3 = 11 and @ = 2, then, by (3.2),
_o(n) f oc(3?) 7 E 1

2= + = —+ =<2,
n a3 610 7°

which is impossible.

If p3 = 13 or 17, then since ord;(3), ord;(p3) are even and @; =0 (mod 2),i= 1,3,
we have 7 ¢ 0'(3"17"219;’3), so (3.10) cannot hold.
Subcase 4.5. D =3. Then @) — By = 1 and @; = B; for i = 2,3. By (3.1),

o371 ps) =5-31717p, (3.12)
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Moreover, ords(3) = ords(7) =4 and a; =0 (mod 2),i=1,2, s0o5 ¢t c(3*7%). Since
ord;(3) = 6, we have 7 t 0o(3™).

If 3| o(7®), then 9 | 7%*! — 1. Since ordg(7) = 3, we have 3 | a» + 1, so o(7%) |
o (7?) and hence p3; = 19. Since ords(19) = 2, we have 5 1 07(19%), so (3.12) cannot
hold. Then 3 { o(7%?). By (3.12), 0o(3%17%?) = p;'-‘ and o-(p;’3) =5.39717% Then

p3(30 79 — 3utl _getl gy = 9. 3179 4 ]2, (3.13)
Since a1, @ > 2, we have 3%17% > 301+ L 70+l _ 1 50 (3.13) cannot hold.

Case 5. p, =5. By Lemma 2.2, it is sufficient to consider n = 3*'5% pS* with p3 > 31.
Subcase 5.1. D > 25. Then

2_o-(n) d 35 31 1
n

n

which is impossible.
Subcase 5.2. D = 15. If p3 > 37, then

_om d 3 5 37 1
S A A A T

which is impossible. Thus p; = 31 and, by (3.1),
o(3915%231%) = 29 . 301501310, (3.14)

Noting that ordyy(3) = ordyy(31) = 28, ordy9(5) = 14 and @; =0 (mod 2), i = 1,2, 3,
we have 29 1 0(3%15%231%), so (3.14) cannot hold.
Subcase 5.3. D =9. Then @) — 8; =2 and a; = B; fori = 2,3. By (3.1),

o (315" p) = 17 - 301725% pl3, (3.15)

If a; =2, then 13| 0'(3‘1'5"217‘3“), so (3.15) cannot hold. Hence @ > 4. Noting that
ord7(3), ordy7(5), ords(3) and ord;(5) are even and @; = 0 (mod 2), i = 1,2, we have
3-5-17 4 0(3*5%). Thus o(3*'5%) = pg” and O'(pg”) =17 -3%725% Then

p3(301725%2 4 3utl  setl ) — 136, 3m72502 _ g,

Thus
(p3 — 136)3%1725% = _py(3u+! 4 50+ _ 1) _g, (3.16)

We know that 3 | o(p3?) and 5 | o(p5*), since a3 is even, so p3 = 1 (mod 3) and p3 = 1
(mod 5). Hence p3 =1 (mod 15). Noting that there is no prime ps; such that p; = 1
(mod 15) and 31 < p; < 131, it follows that (3.16) cannot hold.

Subcase 5.4. D =5. Thena; — 5, =1 and @; = 5; fori = 1,3. By (3.1),

o315 pY) = 3950 ple (3.17)

If @) =2, then 13 | 0'(3“15"219‘;3), so (3.17) cannot hold. Hence a; > 4.
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Noting that ords(3) = 4,o0rd3(5) =2 and @; =0 (mod 2), i = 1,2, we have 3 ¢
o(3*15%), 5 1 0(3*15%2). Thus, by (3.17), 0(3*15%?) = p;” and o-(pg’3 =30+2. 501
Thus, by (3.17),

p3(3al+15a/2—1 _ 3arl+1 _ 5(11+1 + 1) - _8- 3(11+25(lz—1 +8. (318)

Noting that ;; > 4 and @, > 2, we have 301*15%-1 _3ai+l _ 50+ 4 1 5 ( 50 (3.18)
cannot hold.
Subcase 5.5. D =3. Thena; —8; = 1 and @; = B; fori =2,3. By (3.1),

03757 pgY) = 30715t ple, (3.19)

Since ords(3) = 4, o0rd3(5) =2 and a; =0 (mod 2), i = 1,2, we have 3 { o/(3%15%),
51 (3*'5"). Thus, by (3.19), 07(3*'5%) = pS* and o (p3’) = 3u-152+1 Hence

p3(3wl—15(1/2+1 _ 3(1/1+l _ 5(12+l + 1) = _8 . 3(1/1—15(12+1 + 8 (320)

Noting that @y, as > 2, we have 3®1715%+1 — 30+l _ 52+l 4 1 5 (0 50 (3.20) cannot
hold.

This completes the proof of Theorem 1.1. O
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