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1. Introduction. In the earlier article [7], I began the study of rational period
functions for the modular group F(l) = SL(2, Z) (regarded as a group of linear fractional
transformations) acting on the Riemann sphere. These are rational functions q(z) which
occur in functional equations of the form

= F(z), z-2fcF(-l/z) = F(2) + q(z), (1.1)

where k e Z and F is a function meromorphic in the upper half-plane $?, restricted in
growth at the parabolic cusp °°. The growth restriction may be phrased in terms of the
Fourier expansion of F(z) at °°:

F(z)= £ a ^ 2 ™ , y = I m z > y o > 0 , (1.2)
n = n

with some /J,GZ. If (1.1) and (1.2) hold, then we call F a modular integral of weight 2k
and q(z) the period of F.

Frequently—in particular when k > 0—it entails no loss of generality to assume that F
is holomorphic in 5if and /x&0. In this instance, (1.2) holds in all of 2? (yo = 0) and F
satisfies the growth condition (see [8, pp. 622-623])

|F(z)|<.K:(|z|a + y-0), zeX, (1.3)

for some K, a, (i > 0. If F is a modular integral of weight 2fc and if in addition it is
holomorphic in $? and /x^O in (1.2)—that is to say, (1.3) holds—it is called an entire
modular integral of weight 2k. It is a simple matter to verify that for F defined by (1.2)
with )i>:0, (1.3) is equivalent to

an = O(ny), rt^+oo, (1.4)

for some y > 0 . Thus an entire modular integral is a modular integral for which /x^O in
(1.2) and (1.4) holds.

When fc<0 a familiar case of (1.1) occurs with q(z) a polynomial of degree ^ - 2 k ,
the period polynomial which arises in the Eichler cohomology theory [3,4,6,8]. In
addition to these q(z) = c/z arises naturally as the period function of the logarithmic
derivative of a modular form of any nonzero weight. It occurs as well in the functional
equation of E2(z), the Eisenstein series of weight 2 on F(l). (See for example [5].)

In [7, Theorem 1] I introduced the new rational period functions for F(l)

q -k(z-z'o)-
k, (1.5)
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186 MARVIN I. KNOPP

of weight 2k (called weight -2k in [7]), where k is odd and z0 = (VI +1)/2, z'o = Zo1 =
(V5-l)/2; when fc:£0, q2k(z) is a polynomial of degree -2k. Applying Hecke operators,
we showed [7, Theorem 3] that with k > 0 and k odd, there exists an infinite set of linearly
independent rational period functions of weight 2k on T(l), all of them with poles of
order k lying in Q(V5). Very recently, Alayne Parson has applied results on the Hecke
groups to find new rational period functions for F(l), with poles lying in Q(N/3) and in
Q(V21), again if fc>0 and k is odd [9].

On the other hand, I show here (Theorem l(a), below) that a pole of any rational
period function q(z) must lie in Q+(Vn), neZ + , where Q+ = QU°°; indeed every such
q(z) can be decomposed into a sum of rational period functions, each with its poles in a
fixed quadratic extension of Q. That is to say,

q(z) = qa)(z) + q(2)(z) + q(3)(z) + q(5)(z) + . . . , (1.5)

where q(m)(z) is a rational period function, qw(z) has its poles in Q+ and qim)(z), m
squarefree and > 2, has its poles in Q(Vm) — Q. I determine in addition the explicit form
of q(1>(z) (poles in Q+), showing in particular that the only possible rational poles are
0 (k>0) or 0 and °° (k<0).This is the content of Theorem l(b), and Theorem 2. It
remains an open question whether there are rational period functions with poles in Q(Vn),
n ̂  2, when k S: 0 is even and when k < 0.

We close the paper with some observations regarding Mellin transforms of entire
modular integrals and, in particular, the functional equations that they satisfy. It turns out
that if the poles of q(z) lie in Q+ (i.e. at 0 or o°), then the Mellin transform of the
corresponding entire modular integral satisfies the same type of functional equation as
does the Mellin transform of an entire modular form (Theorem 3). There is a converse as
well, showing that when the Mellin transform of an entire modular integral possesses such
a functional equation, then the poles of the associated period function q(z) must lie in Q+.
This converse explains the fact that the Mellin transform studied in [7, §3] does not satisfy
the usual type of functional equation (see [7, Theorem 2]), since it arises from a modular
integral whose period function has poles in Q(V5)-Q.

2. The Poles. T(l) is generated by the matrices S = (ol), T = (°~o)> with the
relations T2 = (ST)3 = I. This fact and (1.1) together imply that

(a) z-2fcq(-l/z) + q(z) = 0

(b) (z-ir2>

These two identities yield the further one

q(z). (2.2)

As we observe in [7, p. 49], the identities in (2.1) are, conversely, sufficient for the

https://doi.org/10.1017/S0017089500004663 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004663


RATIONAL PERIOD FUNCTIONS 187

existence of a function F holomorphic in "3t and satisfying (1.1) and (1.2). Furthermore,
when fc>0 we can construct F with fi>0 in (1.2).

We shall apply (2.1) and (2.2) to find necessary conditions on the poles of q(z).

THEOREM 1. (a) If z0 is a finite pole of any rational function satisfying (2.1) then
there is a squarefree positive integer n such that zoeQ(Vn).

(b) If the finite pole z0 of q(z) is in Q, then zo = 0.

REMARK. In particular z0 is real, a conclusion valid even if the function F(z) of (1.1)
has poles in 91f.

Proof, (a). We are assuming zo^°°. Clearly, we may assume as well that zo£Q, so
that in particular z0£ 0, —1, °°. By (2.2), either zo+1 or zo/(zo +1) is a pole of q(z). Thus
when z0 is a pole, so is Mxz0, where Mx is either

/I 1\ /I 0\

(o i) or d i>
Applying (2.2) once more we find that M2MiZ0 is a pole, where again M2 is either

/ I 1\ /I 0\
(o i) or ii i>

We continue in this fashion to find after k steps that MkMk^ ... MiZ0 is a pole of q(z),

0>

where each M, is either

( o ! ) - G
But since both matrices have trace 2 and nonnegative entries, any product of them has
nonnegative entries and trace >2, that is, such a product represents either a parabolic or a
hyperbolic transformation. (To illustrate the point, observe that for k = 2 the matrices that
arise are

\0 l) ' ll 2J' \1 1/' \2 l) ' \1 3J' V2 3/' \3 2/' \3 1/7

Since q is rational it has only finitely many poles; hence there exist k, feZ,
with MkMk-x... Mxz0 = MfMf^ ... M1z0, which is to say that z'o = Me... Mxz0 is a fixed
point of Mk ... Mf+1. Putting Mk ... Me+l = (" %), we have a,d>0,b,c^0 and ad-bc =
1. Then, z'0 = (az'0 + b)l(cz'0 + d), or

2c

But (d + a ) 2 - 4 s 0 , so either z'oeQ or ZoeQ(Vn) for some squarefree neZ + . But z'oeQ
implies zQeQ, a contradiction to our earlier assumption. Thus z'oeQ(\fn) and conse-
quently zo = (Me... M.r'z'o e Q(yfn).
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188 MARVIN I. KNOPP

(b). Now assume z o eQ and z o ^0 . If z o <0 then by (2.1a) - l / z o > 0 is again a
rational pole of q(z). Thus we may assume from the outset that zo>0 and under this
assumption the procedure of (a) shows once again that z'0 = Mf.. . MJZQ (^eZ+) has the
form

, a d ± s / { ( d + a ) 4 }
z'0 = , a, deZ .

AC

But z0e Q implies z'o e Q, so that (d + a)2 — 4 is a square and thus a = d = 1. It follows that
Zo = 0, a contradiction to z'0 = Mf.. .M1zo>0. The proof is complete.

We strengthen Theorem l(b) with

THEOREM 2. If the poles of q(z) lie in Q+ then

fbo(l-z-2k) if fc>l

-1 if k = l (2.3)

i/ k < 0 ,

where b0, ̂  are complex numbers and pk(z) is a polynomial in z of degree at most —2k.

Proof, (i). The case fc>0. By Theorem 1(5) we may write

+ b0 + b1z+ ... +bmzm, (2.4)

with €, m>0. Applying (2.1a) and comparing like terms, we find that € = m + 2k. We
insert the expression (2.4) into (2.2) and compare the principal part at °° on the two sides.
This yields

. . . +bmzm,

so that *>! = b2 = . . . = bm = 0, £ = 2k and

. (2.5)
By (2.1a) we find

a2lc-a2k_1z-1+ . . . +(-l)'a2lc_J.z
H+ . . . +boz~2k = -a 2 f c z - 2 k -a 2 k _ 1 z- 2 k + 1 - . . . -b0,

so that

bo = -a2(c,a21cH=(-iy+1a1 for l < / s k . (2.6)

In particular, afc = (-l)k+1afc, so afc =0 if k is even.
Application of (2.1b) to (2.5) leads to

a2fc - a2k^(z -1 )" 1 + . . . +(-l)'a2k-,-(z -1)" ' + . . . + bo(z - l)~2k +

+ a2k(z - l)-2 k + a2k_1z-1(z -1 ) 1 " 2 ' + . . . + OjZ-tiz -1)'-2" + . . . + boz-2k (2.7)

+ a2kz~2k + . . . + a^z~l + b0 = 0.

In (2.7) the coefficient of z~2k+1 is a2k_1-a1, so that a2k_i = a b a fact already contained
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in (2.6). Considering the coefficient of z~2k+2, we find that a2k-2~**i + a2 = 0. But by (2.6)
<*2k-2 + «2 - 0» so that dx = a2fc_i = 0. The coefficient of z~

2k+3 in (2.7) is a2(c_3- Oi + 2 a 2 -
a3 = a2fc-3 + 2 a 2 - a 3 = 0. But (2.6) implies a2fc_3 = a3, from which follow a2 = 0 and
«2k-2 = 0. Continuing in this manner we conclude that aj = a2k_j=0 for l^j<k. Thus
q(z) has the form

U 0 ( l - z " 2 k ) , if k is even
j b o ( l - z - 2 k ) + akz- \ if k is odd.

Suppose k is odd. It remains to show that in the second form, ak j= 0 is possible only
for k = 1. Since bo(l~z~2lt) satisfies (2.1) it is sufficient to prove that z~k satisfies (2.1) if
and only if fc = l. But z~k satisfies (2.1a) for any fceZ, so we consider (2.1b). With
q(z) = z"k, we have

and this is 0 only when k = 1.
(ii) The case fc<0. In this instance we apply the observation of G. Bol [2] that

for r eZ , r > 0 and ad-be = 1, whenever the derivatives in question exist. Let q(z) be a
rational period function of weight 2k, fc<0. Differentiating the relations in (2.1) -2fc + l
times and applying (2.8) with r = -2k, we find that q(~2k+1)(z) is a rational period function
of weight -2fc + 2>0. By part (i) of the proof, q(~2k+1)(z) = bo(l-z2 k"2) , since the term
bxz~l does not occur as the derivative of a rational function. Integrating -2k +1 times, we
conclude that q(z) has the form bo(z~2k+1 + z~1) + Pk(2). w i t r i Pk(2) a polynomial of
degree ^— 2k. The proof is complete.

REMARKS, (i) The period functions q described in Theorem 3 actually occur. When
k = 0, however, such a q(z) = 0, a fact which becomes evident upon application of (2.1).
For any k eZ, bo(l-z~2 k) may be regarded as the "trivial" rational period function, since
it arises with F(z) = b0 in (1.1).

(ii) If E2k(z) is the Eisenstein series of weight 2fc on (1), then E2(z) has the rational
period function biz"1, as remarked earlier, while for fc>l E2k(z) is a genuine modular
form (that is, the period function is 0). If, however, I2k(z) is a (2fc-l)-fold integral of
E2k{z), so normalized that

then H2k(z) = (2k - l)!J2fc(z)- z2k~x is a modular integral (in the sense of (1.1)) of weight
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190 MARVIN I. KNOPP

-2k+ 2 with period function of the form

2 - i + 2 » - i + ^ ( z ) > (2.9)

with ifa.(z) a polynomial of degree <2fc-2. With k fixed, the difference of two period
functions of the form (2.9) is a period polynomial (of degree s2fc-2) of the type first
studied by Eichler in his classic paper [4]. One can show from (2.1) in an elementary way
that for l< fc<5 such a polynomial must have the trivial form bo(z2 k~2-l).

(iii) In recent correspondence Dr. Parson reports that for low negative weights she
has determined the general rational period functions for F(l), with poles in Q+. They are
(cf. Theorem 2):

weight - 2 ;

l), weight - 4 ;

* weight - 6 ;
- l ) , weight - 8 ;

8 6 z 2 ) , weight-10.

By the observation made in Remark (ii) above, h2fc(z) is the period function of H2k(z) +
constant, so long as l ^ f c ^ 5 . The situation is more complex for hx2(z), however. In [7]
we showed that

q_lo(z) = 2 (z l o +5z 8 -15z 6 +15z 4 -5z 2 - l )

is an Eichler period polynomial of weight -10 for F(l). (By the principal result of [3],
q_10(z) cannot be the period polynomial of a cusp form.) From the expression for h12(z)
and the form of q_10(z) it follows that

is again a rational period function of weight -10 for F(l), very likely the one correspond-
ing to H12(z). Note that q_iO(z) is obtained from the last two terms of hi2(z), with c0 = 2
and c2 = 5.

3. Mellin transforms. In this section we deal with entire modular integrals only, as
these are the ones to which it is possible to associate a Dirichlet series by means of the
Mellin transform. Thus we assume from now on that {a,, | n = 0,1,2,3, . . . ,} is a sequence
of complex numbers satisfying (1.4), that is, a,, = 0(ny), n —» + °°, for some 7 >0. We shall

consider the power series F(z) = £ ane
2'"inz and the Dirichlet series

n=O

(3.1)
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related to it by the Mellin transform:

* F (s )= f {F(iy)-ao}ys-1dy. (3.2)

(Here F(s) is the gamma-function.) Since (1.3) and (1.4) hold it is possible to carry out
termwise integration in (3.2) to obtain the series (3.1), which of necessity converges in
some half-plane.

THEOREM 3. Suppose F(z) is an entire modular integral of weight 2k such that its
associated rational period function has poles only in Q+ (thus at 0 and o°, by Theorem
l(b).). Then

(a) 4>(s) = <l>F(s) has an analytic continuation to the entire s-plane, except for possible
simple poles at

s = 0 and s = 2k, when k > 1;

s = 0,1 and 2, when k = 1;

s = 2fc-l,2fc, . . . 0 , 1 , when fc<0.

(b) In every case

k (3.3)

and <I>(s) is bounded in each "truncated strip" of the form a 1 ^ R e s < a 2 , | Imf |sfo>0,
uniformly in a1 and cr2.

REMARK. Here, the case k = 1 and k ^ 0 come into consideration, whereas nontrivial
entire modular forms of weight 2fc exist only when k > 1. Note that when k <0, the poles
of <I>F(s) are not quite confined to the "critical strip" 2fc<<r<0, but may occur at
s = 2fc - 1 and s = 1 as well.

Proof. Suppose F(z) is an entire modular integral of weight 2k with rational period
function q(z) and the poles of q(z) lie in Q+. Thus we have

(0 F(z)= X o^2™2, zeUt,
n=0

(ii) an = O(ny), 7>0 , as n ^ +«, (3.4)

(iii) z-2kF(
Let 4>F(s) = <£(s) be denned by (3.2), the integral converging for a = Re s sufficiently large
by virtue of (1.3) and (3.4i).

For large a, we may then write

£ cUy*"1 dy.
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192 MARVIN I. KNOPP

Rewrite the second integral by making use of (1.1):

f {F(jy)-ao}ys-1dy=f {F(i/y)-ao}y-s-1 dy
Jo Ji

= (-l)k f
Ji

) } y y
s

iy)~ ao}y-s"1+2fc dy +(- l ) f ca0 | y~s~1+2k dy

= (-l)k [{F(iy)-ao}y-1+2k dy

Hence,

where

D!(s)= | {F(iy)-a(}y'-idy, D2(s)=^ {F(iy)-ao}y-s'1+2k dy, and

= f q(i
Ji

E(s)=f q(iy)y-s-1+2kdy. (3.5)
J

From (3.4i) it follows that D^s) and D2(s) are entire functions of s and from their form it
is evident that

D1(2fc-s) = D2(s), D2(2k-s) = D1(s). (3.6)

By Theorem l(b), q(z) has the form q(z) = £ otnz
tl, and it follows that

n=-K

E(s)= V a j
= 2 ^

Z/C tl

so long as Re s > 2k+ N. For more explicit information about E(s) we consider the three
cases fc>l, fc = l, k<0 .

(i) Let k > l . By Theorem 2, q(z) = bo(l-z~2k)> so that
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Thus,

[̂ ^ }̂ (3.7)
and <I>(s) has been extended analytically to the entire s-plane, with possible simple poles
at s = 0, s = 2fc. Furthermore,

- s 2fc-s

= D2(s) + ( - l f D [ ^

by (3.6) and (3.7).
(ii) Suppose fc = l. By Theorem 2, q(z)-bo(l-z~2) + blz~l, so that

E(s) = j " q(iy)y-— dy = b o ( - L + i ) - hl -L..

Then we have

) 0 ) 1— 2 s I \s — 2 s/ s —

and the right hand side is analytic in the s-plane, with s = 0,1 and 2 deleted. Conse-
quently,

b0)(-i+-^-) + b 1 - L -
\ s 2 —si 1-s

= D2(s) -D1(s) + (a0 + b0) ( j + ^ ) - bx - ^

by (3.6).
(iii) Let fc<0. Theorem 2 implies that q(z) = bo(z

 l + z 2lc+1)+ X cnz
n, with complex

cn. Thus,

(3.8)

while the functional equation z 2fcq(-l/z) + q(z) = 0 implies further that

c_n_2fc = ( - i r + 1 c m 0<n<-2fc, (3.9)
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194 MARVIN I. KNOPP

as in the proof of (2.6). We have in this case

a function meromorphic in the entire s-plane, with the obvious simple poles. By (3.10)
and (3.6),

- £ b o k ^ - ^ T } + ( - 1 ) k + 1 ~E c"(0"7^- (3"n)
I.J £*rs, 1 X o X J n = 0

But,
-2k 1 -2k I

(_i)fc+i V c (,-)"_!_ = (_i)k+i y c 2fc(i)""~2k -
s-2k-n

n=o s-2k-n

by (3.9). If we use this expression in (3.11) and compare the result with (3.10) we find that

as was to be proved.
The boundedness statement follows easily from the representation

<D(s) = j {F^-aoly^dy + t - iyJ {F(jy)-ao}y-s-1+2fcdy

if we also take into account the expression

E(s)= t cn(i)
n(s-2k-n)-\

n=-K

This completes the proof.

A converse of Theorem 3 is

THEOREM 4. Suppose {a,,} is a sequence of complex numbers satisfying (1.4), so that
oo

the Dirichlet series X ««« s converges for a = Re s sufficiently large. Suppose also that
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= (2iT)~sr(s) £ Onn~s can be extended to a function meromorphic in the entire

s-plane, holomorphic except possibly for simple poles at the rational integers and bounded in
every truncated strip of the form o -^Resscr 2 , |Im s|£:t0>0. If in addition 3>(s) satisfies
the functional equation (3.3) for some integer k, then the power series

(a0 an arbitrary complex number) is an entire modular integral of weight 2k, with rational
period function having poles only in Q+.

REMARKS, (i) By Theorem l(b) the poles of the rational period function q(z) of
FQ,(Z) are restricted to 0 and °°.

oo

(ii) Since £ a,,n~s converges in some right half-plane and 4>(2k-s) = (-l)k4>(s),
n = l

<i>(s) has at worst finitely many simple poles at rational integer points. Furthermore,
because F<t,(z) is a modular integral, its period function has the form (2.3). Theorem 3
then shows that this in turn restricts the poles of 3>(s) to those described in Theorem 3(a).
This reasoning yields

COROLLARY 5. Under the restrictions imposed upon <&(s) in Theorem 4, 4>(s) Has at
worst simple poles at s = 0, 2k, when fc > 1; s = 0,1, 2, when k = 1; s = 2fc - 1 , 2 k , . . . , 0,1,
when fc<0.

(The functional equation 3>(2fc-s) = (-l)fc<I>(s), which is one of the restrictions
imposed upon <I>(s) here, entails certain obvious relationships among the residues at the
poles of 4>(s). These are virtually the same as the relations (3.9).)

Proof of Theorem 4. For the proof we follow the excellent exposition of Berndt
[1, pp. 9-12]. As noted earlier, the assumptions of the theorem imply directly that <I>(s)
has at most finitely many simple poles at rational integral values of s. By the integral
formula

T(s)x-Sds, (x,d>0)= J_ f
2m Jd_io

and absolute convergence of the Dirichlet series X a^n s for or = Re s sufficiently large,
n = l

it follows that for large positive d, F(z) = F<t,(z) has a representation as the inverse Mellin
transform of 4>(s):

^ \ +" ds. (3.12)

For convenience we consider the cases fcs:0, fc<0 separately. Assume first that
k >0 ; it follows that (3.12) holds as well with d replaced by d + 2k. We may suppose that
d is so large that all of the poles of 3>(s) lie between -d and d. Following Hecke, we move
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the line of integration in (3.12) to Re s = -d. This is accomplished by integrating on the
boundary of a rectangle with vertices ±d±iT, T>0 , applying the residue theorem and
assuming (as we shall show later) that the integrals on the horizontal sides tend to 0 as
T —» oo. We obtain

iy)-ao = — <D(s)y-sds+ £ c^y"", (3.13)
zm j_d_i,»

where an is the residue of <&(s) at s = n.
Apply the functional equation (3.3):

\fe r-d+i

— *(s)y-sds = 1 - ^ - <t>(2k-s)y-sds=\--^ \ <D(s)ys~2kds

= (-Dlcy-2k{F(«7y)-a0},

since (3.12) holds with d replaced by d + 2k. From (3.13) we have
[d]

I(iy)-ao = (-l)fcy-2fcF07y)-ao(-l)fcy-2fc+ I
n=-[d]

that is,

z-2kF(-l/z) = F(z) + ao(z~2k -1) - £ o,,(i)"2-" (3.14)
n

holds for z = iy, y>0. By analytic continuation (3.14) holds for all z in $?. Since the
power series representation

shows that F(z) is holomorphic in 9if, it follows that F(z) is an entire modular integral of
weight 2k with rational period function having poles only at 0 and °°.

When k < 0 the procedure is precisely the same, except we choose d > 0 at the outset
so large that, once again, all of the poles of 3>(s) lie between -d and d and, in addition,
the representation (3.12) holds with d replaced by d + 2k. It follows that (3.12) itself holds
(since d>d + 2k) and we may proceed as before to derive (3.14).

It remains only to verify that the integrals

J'-d+iT /-d-iT

<&(s)y~s ds and $(s)y~s ds
d+iT J-d-iT

have limit 0 as T —* ». By assumption, 3>(s) is bounded in the truncated strip

|Res|<d, | Ims |>to>0, (3.15)

but this by itself does not quite suffice. However, on the lines Re s = d and Re s = d + 2k
CO

the Dirichlet series <f>(s) = £ 0^"* is bounded, by the absolute convergence (uniform in
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Ims). Furthermore, since </>(s) = (27r)sr(s)""14>(s), Stirling's formula

|r(er+iO|~(2ir)1/2 | t r i / 2e-~" l / 2 , |t| -* «>,

which holds uniformly in a fixed interval o^ ^ a ^ <r2, and the boundedness of <I>(s) imply
that <t>(s) = O(\t\ll2~'re~'"m), \t\ -» <», uniformly in the truncated strip (3.15). Since

<fr(s) = (-Dfc(21r)2s-2fcr(2fc - s)<M2fc - s)/r(s),
we apply Stirling's formula to obtain <p(s) = O(l|f|2fc+2d), \t\ —* °°, on the line Re s = —d.
The Phragmen-Lindelof principle for the truncated vertical strip [10, p. 180] now implies
that <£(s) = O(|(|K), |f| —* oo, for some K>0, uniformly in the two half-strips defined by
(3.15).

A final application of Stirling's formula implies that

= O(|T|d-1/2+Ke-' |T| /2), \T\ -» oo,

uniformly on the intervals [-d + iT,d + iT] and [-d - iT, d - iT]. Hence the integrals
along these two paths approach 0 as \T\ —» oo. The proof of Theorem 4 is complete.
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