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Abstract
Let Γ be a finite group, let 𝜃 be an involution of Γ and let 𝜌 be an irreducible complex representation of Γ. We
bound dim𝜌Γ

𝜃 in terms of the smallest dimension of a faithful F𝑝-representation of Γ/Rad𝑝 (Γ), where p is any
odd prime and Rad𝑝 (Γ) is the maximal normal p-subgroup of Γ.

This implies, in particular, that if G is a group scheme over Z and 𝜃 is an involution of G, then the multiplicity
of any irreducible representation in 𝐶∞

(
G(Z𝑝)/G𝜃 (Z𝑝)

)
is bounded, uniformly in p.
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1. Introduction

The main result of this paper is the following:

Theorem A see §10.1 below. There is an increasing function 𝐶fin : N→ N such that, for any

◦ Odd prime p,
◦ Positive integer d,
◦ Finite group Γ,
◦ Normal p-subgroup 𝑁 � Γ,
◦ Embedding Γ/𝑁 ↩→ 𝐺𝐿𝑑 (F𝑝),
◦ Involution 𝜃 of Γ,
◦ Irreducible representation 𝜌 of Γ,

the space 𝜌Γ
𝜃 of Γ𝜃 -invariant vectors of 𝜌 has dimension at most 𝐶fin (𝑑).

As a corollary, we deduce the following

Corollary B (see §10.1 below). For every integer d, there is an integer Λ such that, if

◦ p is an odd prime,
◦ F is a purely ramified extension of Q𝑝 ,
◦ G is a connected linear algebraic group over F whose reductive quotient has dimension at most d,
◦ 𝐾 ⊂ G(𝐹) is a compact subgroup,
◦ 𝜃 is an involution of K,
◦ 𝜌 is an irreducible representation of K,

then

dim
(
𝜌𝐾

𝜃
)
≤ Λ.

Remark 1.0.1. An important special case of Theorem A is where Γ = G(Z/𝑝𝑛), when G is a semisimple
group scheme and 𝜃 is the restriction of an algebraic involution. The uniformity in the involution 𝜃 is
not essential. The case 𝑛 = 1 (and p varies) was proved in [AA19, She]. The case when p is fixed and n
varies is much easier than the general result and can be directly deduced from Corollary 5.0.5.

1.1. Background and motivation

Let G be a group and let X be a transitive G-space. A basic problem of representation theory is to
compute the multiplicities with which irreducible representations of G appear in the space of functions
on X. This problem can be studied in several settings. In each setting, one considers a different kind of
function space. For an example in the algebraic setting, if G is a connected reductive algebraic group
over C and X is a spherical G-variety (this means that the Borel subgroup of G has an open orbit in X),
then C[𝑋] is multiplicity-free as a G-representation.
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Multiplicities for spherical G-varieties are of great interest in other settings. In non-algebraic settings,
these multiplicities may be greater than one. One has the following conjecture:

Conjecture C. Let G be a reductive group scheme over Z and let X be a G-scheme. Assume that X(C)

is a spherical G(C)-space. Then there is an integer C such that, if F is a local field of large enough
characteristic and 𝜌 is a smooth, admissible and irreducible representation G(𝐹), then

dimHom(𝜌, 𝐶∞(X(𝐹))) < 𝐶.

One can study variants of this conjecture in various levels.

◦ The most basic level is when both F and 𝜌 are fixed. This case was mostly done. See [vdB87, Del10,
SV17].

◦ The next level is when F is fixed and C is required to be independent of 𝜌. The main known results
in this level are for the archimedian case. See [vdB87, KO13, KS16, AGM16].

◦ The last level is the full conjecture where both F and 𝜌 vary. Here, the only known cases are where
the spherical spaces are multiplicity free (i.e., Gelfand pairs) and related situations. Although there
are many known Gelfand pairs (see, for example, [GK75, Sha74, vD86, Fli91, BvD94, Nie06, Yak05,
AGRS10, AGS08, OS08, AG09b, AG09a, AG10, AAG12, Zha10, JSZ10, JSZ11, AS12, AGJ09,
AG12, SZ12, Aiz13, CS15, Car, Rub], and the reference therein), general spherical spaces are not
multiplicity free.

Our motivation for Corollary B is the following strategy for proving Conjecture C:

1. Prove a variant of Conjecture C when F ranges over the collection of finite fields.
2. Deduce from (1) a variant of Conjecture C when F ranges over the collection of rings of integers in

local fields.
3. Deduce Conjecture C from (2).

Step (1) was done in [AA19, She]. Corollary B implies Step (2) under certain conditions:

Corollary D (see §10.1 below). Let G be a reductive group scheme over Z, let 𝜃 be an involution of
G and let X = G/G𝜃 be the corresponding symmetric space. Then there is an integer C such that, for
every odd prime p and every irreducible representation 𝜌 of G(Z𝑝),

dimHom(𝜌, 𝐶∞(X(Z𝑝))) ≤ 𝐶.

Remark 1.1.1. Originally, we were interested only in Corollary D. However, since our argument is
inductive, it turns out to be easier to prove the more general Theorem A.

1.2. The Larsen–Pink theorem

A central ingredient in the proof of Theorem A is a theorem of [LP11] roughly stating that finite
subgroups of GL𝑑 (F𝑝) are close to groups of F𝑝-points of connected algebraic subgroups of GL𝑑 . We
use the Larsen–Pink theorem in several ways:

◦ The Larsen–Pink theorem attaches an algebraic group of GL𝑛 to finite subgroups of GL𝑛 (F𝑝), and we
prove Theorem A by induction on the dimension on this algebraic group. In particular, the Larsen–
Pink theorem implies that the lengths of decreasing chains of perfect subgroups of GL𝑑 (F𝑝) are
bounded when we vary p.
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◦ It allows us to reduce statements about finite groups with no normal p-subgroups to finite groups of
Lie type. We use this to prove the main theorem for groups with trivial p-radical (see §8) and to get
bounds on various cohomology groups in §6 and §7.

We discuss the Larsen–Pink theorem and its applications in §4.

1.3. Sketch of the proof of Theorem A

To prove Theorem A, we analyze the extreme cases 𝑁 = Γ and 𝑁 = 1, and we use Clifford’s theory to
deduce the general cases from them. The main difficulty is to control the multiplicities when describing
a representation using Clifford’s theory.

We now sketch the proof of Theorem A. We first analyze the case of groups with odd order. The
analysis is based on the simple observation that every element in such a group has a unique square root.
We prove a Gelfand property (i.e., multiplicity one property) for symmetric pairs of such groups. In
addition, we prove a necessary condition (related to conjectures of Lapid and Prasad [Gla18, Pra]) for
a representation of a group G of odd order to be distinguished with respect to a symmetric subgroup
of G. Finally, we show that the first cohomology of 𝑆2 with coefficients in groups of odd order vanishes.
We treat this case in §5.

Next, we analyze the case of a group with a trivial p-radical. Here, we prove a twisted version of the
main theorem. Using the Larsen-Pink theorem, we reduce this case to the case of finite groups of Lie
type, where we apply a similar reasoning as in [AA19, She]. We treat this case in §8 and Appendix A.

For the general case, we introduce the following invariant of a group Γ: rd𝑝 (Γ) is the smallest possible
dimension of a connected reductive group G such that Γ/Rad𝑝 (Γ) ⊆ G(F𝑝). Since, in the notations of
Theorem A, rd𝑝 (Γ) ≤ 𝑑2, it is enough to bound dim𝜌Γ

𝜃 in terms of rd𝑝 (Γ). This is done by induction
on rd𝑝 (Γ). In the rest of the section, we describe the induction step.

Clifford theory implies that there is a group Δ satisfying Rad𝑝 (Γ) < Δ < Γ and an irreducible
representation 𝜎 of Δ such that

◦ 𝜌 = 𝐼𝑛𝑑ΓΔ (𝜎).
◦ 𝜎 |Rad𝑝 (Γ) is isotypic.

By Mackey’s formula, the multiplicity dim𝜌Γ
𝜃 is a sum of multiplicities of 𝜎 in various transitive

Δ-sets. A priori, the number of transitive Δ-sets that might contribute to dim𝜌Γ
𝜃 is |Γ𝜃\Γ/Δ |, which

is unbounded. We use the Lapid–Prasad criterion to bound the number of subgroups of Δ whose
contribution is nonzero by |𝐻1 (𝑆2,Δ) |, which we can bound.

To bound the individual contribution of a transitive Δ-set, we analyze two possibilities:

◦ Rad𝑝 (Δ) = Rad𝑝 (Γ).
In this case, the bound on 𝐻2(Δ/Rad𝑝 (Δ), 𝑙𝜇.. 𝑝∞) implies that, for large p, the representation 𝜎 is
a tensor product of a representation 𝜎1 that is trivial on Rad𝑝 (Δ) and a representation 𝜎2 that is
irreducible when restricted to Rad𝑝 (Δ). The multiplicity of 𝜎2 is at most one since Rad𝑝 (Δ) has
odd order. The bound on the multiplicity 𝜎1 follows from the analysis of the case with trivial p-
radical mentioned above. At this point of the argument, we need to bound twisted multiplicities of
representations of Δ/Rad𝑝 (Δ) rather than usual multiplicities. The reason is that the one-dimensional
multiplicity space obtained for Rad𝑝 (Δ) manifests itself as a twist here.

◦ Rad𝑝 (Δ) ≠ Rad𝑝 (Γ).
In this case, the Larsen–Pink Theorem implies that there is subgroup of bounded index Δ◦ � Δ such
that rd(Δ◦) < rd(Γ). We deduce the required bound from the induction assumption.

1.4. Complication related to the action of 𝑆2

The sketch above overlooks one technical point. Namely, although the Larsen–Pink theorem was proved
for groups, we need it for symmetric pairs or, equivalently, in the 𝑆2-equivariant setting. One way around
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this difficulty is to embed Γ into Γ × Γ using the graph of 𝜃. Under this embedding, 𝜃 becomes the
flip (𝑥, 𝑦) ↦→ (𝑦, 𝑥), which clearly extends to the ambient algebraic group. This way is implemented
in Lemma 2.2.3 below. The drawback of this method is that it doubles the dimension of the ambient
algebraic group, so it is not suitable for induction. So, in some parts of the argument, we use a different
method: We use an iterative procedure, based on the Larsen-Pink Theorem that allows us to replace
(without increasing the value of rd𝑝) a subgroup of bounded index with a smaller 𝑆2-invariant subgroup,
also of bounded index. We implement this procedure in Lemma 4.1.1 below. This procedure is very
costly in terms of the bounds on the indexes, and it is one of the main reasons why our bound on the
multiplicities is very large.

1.5. Limitation of our result

◦ Our bounds on the multiplicities are given in terms of an embedding into a group of F𝑝-points rather
than a group of F𝑝-points. Therefore, we do not bound the multiplicity of symmetric pairs with
𝐺 = G(𝑂𝐹 ) when F ranges over all extensions of a given local non-archimedean field (of course, if
the degree [𝑂𝐹/𝔪𝐹 : F𝑝] is fixed, we do get uniform bounds). The reason is that, unlike G(F𝑝), the
group G(F𝑝) has decreasing chains of perfect subgroups of arbitrary length. For this reason, we do
not conjecture that Theorem A holds if we replace F𝑝 with F𝑝 .

◦ The bounds on the multiplicities we obtain are extremely large. We did not try to optimize the bounds
since our argument cannot prove any reasonable bounds.

◦ In the general case, we only bound usual multiplicities and not twisted ones. The reason is that our
analysis of odd order groups does not work well in the twisted case. We do not expect any problems
with the twisted Gelfand property, and we also think that it will be easy to obtain a criterion for
twisted distinction. However, this criterion will be different from the untwisted, so the number of
symmetric subgroups of Δ contributing to the multiplicity will not be the size of any homology but
rather some other number that we do not know how to bound. It would be interesting to resolve the
twisted case, especially since we use bounds on twisted multiplicities in the case of trivial p-radical
in order to bound the usual multiplicities in the general case.

1.6. Structure of the paper

In §2, we fix notations and formulate our main result. See Theorem 2.3.1. In particular, we introduce an
invariant rd𝑝 to measure ‘dimension’ of a finite group. See Definition 2.2.1.

In §3, we recall some group theoretic facts.
In §4, we quote the Larsen–Pink Theorem and deduce two corollaries that we will use in the paper:

Corollary 4.0.13 and Corollary 4.1.2.
In §5, we treat the case of groups of odd order. In this case, we prove a stronger form of the main

result along with some other results for this special case. See Lemma 5.0.2 and Corollary 5.0.5.
In §6, we bound the size of the first cohomology group of 𝑆2 with coefficients in a finite group Γ in

terms of rd𝑝 (Γ). See Corollary 6.0.6.
In §7, we prove a vanishing result for 𝐻2 (Γ,Z/𝑝𝑛), where Γ is a finite group, assuming p is large

enough with respect to rd𝑝 (Γ). See Proposition 7.0.2.
In §8, we prove a twisted version of the main result for the case of groups with trivial p-radical. See

Corollary 8.0.5.
In §9, we recall some basic results of Clifford theory which are needed in our proof.
In §10, we prove our main result, Theorem 2.3.1. In §§10.1, we deduce Theorem A and Corollary B

from Theorem 2.3.1.
In Appendix A, we prove a twisted version of the main result for finite groups of Lie type. The

argument is an adaptation (to the twisted case) of [She].
In Appendix B, we construct a family of symmetric pairs of reductive groups that includes all

symmetric pairs of reductive groups of a given dimension over all finite fields; see Lemma 3.2.1. We use
this construction in §4 in order to express the bounds given by the Larsen–Pink theorem in terms of rd𝑝 .
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2. Conventions, notations and reformulation of the main result

2.1. Conventions

◦ By a finite symmetric pair, we will mean a pair (Γ, 𝜃), where Γ is a finite group and 𝜃 is a (possibly
trivial) involution of Γ. For a symmetric pair (Γ, 𝜃), we get a symmetric subgroup Γ𝜃 ⊂ Γ, a
symmetric space Γ/Γ𝜃 and an action of 𝑆2 on Γ.

◦ For a group G, we denote the derived subgroup of G by 𝐺 ′ and the center of G by 𝑍 (𝐺). If G is an
algebraic group, we denote the connected component of identity in G by G◦.

◦ All schemes considered in this paper are assumed to be of finite type over Noetherian base schemes.
◦ By a simple algebraic group, we mean a connected algebraic group whose Lie algebra is simple.
◦ Throughout the paper, we will formulate and prove several lemmas that assert the existence of

increasing functions N → N satisfying certain conditions. Each of those lemmas will give the
corresponding function a distinct notation. It is implied that, after each such lemma, we fix such a
function and use that notation to refer to it. The choices of such functions are not unique, but the only
effect of a different choice is different bounds. Since we just claim the existence of bounds, this is
irrelevant to us.

◦ We will usually use capital boldface letters to denote varieties, capital calligraphic letters to denote
schemes, and capital gothic letters to denote sheaves.

2.2. Notations

We will use the following invariants of a finite group.

Definition 2.2.1. Let Γ be a finite group and p be a prime.

1. Define the p-reductivity dimension rd𝑝 (Γ) of Γ to be the minimal n such that there exist a connected
n-dimensional reductive algebraic group G and an embedding Γ ↩→ G(F𝑝).

2. Define the reduced p-reductivity dimension rd𝑝 (Γ) by

rd𝑝 (Γ) := rd𝑝 (Γ/Rad𝑝 (Γ)),

where Rad𝑝 (Γ) is the maximal normal p-subgroup of Γ.

Definition 2.2.2. Let (Γ, 𝜃) be a finite symmetric pair and let p be a prime.

1. Define the p-reductivity dimension rd𝑝 (Γ, 𝜃) of (Γ, 𝜃) to be the minimal n such that there exist an
n-dimensional reductive algebraic group G, an involution t of G and an embedding 𝑖 : Γ → G(F𝑝)

such that 𝑖(𝜃 (𝛾)) = 𝑡 (𝑖(𝛾)) for all 𝛾 ∈ Γ.
2. Define the reduced p-reductivity dimension rd𝑝 (Γ, 𝜃) by

rd𝑝 (Γ, 𝜃) := rd𝑝 (Γ/Rad𝑝 (Γ), 𝜃),

where 𝜃 is the involution of Γ/Rad𝑝 (Γ) induced by 𝜃.

Lemma 2.2.3. For any symmetric pair (Γ, 𝜃) and every p, rd𝑝 (Γ, 𝜃) ≤ 2rd𝑝 (Γ).

Proof. Let 𝑖 : Γ ↩→ G(F𝑝) with G reductive and dim G = rd𝑝 (Γ). Let H = G × G, let 𝑡 : H → H be
the flip 𝜃 (𝑥, 𝑦) = (𝑦, 𝑥) and let 𝑗 : Γ ↩→ H(F𝑝) be 𝑗 (𝛾) = (𝑖(𝛾), 𝑖(𝜃 (𝛾))). The triple (H, 𝑡, 𝑗) gives an
equivariant embedding as required. �

Next, we introduce some notations relating to multiplicities.

Notation 2.2.4. Let Γ be a finite group.

◦ We denote the set of (isomorphism classes of) complex irreducible representations of Γ by Irr(Γ).
◦ We denote the set of (one dimensional) characters of Γ by Γ̂.
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◦ Suppose that 𝜃 is an involution of Γ. Denote

𝜈(Γ, 𝜃) = max
𝜌∈Irr(Γ)

dim𝜌Γ
𝜃
,

𝜈(Γ) = max
𝜃 involution of Γ

𝜈(Γ, 𝜃),

𝜈′𝑝 (Γ) = max
𝜃 involution of Γ

max
𝜌∈Irr(Γ) such that
𝜌 |Rad𝑝 (Γ) is isotypic

dim𝜌Γ
𝜃
,

𝜇(Γ, 𝜃) = max
𝜌∈Irr(Γ) , 𝜒∈Γ̂𝜃

dim𝜌Γ
𝜃 ,𝜒,

and

𝜇(Γ) = max
𝜃 involution of Γ

𝜇(Γ, 𝜃).

2.3. Reformulation of the main theorem

Using the notations above, Theorem A has the following reformulation:

Theorem 2.3.1 (main). There is an increasing function 𝐶 : N → N such that, for every prime 𝑝 > 2
and every finite group Γ,

𝜈(Γ) < 𝐶 (rd𝑝 (Γ)).

This theorem appears to be slightly weaker then Theorem A. We will deduce Theorem A from it
in §10.1.

3. Preliminaries on finite groups and algebraic groups

In this section, we collect several properties of finite and algebraic groups.

3.1. Finite groups of Lie type

The following theorem is well known:

Theorem 3.1.1. For any finite field F which is not one of F2, F3, F4, F8, F9 and for any connected,
simply-connected, semi-simple algebraic group G defined over F, the following hold:

1. G(𝐹) is generated by its unipotents.
2. 𝐻2(G(𝐹), 𝐴) = 1, for every trivial G(𝐹)-module A.
3. G(𝐹) is perfect.
4. 𝑍 (G(𝐹)) = 𝑍 (G) (𝐹).
5. |𝑍 (G(𝐹)) | ≤ 2dimG.

Remark 3.1.2. Claim (1) follows from [Ste68, Theorem 12.4], so Claim (2) follows from [Ste68, Remark
12.8(b)].

Claims (3) and (4) follow from Claim (1) and [Mar91, Theorem 1.5.6].
By Claim (4), |𝑍 (G(𝐹)) | ≤ |𝑍 (G(𝐹)) |. Since both functions G ↦→ |𝑍 (G(𝐹)) | and G ↦→ 2dimG are

multiplicative, it is enough to prove Claim (5) in the case G is simple. For the classical groups, this is
a simple inspection; for the exceptional groups, use the fact that the size of the center is equal to the
determinant of the Cartan matrix of the Dynkin diagram of G.
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Corollary 3.1.3. Let F be a finite field of characteristic greater than 3, let G be a connected reductive
group over F and let 𝜙 : G̃′ → G′ be the universal cover of the derived subgroup G′. Then 𝜙

(
G̃′(𝐹)

)
=

G(𝐹)′.

Proof. The inclusion 𝜙
(
G̃′(𝐹)

)
⊆ G(𝐹)′ follows from 3.1.1(3). For the other direction, it is enough to

show that a commutator of two elements of G(𝐹) belongs to 𝜙
(
G̃′(𝐹)

)
. Let 𝑔1, 𝑔2 ∈ G(𝐹). Choose

𝑧1, 𝑧2 ∈ 𝑍
(
G(𝐹)

)
such that 𝑔1𝑧1, 𝑔2𝑧2 ∈ G′(𝐹), and choose elements ℎ1, ℎ2 ∈ G̃′(𝐹) such that

𝜙(ℎ1) = 𝑔1𝑧1, 𝜙(ℎ2) = 𝑔2𝑧2. Since 𝜙−1(𝑍 (G′)) = 𝑍
(
G̃′

)
, the element [ℎ1, ℎ2] ∈ G̃′(𝐹) is independent

of the choices of 𝑧𝑖 and ℎ𝑖 and hence is fixed by Gal(𝐹/𝐹). Therefore, [ℎ1, ℎ2] ∈ G̃′(𝐹). Hence,
[𝑔1, 𝑔2] = 𝜙([ℎ1, ℎ2]) ∈ 𝜙

(
G̃′(𝐹)

)
. �

Corollary 3.1.3 and Theorem 3.1.1(3) imply the following:

Corollary 3.1.4. Let F be a finite field of characteristic greater than 3 and let G be a connected reductive
group over F. Then G(𝐹)′ is perfect.

Lemma 3.1.5. Let 𝜙 : G̃ → G be an isogeny of algebraic groups defined over a finite field F𝑞 and let
K be the kernel of 𝜙. Then [

G(F𝑞) : 𝜙
(
G̃(F𝑞)

)]
≤ |K(F𝑞) |.

Proof. From the long exact sequence of Galois cohomologies

K(F𝑞) → G̃(F𝑞) → G(F𝑞) → 𝐻1 (𝐺𝑎𝑙 (F𝑞/F𝑞),K(F𝑞)) → 𝐻1 (𝐺𝑎𝑙 (F𝑞/F𝑞), G̃(F𝑞)),

we get [
G(F𝑞) : 𝜙

(
G̃(F𝑞)

)]
= |𝐾𝑒𝑟 (𝐻1(𝐺𝑎𝑙 (F𝑞/F𝑞), 𝐾 (F𝑞)) → 𝐻1 (𝐺𝑎𝑙 (F𝑞/F𝑞), G̃(F𝑞))) |

≤ |𝐻1 (𝐺𝑎𝑙 (F𝑞/F𝑞), 𝐾 (F𝑞)) | ≤ |𝐾 (F𝑞) |. �

Lemma 3.1.6. For every connected reductive group G defined over a finite field F of characteristic
larger than 3, we have

[G′(𝐹) : G(𝐹)′] < 2dim(G) .

Proof. We can assume that G is semisimple. Let 𝜙 : G̃ → G be the universal cover. By Theorem
3.1.1(5) and Lemma 3.1.5, |𝑐𝑜𝑘𝑒𝑟𝜙| ≤ 2dimG. The result follows from Corollary 3.1.3. �

Lemma 3.1.7. Let Γ𝑖 be simple nonabelian groups and let Γ :=
∏𝑛
𝑖=1 Γ𝑖 . Any normal subgroup Δ of

Γ is of the form Δ =
∏
𝑖∈𝐼 Γ𝑖 for some index set 𝐼 ⊂ {1, . . . , 𝑛}. The same holds when Γ𝑖 are simple

adjoint algebraic groups and Δ is a normal algebraic subgroup of Γ.

Proof. Assume that Γ𝑖 are simple nonabelian groups and identify Γ𝑖 as a subgroup of Γ. Let 𝜋𝑖 : Γ → Γ𝑖
be the projection. If 𝜋𝑖 (Δ) ≠ 1, then [Δ , Γ𝑖] is a nontrivial normal subgroup of Γ𝑖 , so Γ𝑖 = [Δ , Γ𝑖] ⊂ Δ .
Thus, the lemma holds with 𝐼 = {𝑖 | 𝜋𝑖 (Δ) ≠ 1}.

The proof in the case where Γ𝑖 are algebraic is similar. �

Corollary 3.1.8. Let Γ𝑖 and Γ be as in Lemma 3.1.7 and let 𝜃 : Γ → Γ be an automorphism. Then there
is a permutation 𝜎 ∈ 𝑆𝑛 such that 𝜃 (Γ𝑖) = Γ𝜎 (𝑖) .

Corollary 3.1.9. If 𝑝 > 3 is a prime number and G is a connected semisimple adjoint group defined
over F𝑝 , then any automorphism of G(F𝑝)

′ extends to an algebraic automorphism of G.
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For the proof, we will need the following:

Theorem 3.1.10 (easy direction of the classification of finite simple groups; cf. [GLS94, §1] and [Ste60,
3.2]). For any two finite fields 𝐹1, 𝐹2 of characteristic greater than 3 and any two absolutely simple and
adjoint algebraic groups G,H defined over 𝐹1, 𝐹2 respectively,

1. G(𝐹1)
′ is simple.

2. If G(𝐹1)
′ � H(𝐹2)

′, then 𝐹1 � 𝐹2 and G � H.
3. Any isomorphism G(𝐹1)

′ → H(𝐹2)
′ is the composition of 𝜙 : G(𝐹1)

′ → G𝜙 (𝐹2)
′ and

𝜓 : G𝜙 (𝐹2)
′ → H(𝐹2), where 𝜙 : 𝐹1 → 𝐹2 is a field isomorphism, G𝜙 = G ×Spec(𝐹1) Spec(𝐹2) and

𝜓 is the restriction of an isomorphism G𝜙 → H.

Proof of Corollary 3.1.9. Write G =
∏

G𝑖 where G𝑖 are simple (not necessarily absolutely simple)
adjoint groups defined over F𝑝 . For each i, there is a finite field F𝑞𝑖 and an absolutely simple adjoint
group S𝑖 defined over F𝑞𝑖 such that G𝑖 � (S𝑖)F𝑞𝑖 /F𝑝 . We have G(F𝑞)

′ =
∏

S𝑖 (F𝑞𝑖 )′. By Theorem
3.1.10(1), the groups S𝑖 (F𝑞𝑖 )′ are simple. By Corollary 3.1.8, there is a permutation 𝜎 such that
𝜃 (S𝑖 (F𝑞𝑖 )′) = S𝜎 (𝑖) (F𝑞𝜎 (𝑖) )

′. The assertion now follows from Theorem 3.1.10(3). �

3.2. A versal family of reductive groups

In order to prove uniform results for all reductive groups of a bounded dimension over an arbitrary finite
field, we will use the following lemma.

Lemma 3.2.1. For any integer 𝑛 > 0, there exist a scheme S𝑛 of finite type, a smooth group scheme
Φ𝑛 : R𝑛 → S𝑛 and an involution 𝜏𝑛 : R𝑛 → R𝑛 over S𝑛 such that the following hold:

1. For every finite field F and every 𝑠 ∈ S𝑛 (𝐹), the group (R𝑛)𝑠 is connected and reductive.
2. For every connected and reductive group G of dimension at most n over a finite field F and for any

involution t of G, there is 𝑠 ∈ S𝑛 (𝐹) with

(G, 𝑡) � ((R𝑛)𝑠 , (𝜏𝑛)𝑠).

3. For any root datum 𝔛, there is a subscheme S𝔛 ⊂ S𝑛 such that, for any geometric point x of S𝑛, the
(absolute) root datum of (R𝑛)𝑥 is 𝔛 if and only if x factors through S𝔛 . Moreover, S𝔛 is a union of
connected components of S𝑛.

We prove this lemma in Appendix B. The proof does not work for infinite fields, but we do have the
following:

Lemma 3.2.2. There is a function 𝐶𝑙𝑖𝑛 : N → N such that any reductive group G over an arbitrary
field F has a faithful F-representation of dimension at most 𝐶𝑙𝑖𝑛 (dim G).

4. A theorem of Larsen–Pink and its applications

A theorem of Larsen and Pink is central to our proof. In this section, we quote the theorem and extract
two corollaries (Corollaries 4.0.13 and 4.1.2) from it.

Definition 4.0.1. Let S be a scheme and let 𝑓 : G → S be a group scheme over S.

1. A family of subgroups is a pair consisting of a map 𝜋 : T → S and aT -subgroup schemeH ⊂ G×ST .
In this case, we write H �𝜋 G.

2. Suppose that H �𝜋 G, that k is a field, that 𝑠 ∈ S (𝑘) and that Γ ⊂ G𝑠 (𝑘) is a subgroup. We say that
Γ 𝑘-evades H if, for every 𝑡 ∈ 𝜋−1 (𝑠) (𝑘), we have Γ ⊄ H𝑡 (𝑘).

Definition 4.0.2. Suppose Γ,Δ are subgroups of some group. We say that Γ is big in Δ if
[Δ ,Δ] ⊂ Γ ⊂ Δ .
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The following is a restatement of [LP11, Theorem 0.5]:

Theorem 4.0.3. Let S be a scheme and let G → S be a group scheme over S such that every geometric
fiber is connected, simple and adjoint. There is a family of subgroups H �𝜋 G such that, for every
prime p, every F𝑝-point 𝑠 : Spec(F𝑝) → S , and every Γ ⊂ G𝑠 (F𝑝), if Γ F𝑝-evades H, then there is a
Frobenius map Φ : G𝑠 → G𝑠 such that Γ is big in G𝑠 (F𝑝)Φ.

Recall that, for an algebraic group G defined over F𝑝 , a Frobenius map of G is an automorphism
Φ : G → G for which some positive power Φ𝑛 coincides with some a standard Frobenius.

Corollary 4.0.4. Let S be a scheme and let G → S be a group scheme whose geometric fibers are
connected, simple and adjoint. There is a family of subgroups K �𝜏 G such that, for every prime
power q, every 𝑠 ∈ S (F𝑞) and every Γ ⊂ G𝑠 (F𝑞), if Γ F𝑞-evades K, then there is a Frobenius map
Φ : G𝑠 (F𝑞) → G𝑠 (F𝑞) such that Γ is big in G𝑠 (F𝑞)Φ.

For the proof of corollary 4.0.4, we use the following preparations:

Definition 4.0.5. Let S be a scheme. Fix a closed embedding (GL𝑛)S ↩→ A𝑁S .

1. We say that a regular function 𝑓 : (GL𝑛)S → A1 has degree at most 𝛿 if it is the restriction of a
polynomial of degree at most 𝛿 on A𝑁S .

2. We say that the degree of 𝑓 : (GL𝑛)S → A1 is 𝛿 if its degree is at most 𝛿 and not at most 𝛿 − 1.
3. Define the complexity of an S-subgroup scheme L ⊂ (GL𝑛)S to be the minimal m such that the

polynomials of degree at most m in the ideal 𝐼 (L) generate 𝐼 (L).
Lemma 4.0.6. For any two integers n and A, there is an integer B such that, for any field F, if
L ⊂ (GL𝑛)𝐹 is an algebraic subgroup of complexity at most A, then L◦ is of complexity at most B.

Proof. For any integer B, the statement ‘the complexity of the connected component of an algebraic
group L is at most B’ is a first-order statement on the coefficients of the polynomials defining L ⊂

(𝐺𝐿𝑛)𝐹 .
The result follows now by ultraproduct argument. �

Lemma 4.0.7. Let G → S be a group scheme and let H �𝜋 G be a family of subgroups.

1. For any integer 𝑑 ∈ N, there exists a family of subgroups K �𝜏 G such that, for any geometric point
s of S and any d geometric points 𝑠1, . . . , 𝑠𝑑 of 𝜋−1 (𝑠), the group H𝑠1 ∩ · · · ∩H𝑠𝑑 is of the form K𝑡 ,
where t is a point over s (i.e., 𝜏(𝑡) = 𝑠).

2. There exists a family of subgroups P �𝜙 G such that, for any geometric point s of S , any open
subgroup of G𝑠 is of the form P𝑡 , where t is a point over s.

Proof. 1. Let S ′ be the domain of definition of 𝜋 and let GS′ := G ×S S ′. Define

K := H ×GS′ · · · ×GS′ H

and

S ′′ := S ′ ×S · · · ×S′ S ′

to be the d-fold fibered products. The natural maps S ′′ → S and K → S ′′ give a subfamily as
required.

2. After passing to a stratification of S , we can assume that G ⊂ (GL𝑛)S is closed. Fix a closed
embedding (GL𝑛)S ↩→ A𝑁S .

Since G → S is of finite type, there is a bound D on the complexity of all subgroups G𝑠 , where
s ranges over all geometric points of S . By Lemma 4.0.6, there is a bound E on the complexity of
all subgroups (G𝑠)◦, where s ranges over all geometric points of S . Since G → S is of finite type,
there is a constant C such that, for any geometric point s of S , the group G𝑠 has at most C connected
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components. We get that there is a constant M such that for any geometric point 𝑠 ∈ S , any open
subgroup of G𝑠 has complexity at most M.

There is a morphism T → S and a family of subgroups P ⊂ GT → T such that the following
holds: for every prime power q, every 𝑠 ∈ S (F𝑞) and every algebraic subgroup P ⊂ G𝑠 which is
defined over F𝑞 and has complexity at most M, we have that P = P𝑡 , for some 𝑡 ∈ T (F𝑞). By the
arguments above, this family satisfies the requirements. �

Proof of Corollary 4.0.4. It is enough to construct K and prove that the claim holds for all but finitely
many primes. Let 𝜋 : S ′ → S and H → S ′ be as in Theorem 4.0.3 and let 𝑑 = dimS G.

By Lemma 4.0.7, we have a family K �𝜏 G, with 𝜏 : T → S , such that, for any geometric point s
of S and any d geometric points 𝑠1, . . . , 𝑠𝑑 of 𝜋−1 (𝑠), any open subgroup of H𝑠1 ∩ · · · ∩H𝑠𝑑 is of the
form K𝑡 , where t is a point over s (i.e., 𝜏(𝑡) = 𝑠). We show that such a family K satisfies the conclusion
of the Corollary.

Let q be a prime power, 𝑠 ∈ S (F𝑞), and Γ ⊂ G𝑠 (F𝑞) thatF𝑞-evadesK. Let 𝐹 : 𝜋−1 (𝑠) → 𝜋−1 (𝑠) be the
geometric Frobenius. We first show that Γ F𝑞-evadesH. Assuming the contrary, there is 𝑠′ ∈ 𝜋−1 (𝑠) (F𝑞)

such that Γ ⊂ H𝑠′ (F𝑞). For every finite subset 𝐼 ⊂ Z, denote H𝐼 =
⋂
𝑖∈𝐼 H𝐹 𝑖𝑠′ . There are 𝑖1, . . . , 𝑖𝑑

such that dim H{𝑖1 ,...,𝑖𝑑 } = min{dim H𝐼 | 𝐼 ⊂ Z finite}. The group H◦
{𝑖1 ,...,𝑖𝑑 }

is invariant under the
Frobenius, so it is defined over F𝑞 . It follows that the group ΓH◦

{𝑖1 ,...,𝑖𝑑 }
is also defined over F𝑞 . By the

assumption on K, we have ΓH◦
{𝑖1 ,...,𝑖𝑑 }

= K𝑡 , for some 𝑡 ∈ T (F𝑞). This contradicts the assumption that
Γ F𝑞-evades K.

The result now follows from Theorem 4.0.3. �

Proposition 4.0.8. There is a function𝐶𝐿𝑃0 : N→ N such that, if p is a prime number, G is a connected
algebraic group over F𝑝 , 𝑡 : G → G is an involution, and Γ ⊂ G(F𝑝) is t-invariant, then there is a
normal t-invariant subgroup Δ ⊳ Γ of index at most 𝐶𝐿𝑃0 (dim(G)), a connected reductive group H
defined over F𝑝 , an involution s of H and an 𝑆2-equivariant homomorphism 𝜌 : Δ → H(F𝑝) such that:

1. dimH ≤ dimG.
2. ker 𝜌 is a p-group.
3. If dim H = dim G, then ker 𝜌 = 1.
4. 𝜌(Δ) is big in H(F𝑝).

For the proof, we will need some preparations:

Lemma 4.0.9. Let 𝑝 > 3, let H be a connected semi-simple group over F𝑝 and let 1 → 𝐶 → 𝐸 →

H(F𝑝)
′ → 1 be a finite central extension. Then there is a finite central extension E of H and an

embedding 𝐸 ↩→ E(F𝑝) such that the diagram

𝐸 ��� �

��

H(F𝑝)
′

� �

��
E(F𝑝) �� H(F𝑝)

(1)

commutes. In addition,

1. If 𝜎 is an automorphism of H, 𝜏 is an automorphism of E and the map 𝐸 → H(F𝑝)
′ is equivariant,

then there is an automorphism of E such that the map E → H is equivariant.
2. If |𝐶 | is prime to p, then 𝐸 ∩ E◦ is big in E◦(F𝑝).

Proof. Let H̃ be the universal cover of H. By Theorem 3.1.1, the universal central extension (or universal
cover; cf. [Moo68, §1]) of H(F𝑝)

′ is H̃(F𝑝). Denote the kernel of H̃(F𝑝) → H(F𝑝)
′ by A and note that

𝐴 ⊂ 𝑍 (H̃(F𝑝))
3.1.1(4)
= 𝑍 (H̃) (F𝑝).
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The extension 1 → 𝐶 → 𝐸 → H(F𝑝)
′ → 1 corresponds to a homomorphism 𝛼 : 𝐴 → 𝐶. In particular,

𝐸 = H̃(F𝑝) × 𝐶/𝛿(𝐴), where 𝛿(𝑔) = (𝛼(𝑔), 𝑔−1).
Consider A and C as discrete algebraic groups. Let C be the zero-dimensional algebraic group

C =
(
𝐶 × 𝑍 (H̃)

)
/𝛿(𝐴)

and let

E =
(
𝐶 × H̃

)
/𝛿(𝐴).

The short exact sequence 1 → C → E → H → 1 is a central extension, the map
𝐸 =

(
𝐶 × H̃(F𝑝)

)
/𝛿(𝐴) → E(F𝑝) is injective and the diagram (1) commutes.

It remains to prove the additional claims. Claim (1) follows from the construction. For Claim
(2), assume that |𝐶 | is prime to p. By the construction, E◦ = H̃/ker(𝛼). It follows that 𝐸 ∩ E◦ ⊃

H̃(F𝑝)/ker(𝛼), so the map 𝐸 ∩ E◦ → H(F𝑝)
′ is onto. Since the order of 𝑍 (H̃) (F𝑝) is prime to p, the

same is true for the size of C and the size of the kernel of 𝐸 ∩ E◦ → H(F𝑝)
′. Since the kernel of the

surjection 𝐸∩ E◦ → H(F𝑝)
′ is prime to p, we have that the number of p-elements of 𝐸∩E◦ is equal to the

number of p-elements of H(F𝑝)
′. By the same reasoning applied to the surjection E◦(F𝑝) → H(F𝑝)

′,
this is also the number of p-elements of E◦(F𝑝). Hence, all p-elements in E◦(F𝑝) are already in 𝐸 ∩E◦.
By Theorem 3.1.1 and Corollary 3.1.3, E◦(F𝑝)

′ is generated by its p-elements, and the second claim
follows. �

The next lemma follows from [Mar91, Proposition 1.5.5, Theorem 1.5.6 (i)] and Theorem 3.1.1(1).
Lemma 4.0.10. Let 𝑝 > 3 and let H be a reductive group over F𝑝 . Then any 𝑔 ∈ H(F𝑝) that commutes
with H(F𝑝)

′ is central in H.
Proof of Proposition 4.0.8. For every n, let (R𝑛,S𝑛, 𝜏𝑛) be the versal family of reductive groups with
involutions from Lemma 3.2.1. By Lemma 3.2.1(3), there is a subscheme S𝑠𝑛 ⊂ S𝑛 such that, for any
geometric point x of S𝑛, the group (R𝑛)𝑥 is absolutely simple adjoint iff x factors through S𝑠𝑛. Let
R𝑠
𝑛 ⊂ R𝑛 be the preimage of S𝑠𝑛.
Applying Corollary 4.0.4 to R𝑠

𝑛 → S𝑠𝑛, we get a family of subgroups K𝑛 � R𝑠
𝑛 parameterized by

an S𝑠𝑛-scheme 𝑓 : S ′
𝑛 → S𝑠𝑛. Let 𝐷 (𝑛) be the maximum of the number of connected components of a

group of the form (K𝑛)𝑥 ∩ (𝜏𝑛) 𝑓 (𝑥) (K𝑛)𝑥 , or of the form (K𝑛)𝑥 , where x is a geometric point of S ′
𝑛.

We define three functions 𝐶𝐿𝑃0, 𝐶
𝑠𝑠
𝐿𝑃0, 𝐶

𝑎𝑑 𝑗
𝐿𝑃0 : N→ N by recursion. Set

𝐶𝐿𝑃0 (1) = 𝐶𝑠𝑠𝐿𝑃0 (1) = 𝐶
𝑎𝑑 𝑗
𝐿𝑃0 (1) = 1

and, for 𝑛 ≥ 2, set

𝐶
𝑎𝑑 𝑗
𝐿𝑃0 (𝑛) = max{(3𝑛 + 2)𝑛, 𝐶𝐿𝑃0(𝑛 − 1)𝐷 (𝑛)𝑛}.

𝐶𝑠𝑠𝐿𝑃0 (𝑛) = 2𝑛𝐶𝑎𝑑 𝑗𝐿𝑃0 (𝑛).

𝐶𝐿𝑃0 (𝑛) = 2𝑛𝐶𝑠𝑠𝐿𝑃0 (𝑛).

Note that 𝐶𝑎𝑑 𝑗𝐿𝑃0 ≤ 𝐶𝑠𝑠𝐿𝑃0 ≤ 𝐶𝐿𝑃0. We will show that the proposition holds with this choice of 𝐶𝐿𝑃0.
The proof is by induction on 𝑛 := dim G. The base of the induction, 𝑛 = 0, is trivial. The induction step
is divided to the following steps:

Step 1: The claim holds if 𝑝 ≤ 3𝑛 + 1 with the bound 𝐶𝐿𝑃0 replaced by 𝐶
𝑎𝑑 𝑗
𝐿𝑃0.

In this case, we can take Δ = 1, using the bound |G(F𝑝) | ≤ (𝑝 + 1)dim G from [Nor87,
Lemma 3.5].
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Step 2: The claim holds if G is semisimple and adjoint, with the following improvements:
(a) The bound 𝐶𝐿𝑃0 is replaced by 𝐶

𝑎𝑑 𝑗
𝐿𝑃0.

(b) Either H is semisimple and 𝐾𝑒𝑟 (𝜌) = 1, or there is a proper connected t-invariant subgroup
N < G such that [Γ : Γ ∩ N(F𝑝)] < 𝐷 (𝑛).

By Step 1, we can assume 𝑝 > 3𝑛 + 1. We have G = G1 × · · · × G𝑚, where G𝑖 are simple
and adjoint. We denote the projection G → G𝑖 by 𝑝𝑟𝑖 . Each G𝑖 is a restriction of scalars from
an absolutely simple (and adjoint) group: G𝑖 = ResF𝑞𝑖 /F𝑝 S𝑖 .

For any 𝑖 ∈ {1, . . . , 𝑚}, we will define a point 𝜎𝑖 ∈ S𝑠𝑛 (F𝑞𝑖 ). By Corollary 3.1.8, for any i,
we have 𝑡 (G𝑖) = G 𝑗 , for some j. If 𝑖 ≠ 𝑗 , we take 𝜎𝑖 ∈ S𝑠𝑛 (F𝑞𝑖 ) to be such that (R𝑛)𝜎𝑖 � S𝑖 .
This is possible since dim(S𝑖) ≤ dim(G𝑖). If 𝑖 = 𝑗 , we take 𝜎𝑖 = 𝜎𝑗 ∈ S𝑠𝑛 (F𝑞𝑖 ) to be such that
(R𝑛)𝜎𝑖 � S𝑖 in an 𝑆2-equivariant way.

In both cases, we identify G𝑖 (F𝑝), S𝑖 (F𝑞𝑖 ), and (R𝑛)𝜎𝑖 (F𝑞𝑖 ). Given Γ ⊂ G(F𝑝), there are
two cases:
Case 1: For some i, 𝑝𝑟𝑖 (Γ) ⊂ G𝑖 (F𝑝) does not F𝑞𝑖 -evade K𝑛.

For simplicity, we assume that 𝑡 (G𝑖) = G𝑖; if 𝑡 (G𝑖) = G 𝑗 , the proof is similar (and
simpler). In this case, there is a point 𝑥 ∈ S ′(F𝑞𝑖 ) that lies over 𝜎𝑖 such that 𝑝𝑟𝑖 (Γ) ⊂
(K𝑛)𝑥 (F𝑞𝑖 ). Denote K := K𝑥 . By the definition of 𝐷 (𝑛), we have |𝜋0 (K ∩ t𝜎𝑖 (K)) | ≤

𝐷 (𝑛). Let M = ResF𝑞𝑖 /F𝑝 (K ∩ t𝜎𝑖 (K)). We have |𝜋0 (M) | ≤ 𝐷 (𝑛)𝑛.
Using the identification G𝑖 = ResF𝑞𝑖 /F𝑝 S𝑖 , the group M is a subgroup of G𝑖 and is

defined over F𝑝 . Note that 𝑝𝑟𝑖 (Γ) ⊂ M(F𝑝). Since dim(𝑝𝑟−1
𝑖 (M)) < 𝑛, the result now

follows from the induction step applied to 𝑝𝑟−1
𝑖 (M)◦ and Γ ∩ 𝑝𝑟−1

𝑖 (M)◦(F𝑝).
Case 2: For all i, 𝑝𝑟𝑖 (Γ) F𝑞𝑖 -evades K𝑛.

In this case, there are Frobenius maps Φ𝑖 : S𝑖 (F𝑞𝑖 ) → S𝑖 (F𝑞𝑖 ) such that 𝑝𝑟𝑖 (Γ) is big
in S𝑖 (F𝑞𝑖 )Φ𝑖 . Let Δ := Γ ∩

∏
𝑖

(
S𝑖 (F𝑞𝑖 )Φ𝑖

) ′
. Since

[
S𝑖 (F𝑞𝑖 )Φ𝑖 :

(
S𝑖 (F𝑞𝑖 )Φ𝑖

) ′]
≤ 2dim S𝑖 ,

we get

[Γ : Δ] ≤ 2
∑

dim S𝑖 ≤ 2dim G ≤ 𝐶
𝑎𝑑 𝑗
𝐿𝑃0(𝑛).

Since Δ ⊃ Γ′, it follows that 𝑝𝑟𝑖 (Δ) =
(
S𝑖 (F𝑞𝑖 )Φ𝑖

) ′
, for all i. Since

(
S𝑖 (F𝑞𝑖 )Φ𝑖

) ′
are

simple groups, Goursat’s Lemma implies that there is a subset 𝐼 ⊂ [𝑚] such that the
projection Δ →

∏
𝑖∈𝐼

(
S𝑖 (F𝑞𝑖 )Φ𝑖

) ′
is an isomorphism. Since Δ is perfect and Δ ⊂ Γ,

it follows that Δ = Γ′, and, in particular, 𝑡 (Δ) = Δ .
By [Ste68, 11.6], there is a connected semisimple F𝑝 group H such that H(F𝑝) �∏
𝑖∈𝐼 S𝑖 (F𝑞𝑖 )Φ𝑖 .
By Corollary 3.1.9, the restriction of t to Δ extends to an involution s of H.
By [Nor87, Lemma 3.5], (𝑝 − 1)dim H ≤



H(F𝑝)


 and



G(F𝑝)


 ≤ (𝑝 + 1)dim G, so

(𝑝 − 1)dim H ≤


H(F𝑝)



 ≤ |Δ |2dim G ≤


G(F𝑝)



2dim G ≤ (2𝑝 + 2)dim G ≤ (3𝑝− 3)dim G.

Since 𝑝 > 3dim G + 1, we have

dim H
dim G ≤

log(3𝑝 − 3)
log(𝑝 − 1)

< 1 +
1

dim G ,

so dim H ≤ dim G.
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Step 3: The claim holds if G is semisimple (but not necessarily adjoint), with the bound 𝐶𝑠𝑠𝐿𝑃0.
Let G = G/Z(G), let 𝜋 : G → G be the projection and let Γ = 𝜋(Γ). Applying the previous
step to Γ,G, there are two possible cases:
Case 1: There is a proper connected t -invariant subgroup N < G such that

[Γ : Γ ∩ N(F𝑝)] < 𝐷 (𝑛).
Case 2: There is a subgroup Δ ⊂ Γ, a semisimple group H with an action of 𝑆2 and an 𝑆2-

equivariant injective homomorphism 𝜌 : Δ → H(F𝑝), such that 𝜌(Δ) ⊂ H(F𝑝) is big
and [Γ : Δ] < 𝐶

𝑎𝑑 𝑗
𝐿𝑃0 (𝑛).

In the first case, we are done by the induction assumption. For the second case, note that
𝜌
(
Δ

′
)
= H(F𝑝)

′ and, by Lemma 3.1.6, we have [Δ : Δ
′
] ≤ 2𝑛. Denote Δ := 𝜋−1 (Δ

′
) ∩ Γ. We

get that

[Γ : Δ] < 𝐶
𝑎𝑑 𝑗
𝐿𝑃0(𝑛)2

𝑛 = 𝐶𝑠𝑠𝐿𝑃0(𝑛),

where Δ is a central extension of Δ
′
= H(F𝑝)

′. By Lemma 4.0.9, this central extension can be
extended to an 𝑆2-equivariant central extension H of H in such a way that the embedding

Δ → H(F𝑝)

has big image, as required.
Step 4: The claim holds if G is a direct product of a semisimple group and a torus, with the bound𝐶𝑠𝑠𝐿𝑃0.

Write G = G′ × T. Let 𝑝 : G → G′ be the projection and Γ̄ := 𝑝(Γ). Applying the previous
step to Γ̄, we get groups Δ̄ and H̄. The claim holds for Δ := Δ̄ × T(F𝑝) ∩ Γ and H := H̄ × T.

Step 5: The claim holds if G is reductive.
Let G̃ := G′ × 𝑍 (G)◦. We have an isogeny 𝜋 : G̃ → G. By Lemma 3.1.5 and Theorem 3.1.1(5),
[G(F𝑝), 𝜋(G̃(F𝑝))] ≤ 2𝑛. Let Γ̃ := 𝜋−1 (Γ). Applying the previous step to Γ̃ ⊂ G̃(F𝑝), we
get groups Δ̃ , H̃ and a map 𝜌̃ : Δ̃ → H̃(F𝑝). Note that 𝐾𝑒𝑟 (𝜋) ∩ Δ̃ is central in Δ̃ , and thus,
𝜌̃(𝐾𝑒𝑟 (𝜋) ∩ Δ̃) is central in 𝜌̃(Δ̃). Since 𝜌(Δ̃) is big in H̃(F𝑝), we get (by Lemma 4.0.10) that
𝜌̃(𝐾𝑒𝑟 (𝜋)∩Δ̃) is central in H̃. Define H = H̃/𝜌̃(𝐾𝑒𝑟 (𝜋)∩Δ̃) andΔ := 𝜋(Δ̃) � Δ̃/(𝐾𝑒𝑟 (𝜋)∩Δ̃).
Note that [Γ : Δ] ≤ 𝐶𝐿𝑃0 (𝑛). The map 𝜌̃ desends to a map 𝜌 : Δ → H(F𝑝), and we are done.

Step 6: The claim holds for all connected groups G.
Denoting the unipotent radical of G by U, t induces an involution on G/U, and the projection
𝜋 : G → G/U is equivariant. By the previous step, we can assume that U is positive dimensional.
Given Γ, let Γ̄ = 𝜋(Γ). By induction, there is a subgroup Δ̄ ⊂ Γ̄, an algebraic group H̄ and a
homomorphism 𝜌̄ : Δ̄ → H(F𝑝). It is easy to see that Δ := 𝜋−1 (Δ̄), H := H̄ and 𝜌 := 𝜌̄ ◦ 𝜋
satisfy the requirements of the proposition. �

Corollary 4.0.11. There is an increasing function 𝐶𝑚𝑜𝑛 : N→ N for which the following holds. If p is a
prime and Δ ⊂ Γ are finite groups such that Rad𝑝 (Δ) ≠ Δ ∩Rad𝑝 (Γ), then there is a normal subgroup
Δ◦ � Δ of index at most 𝐶𝑚𝑜𝑛0 (rd𝑝 (Γ)) satisfying rd𝑝 (Δ◦) < rd𝑝 (Γ).

For the proof, we will need the following:
Lemma 4.0.12. Let 𝑝 > 3 be a prime and let H be a reductive group over F𝑝 . Let Γ < H(F𝑝) be a big
subgroup. Then Γ does not have a nontrivial normal p-subgroup.
Proof. Suppose that P is a nontrivial normal p-subgroup of Γ. Since the index of H(F𝑝)

′ in H(F𝑝) is
prime to p, we have 𝑃 ⊂ H(F𝑝)

′. For similar reasons, 𝑃 ∩ 𝑍 (H(F𝑝)
′) = 1. This gives an embedding of

P into H(F𝑝)
′/𝑍 (H(F𝑝)

′), which is a product of nonabelian simple groups, a contradiction. �

Proof of Corollary 4.0.11. Set 𝐶𝑚𝑜𝑛0 (𝑛) := max(4𝑛, (𝐶𝐿𝑃0 (𝑛) + 1)𝑛). Suppose that Δ ⊂ Γ are as in
the statement of the corollary. Without loss of generality, we can assume that Rad𝑝 (Γ) is trivial. Let
𝑛 := rd𝑝 (Γ). Using the bound |G(F𝑝) | ≤ (𝑝 + 1)dim G from [Nor87, Lemma 3.5], we may also assume
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that 𝑝 > 3 and 𝑝 > 𝐶𝐿𝑃0(𝑛) (otherwise, the claim holds with Δ◦ = 1). Embed Γ ↩→ G(F𝑝) with
G connected reductive of dimension n. Applying Proposition 4.0.8 to Δ ⊂ G(F𝑝), there is a normal
subgroupΔ◦⊳Δ , a connected reductive group H defined over F𝑝 , and a homomorphism 𝜌 : Δ◦ → H(F𝑝)

such that
1. [Δ : Δ◦] ≤ 𝐶𝐿𝑃0 (𝑛).
2. ker 𝜌 is a p-group.
3. 𝜌(Δ◦) is big in H(F𝑝).
4. dim H ≤ 𝑛.
5. If dim H = 𝑛, then ker 𝜌 = 1.
By Lemma 4.0.12, ker 𝜌 = Rad𝑝 (Δ◦). In particular, rd𝑝 (Δ◦) ≤ dim H.

If dim H < 𝑛, we are done. Otherwise, since [Δ : Δ◦] < 𝐶𝐿𝑃0 (𝑛) < 𝑝, we get that

Rad𝑝 (Δ) ⊂ Rad𝑝 (Δ◦) = ker 𝜌 = 1,

contradicting the condition that Rad𝑝 (Δ) ≠ Δ ∩ Rad𝑝 (Γ). �

Corollary 4.0.13. There is an increasing function 𝐶𝐿𝑃 : N → N for which the following holds. If
p is a prime, (Γ, 𝜃) is a finite symmetric pair and Rad𝑝 (Γ) = 1, then there is a 𝜃-invariant normal
subgroup Δ ⊳ Γ satisfying [Γ : Δ] < 𝐶𝐿𝑃 (rd𝑝 (Γ)), a connected reductive algebraic group H satisfying
dim H ≤ 2rd𝑝 (Γ), an involution t of H and an 𝑆2-equivariant embedding Δ ⊂ H(F𝑝) such that
H(F𝑝)

′ ⊂ Δ ⊂ H(F𝑝).
Proof. Set 𝐶𝐿𝑃 (𝑛) = 𝐶𝐿𝑃0 (2𝑛). Embed Γ ↩→ G and apply Proposition 4.0.8 to G × G, the involution
𝑡 (𝑥, 𝑦) = (𝑦, 𝑥) and the subgroup {(𝑥, 𝜃 (𝑥)) | 𝑥 ∈ Γ} � Γ. �

4.1. 𝜃-invariant subgroups of bounded index

In this subsection, we prove Corollary 4.1.2, which is a 𝑆2-equivariant version of the monotonicity of
rd, Corollary 4.0.11.
Lemma 4.1.1. There is a function 𝐶𝑖𝑛𝑣 : N × N → N which is increasing in both variables such that,
for any
◦ pair of finite groups Δ < Γ and
◦ a prime p,
there exists a subgroup Δ◦ � Δ which is normal in Γ and satisfies

[Γ : Δ◦] ≤ 𝐶𝑖𝑛𝑣 (rd𝑝 (Δ), [Γ : Δ])

and

rd𝑝 (Δ◦) ≤ rd𝑝 (Δ).

Proof. Define recursively

𝐶𝑖𝑛𝑣 (0, 𝑘) = 𝑘!

and

𝐶𝑖𝑛𝑣 (𝑛, 𝑘) := 𝑘!𝐶𝑚𝑜𝑛0 (𝑛)𝐶𝑖𝑛𝑣 (𝑛 − 1, 𝑘!𝐶𝑚𝑜𝑛0 (𝑛)).

We will prove the lemma by induction on rd𝑝 (Δ). For rd𝑝 (Δ) = 0, the claim is clear. For the induction
step, let 𝑛 > 0 be an integer and assume the lemma holds if rd𝑝 (Δ) < 𝑛. We prove the lemma for
rd𝑝 (Δ) = 𝑛. Let

Δ1 :=
⋂
𝛾∈Γ

𝛾Δ𝛾−1.
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We consider the following cases:

Case 1. Rad𝑝 (Δ1) = Rad𝑝 (Δ) ∩ Δ1.
In this case, rd𝑝 (Δ1) ≤ rd𝑝 (Δ) = 𝑛, so we can take Δ◦ := Δ1, and we are done.

Case 2. Rad𝑝 (Δ1) ≠ Rad𝑝 (Δ) ∩ Δ1.
In this case, Corollary 4.0.11 implies that we can find Δ2 such that

rd𝑝 (Δ2) < rd𝑝 (Δ) = 𝑛

and

[Δ1 : Δ2] ≤ 𝐶𝑚𝑜𝑛0 (𝑛).

By the induction hypothesis, there exists Δ◦ � Δ2 which is normal in Γ and satisfies

[Δ2 : Δ◦] ≤ 𝐶𝑖𝑛𝑣 (𝑛 − 1, [Γ : Δ2])

and

rd𝑝 (Δ◦) ≤ rd𝑝 (Δ2) < 𝑛.

We get

[Γ : Δ◦] ≤ [Γ : Δ1] · [Δ1 : Δ2] · [Δ2 : Δ◦]

≤ [Γ : Δ]!𝐶𝑚𝑜𝑛0 (𝑛)𝐶𝑖𝑛𝑣 (𝑛 − 1, [Γ : Δ2])

≤ [Γ : Δ]!𝐶𝑚𝑜𝑛0 (𝑛)𝐶𝑖𝑛𝑣 (𝑛 − 1, [Γ : Δ1] · [Δ1 : Δ2])

≤ [Γ : Δ]!𝐶𝑚𝑜𝑛0 (𝑛)𝐶𝑖𝑛𝑣 (𝑛 − 1, [Γ : Δ]!𝐶𝐿𝑃 (𝑛)) = 𝐶𝑖𝑛𝑣 (𝑛, [Γ : Δ]). �

The last lemma and Corollary 4.0.11 imply the following:

Corollary 4.1.2. There is a function 𝐶𝑚𝑜𝑛 : N→ N such that, for any odd prime p, any finite group Γ,
any subgroup Δ < Γ satisfying Rad𝑝 (Δ) ≠ Δ ∩ Rad𝑝 (Γ), and any involution 𝜃 of Δ , there is a normal
𝜃-invariant subgroup Δ◦ � Δ such that

◦ rd𝑝 (Δ◦) < rd𝑝 (Γ).
◦ [Δ : Δ◦] ≤ 𝐶𝑚𝑜𝑛 (rd𝑝 (Γ)).

Proof. Set

𝐶𝑚𝑜𝑛 (𝑛) := 𝐶𝑖𝑛𝑣 (𝑛, 2𝐶𝑚𝑜𝑛0 (𝑛)).

By the monotonicity of the rd𝑝 (Corollary 4.0.11), we can find Δ1 � Δ satisfying

rd𝑝 (Δ1) < rd𝑝 (Γ)

and

[Δ : Δ1] ≤ 𝐶𝑚𝑜𝑛0 (rd𝑝 (Γ)).

Let Δ̃ := 〈𝜃〉 � Δ . By Lemma 4.1.1, there is a normal subgroup Δ◦ � Δ1 which is also normal in Δ̃ and
satisfies

[Δ̃ : Δ◦] ≤ 𝐶𝑖𝑛𝑣 (rd𝑝 (Δ1), [Δ̃ : Δ1])

https://doi.org/10.1017/fms.2024.58 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.58


Forum of Mathematics, Sigma 17

and

rd𝑝 (Δ◦) ≤ rd𝑝 (Δ1) < rd𝑝 (Γ).

The fact that Δ◦ is normal in Δ̃ implies that Δ◦ is 𝜃-invariant. We also have

[Δ : Δ◦] ≤ [Δ̃ : Δ◦] ≤ 𝐶𝑖𝑛𝑣 (rd𝑝 (Δ1), [Δ̃ : Δ1])

≤ 𝐶𝑖𝑛𝑣 (rd𝑝 (Γ), [Δ̃ : Δ1]) = 𝐶𝑖𝑛𝑣 (rd𝑝 (Γ), 2[Δ : Δ1])

≤ 𝐶𝑖𝑛𝑣 (rd𝑝 (Γ), 2𝐶𝑚𝑜𝑛0 (rd𝑝 (Γ))) = 𝐶𝑚𝑜𝑛 (rd𝑝 (Γ)). �

5. Groups of odd order

In this section, we analyze symmetric pairs of groups of odd order and prove several statements about
them that will be used in the proof of the main theorem. In particular, we prove a strong version of the
main theorem for symmetric pairs of groups of odd order. Namely, we prove that they are all Gelfand
pairs (Corollary 5.0.5(1)).

We also prove some other results for symmetric pairs of groups of odd order; see Lemma 5.0.2 and
Corollary 5.0.5(2).

Remark 5.0.1.

1. Even though the results in this section are valid for arbitrary groups of odd order, we will only use
them for p-groups for odd p.

2. All the proofs in this section are based on the fact that, for a group of odd order n, the map 𝑥 ↦→ 𝑥
𝑛+1

2

is a square root.

The following is a special case of the Schur–Zassenhaus theorem:

Lemma 5.0.2. If Ω is a finite group of odd order and 𝜃 is its involution, then 𝐻1(𝑆2,Ω) = 1.

Proof. We need to show that, for every element 𝑠 ∈ Ω that satisfies 𝑠 = 𝜃 (𝑠−1), there exists an element
𝑔 ∈ Ω such that 𝑠 = 𝜃 (𝑔−1)𝑔.

Let 𝑔 = 𝑠
|Ω|+1

2 . Then

𝜃 (𝑔−1)𝑔 = 𝜃 ((𝑠
|Ω|+1

2 )−1)𝑠
|Ω|+1

2 = 𝜃 (𝑠−1)
|Ω|+1

2 𝑠
|Ω|+1

2 = 𝑠
|Ω|+1

2 𝑠
|Ω|+1

2 = 𝑠 |Ω |+1 = 𝑠. �

Lemma 5.0.3 (Gelfand-Kazhdan property for symmetric pairs of odd order). If Ω is a finite group of
odd order and 𝜃 : Ω → Ω is an involution, then, for any 𝑔 ∈ Ω, there are ℎ1, ℎ2 ∈ Ω𝜃 such that
ℎ1𝑔ℎ2 = 𝜃 (𝑔−1).

Lemma 5.0.3 follows immediately from the following:

Lemma 5.0.4 (polar decomposition for symmetric pairs of odd order.) If Ω is a finite group of odd order
and 𝜃 : Ω → Ω is an involution, then

Ω = Ω𝜃 · Ω𝜃◦𝑖𝑛𝑣 ,

where Ω𝜃◦𝑖𝑛𝑣 := {𝑔 ∈ Ω|𝜃 (𝑔) = 𝑔−1}.
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Proof. Let 𝑔 ∈ Ω. Define 𝑠 = (𝜃 (𝑔−1)𝑔)
|Ω|+1

2 and 𝑜 = 𝑔𝑠−1. Then,

𝜃 (𝑠) = 𝜃 ((𝜃 (𝑔−1)𝑔)
|Ω|+1

2 )

= (𝜃 (𝜃 (𝑔−1)𝑔))
|Ω|+1

2

= (𝑔−1)𝜃 (𝑔))
|Ω|+1

2

= ((𝜃 (𝑔−1)𝑔)−1)
|Ω|+1

2

= ((𝜃 (𝑔−1)𝑔)
|Ω|+1

2 )−1) = 𝑠−1,

𝜃 (𝑜) = 𝜃 (𝑔𝑠−1) = 𝜃 (𝑔)𝑠

= 𝜃 (𝑔) (𝜃 (𝑔−1)𝑔)
|Ω|+1

2

= 𝜃 (𝑔)𝜃 (𝑔−1)𝑔(𝜃 (𝑔−1)𝑔)
|Ω|+1

2 −1

= 𝑔(𝜃 (𝑔−1)𝑔)
|Ω|+1

2 −1

= 𝑔(𝜃 (𝑔−1)𝑔)
|Ω|−1

2

= 𝑔(𝜃 (𝑔−1)𝑔) |Ω |−
|Ω|+1

2

= 𝑔(𝜃 (𝑔−1)𝑔)−
|Ω|+1

2 = 𝑔𝑠−1 = 𝑜

and, thus,

𝑔 = 𝑔𝑠−1𝑠 = 𝑜𝑠. �

Lemma 5.0.3 gives the following:

Corollary 5.0.5. If Γ is a finite group of odd order and 𝜃 is an involution of Ω, then

1. (Gelfand property for symmetric pairs of odd order:) (Ω,Ω𝜃 ) is a Gelfand pair – that is, for any
𝜌 ∈ Irr(Ω),

dim𝜌Ω
𝜃
≤ 1.

2. (Lapid-Prasad property for symmetric pairs of odd order:) Any representation 𝜌 of G which is Ω𝜃

distinguished (i.e., satisfies dim𝜌Ω
𝜃
> 0) also satisfies

𝜌∗ � 𝜌 ◦ 𝜃.

Proof. The claims follow from Lemma 5.0.3 and [Aiz, Theorem 2] (which is an adaptation of results
from [GK75] and [JR96]). �

6. Bounds on 𝐻1 (𝑆2, Γ)

In this section, we prove Corollary 6.0.6, which gives bounds on the cohomology group 𝐻1 (𝑆2,Δ) for
a finite symmetric pair (Δ , 𝜃).

Lemma 6.0.1. There is an increasing function 𝐶𝐻1𝑅0 : N → N such that, for any finite field F of odd
characteristic, any connected reductive group G and any involution t of G, both defined over F,

|𝐻1 (𝑆2,G(𝐹)) | < 𝐶𝐻1𝑅0 (dimG).
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Proof. Let n be an integer. Let Φ𝑛 : R𝑛 → S𝑛 and 𝜏𝑛 be as in Lemma 3.2.1. Let 𝑠𝑛 be the anti-
automorphism 𝑠𝑛 (𝑔) := 𝜏𝑛 (𝑔

−1). Let 𝐶𝐻1𝑅0 (𝑛) be such that, for any geometric point x of S𝑛,


𝜋0

(
Φ−1
𝑛 (𝑥)𝑠𝑛

)


 < 𝐶𝐻1𝑅0 (𝑛).

Fix 𝑥 ∈ S𝑛 (𝐹) and let G := Φ−1
𝑛 (𝑥). We need to show that

|𝐻1 (𝑆2,G(𝐹)) | ≤ 𝐶𝐻1𝑅0(𝑛) .

By definition, we have 𝐻1 (𝑆2,G(𝐹)) = G(𝐹)𝑠𝑛/G(𝐹), where the action of G on G𝑠𝑛 is given
by 𝑔 · 𝑥 := 𝑔𝑥𝑠𝑛 (𝑔). Since G is connected, Lang’s theorem implies that the map G(𝐹)𝑠𝑛/G(𝐹) →

(G𝑠𝑛/G) (𝐹) is an embedding. By analyzing the action of the Lie algebra, it is easy to see that the orbits
of the action of G on G𝑠𝑛 are open. Thus,

|𝐻1 (𝑆2,G(𝐹)) | = |G(𝐹)𝑠𝑛/G(𝐹) | ≤ |(G𝑠𝑛/G) (𝐹) | ≤ |(G𝑠𝑛/G) (𝐹) | = |𝜋0 (G𝑠𝑛
𝐹
) | ≤ 𝐶𝐻1𝑅0 (𝑛).

�

The following lemmas are straightforward:

Lemma 6.0.2. Let A be a finite abelian group with an action of 𝑆2. Denote 𝐴[2] =
{
𝑥 ∈ 𝐴 | 𝑥2 = 0

}
.

Then |𝐻1 (𝑆2, 𝐴) | ≤ |𝐴[2] |2.

Proof. Let 𝜃 ∈ Aut(𝐴) be the nontrivial element of 𝑆2. Denote 𝐶 = {𝑥 ∈ 𝐴 | 𝑥𝜃 (𝑥) = 1},
𝐵 =

{
𝑥−1𝜃 (𝑥) | 𝑥 ∈ 𝐴

}
and 𝑆 =

{
𝑥2 | 𝑥 ∈ 𝐴

}
. We need to show that |𝐶/𝐵 | ≤ |𝐴[2] |2. Since

|𝐶/𝐵 | = |𝐶/𝐶∩𝑆 | · |𝐶∩𝑆/𝐵∩𝑆 | ≤ |𝐴[2] | · |𝐶∩𝑆/𝐵∩𝑆 |, it in enough to show that |𝐶∩𝑆/𝐵∩𝑆 | ≤ |𝐴[2] |.
Let 𝑥 ∈ 𝐶 ∩ 𝑆 and let 𝑧 ∈ 𝐴 be such that 𝑧2 = 𝑥. Then 𝑧𝜃 (𝑧) ∈ 𝐴[2] and 𝑥

(
𝑧−1𝜃 (𝑧)

)
= 𝑧𝜃 (𝑧) ∈ 𝐴[2].

Hence, 𝐶 ∩ 𝑆 ⊆ 𝐴[2] · 𝐵, so |𝐶 ∩ 𝑆/𝐵 ∩ 𝑆 | ≤ |𝐴[2] · 𝐵/𝐵 | ≤ |𝐴[2] |. �

Lemma 6.0.3. Let Γ be a finite group, let 𝜃 be an involution of Γ and let 𝑁 ⊳ Γ be a normal 𝜃-invariant
subgroup. Then

1. |𝐻1 (𝑆2, 𝑁) | ≤ |𝐻1 (𝑆2, Γ) | · [Γ : 𝑁].
2.

|𝐻1 (𝑆2, Γ) | ≤ |𝐻1 (𝑆2, Γ/𝑁) | · max
𝜏

|𝐻1
𝜏 (𝑆2, 𝑁) |,

where 𝜏 ranges over all involutions of N (including 𝜏 = 1) and 𝐻1
𝜏 (𝑆2, 𝑁) is the cohomology of the

𝑆2-module N given by the involution 𝜏.

Proof. In the proof, if G is a group with involution 𝜎, we identify 𝐻1(𝑆2, 𝐺) with the quotient of
𝐶𝐺,𝜎 := {𝑥 ∈ 𝐺 | 𝑥𝜎(𝑥) = 1} by the action of G given by 𝑔 · 𝑥 = 𝜎(𝑔)𝑥𝑔−1.

1. We have have a map 𝛼 : 𝐶𝑁 ,𝜃/𝑁 → 𝐶Γ, 𝜃/Γ taking 𝑁 · 𝑥 to Γ · 𝑥. Given 𝑥 ∈ 𝐶𝑁 ,𝜃 , the fiber
𝛼−1(𝛼(𝑁 · 𝑥)) = 𝛼−1(Γ · 𝑥) is equal to (Γ · 𝑥)/𝑁 , so its size is at most [Γ : 𝑁]. Hence, |𝐶𝑁 ,𝜃/𝑁 | ≤

|𝐶Γ, 𝜃/Γ| · [Γ : 𝑁].
2. We have a map 𝛽 : 𝐶Γ, 𝜃/Γ → 𝐶Γ/𝑁 ,𝜃/(Γ/𝑁) sending Γ · 𝑥 to (Γ/𝑁) · (𝑥𝑁). It is enough to show

that the sizes of the fibers of 𝛽 are bounded by max𝜏 |𝐻1
𝜏 (𝑆2, 𝑁) |.

For 𝑥 ∈ 𝐶Γ, 𝜃 , let 𝜏𝑥 : 𝑁 → 𝑁 be the automorphism 𝜏𝑥 (𝑛) = 𝑥−1𝜃 (𝑛)𝑥. Since 𝜏2
𝑥 (𝑛) =

𝑥−1𝜃 (𝑥−1)𝑛𝜃 (𝑥)𝑥 = 𝑛, the automorphism 𝜏𝑥 is an involution.
Suppose that 𝑦 ∈ 𝐶Γ, 𝜃 and 𝛽(Γ · 𝑥) = 𝛽(Γ · 𝑦). Then there is 𝑦′ ∈ Γ · 𝑦 such that 𝑦′ = 𝑥𝑛, for

some 𝑛 ∈ 𝑁 . Since

1 = 𝜃 (𝑦′)𝑦′ = 𝜃 (𝑥)𝜃 (𝑛)𝑥𝑛 = 𝜃 (𝑥)𝑥𝑥−1𝜃 (𝑛)𝑥𝑛 = 𝜏𝑥 (𝑛)𝑛,
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we get that 𝑛 ∈ 𝐶𝑁 ,𝜏𝑥 . Hence, 𝛽−1 (𝛽(Γ · 𝑥)) can be identified with 𝑥𝐶𝑁 ,𝜏𝑥/Γ. For any 𝑚 ∈ 𝑁 ,

𝑚 · 𝑦′ = 𝜃 (𝑚)𝑥𝑛𝑚−1 = 𝑥𝜏𝑥 (𝑚)𝑛𝑚−1,

so |𝛽−1 (𝛽(Γ · 𝑥)) | ≤ |𝑥𝐶𝑁 ,𝜏𝑥/𝑁 | = |𝐻1
𝜏𝑥 (𝑆2, 𝑁) |. �

Now Lemma 6.0.1 implies the following:

Corollary 6.0.4. There is an increasing function 𝐶𝐻1𝑅 : N → N such that, for any prime p, any
connected semi-simple group G, defined over F𝑝 , any involution 𝜃 of G(F𝑝)

′, we have

|𝐻1 (𝑆2,G(F𝑝)
′) | < 𝐶𝐻1𝑅 (dimG).

Proof. Take 𝐶𝐻1𝑅 (𝑛) = 𝐶𝐻1𝑅0 (dimG)4dim𝐺 , where 𝐶𝐻1𝑅0 is the function given by Lemma 6.0.1.
Using the bound |G(F𝑝) | ≤ (𝑝 + 1)dim G from [Nor87, Lemma 3.5], we can assume that 𝑝 > 3.
Let Ḡ := G/𝑍 (G). By Corollary 3.1.3, the induced map G(F𝑝)

′ → Ḡ(F𝑝)
′ is onto, and its kernel

is 𝑍 (G(F𝑝)
′). Let 𝜃 be the involution induced by 𝜃 on Ḡ(F𝑝)

′. By Theorem 3.1.10, we can lift 𝜃 to an
involution t of Ḡ. By Lemmas 6.0.3, 6.0.1, 3.1.6 and Theorem 3.1.1, we have

|𝐻1 (𝑆2,G(F𝑝)
′) |

6.0.3
≤ |𝐻1 (𝑆2, Ḡ(F𝑝)

′) | max
𝜏

|𝐻1
𝜏 (𝑆2, 𝑍 (G(F𝑝)

′)) |≤|𝐻1 (𝑆2, Ḡ(F𝑝)
′) | · |𝑍 (G(F𝑝)

′) |

3.1.1
≤ |𝐻1 (𝑆2, Ḡ(F𝑝)

′) |2dim𝐺 6.0.3
≤ |𝐻1

𝑡 (𝑆2, Ḡ(F𝑝)) | · [Ḡ(F𝑝) : Ḡ(F𝑝)
′]2dim𝐺

3.1.6
≤ |𝐻1

𝑡 (𝑆2, Ḡ(F𝑝)) | · 4dim𝐺 6.0.1
< 𝐶𝐻1𝑅0 (dimG)4dim𝐺 = 𝐶𝐻1𝑅 (dimG). �

Now we can derive our bound on the first cohomology:

Proposition 6.0.5. There is a function 𝐶𝐻1 : N→ N such that for any finite group Γ, any involution 𝜃
of Γ and any prime 𝑝 > 2, we have

𝐻1(𝑆2, Γ) < 𝐶𝐻1 (rd𝑝 (Γ)).

Proof. We take

𝐶𝐻1 (𝑛) := 𝐶𝐻1𝑅 (2𝑛)𝐶𝐿𝑃 (𝑛)28𝑛,

where 𝐶𝐻1𝑅 is the function given by Corollary 6.0.4 and 𝐶𝐿𝑃 is the function given by Corollary 4.0.13.
Using the bound |G(F𝑝) | ≤ (𝑝 + 1)dim G from [Nor87, Lemma 3.5] and Lemmas 5.0.2, 6.0.3, we

may assume that 𝑝 > 3.
Let 𝜃 be the involution of Γ/Rad𝑝 (Γ) induced by 𝜃. By Corollary 4.0.13, there is a 𝜃-invariant

normal subgroup Δ of Γ/Rad𝑝 (Γ), a connected reductive group H defined over F𝑝 and an involution t
of H such that

◦ [Γ/Rad𝑝 (Γ) : Δ] ≤ 𝐶𝐿𝑃 (rd(Γ)),
◦ dim H ≤ 2rd(Γ),
◦ There is an equivariant embedding (Δ , 𝜃 |Δ ) ↩→ (H(F𝑝), 𝑡),
◦ H(F𝑝)

′ < Δ < H(F𝑝).

By Corollary 3.1.4, we have Δ ′ = H(F𝑝)
′.
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Applying Theorem 3.1.1, Corollary 6.0.4 and Lemmas 5.0.2, 6.0.2, 6.0.3, we get

|𝐻1 (𝑆2, Γ) |
6.0.3
≤ |𝐻1 (𝑆2, Γ/Rad𝑝 (Γ)) | · max

𝜏
|𝐻1

𝜏 (𝑆2,Rad𝑝 (Γ)) |
5.0.2
= |𝐻1 (𝑆2, Γ/Rad𝑝 (Γ)) |

6.0.3
≤ max

𝜏
|𝐻1

𝜏 (𝑆2,Δ) | · |𝐻
1 (𝑆2, (Γ/(Rad𝑝 (Γ))/Δ)) |

6.0.3
≤ max

𝜏
|𝐻1

𝜏 (𝑆2,Δ) | · [Γ/Rad𝑝 (Γ) : Δ]

≤ max
𝜏

|𝐻1
𝜏 (𝑆2,Δ) |𝐶𝐿𝑃 (rd(Γ))

6.0.3
≤ max

𝜎
|𝐻1

𝜎 (𝑆2,Δ
′) | · max

𝜏
|𝐻1

𝜏 (𝑆2,Δ/Δ
′) | · 𝐶𝐿𝑃 (rd(Γ))

6.0.2
≤ max

𝜎
|𝐻1

𝜎 (𝑆2,H(F𝑝)
′) | · | (Δ/Δ ′) [2] |2 · 𝐶𝐿𝑃 (rd(Γ))

6.0.4
≤ 𝐶𝐻1𝑅 (2rd(Γ)) · | (Δ/Δ ′) [2] |2 · 𝐶𝐿𝑃 (rd(Γ))
≤ 𝐶𝐻1𝑅 (2rd(Γ)) · |

(
H(F𝑝)/H(F𝑝)

′
)
[2] |2 · 𝐶𝐿𝑃 (rd(Γ))

≤ 𝐶𝐻1𝑅 (2rd(Γ)) · |
(
H(F𝑝)/H′(F𝑝)

)
[2] |2 · [H′(F𝑝) : H(F𝑝)

′]2 · 𝐶𝐿𝑃 (rd(Γ))
3.1.6
≤ 𝐶𝐻1𝑅 (2rd(Γ)) · |

(
(H/H′) (F𝑝)

)
[2] |2 · 24rd(Γ) · 𝐶𝐿𝑃 (rd(Γ))

≤ 𝐶𝐻1𝑅 (2rd(Γ)) · 28rd(Γ) · 𝐶𝐿𝑃 (rd(Γ)) = 𝐶𝐻1 (rd(Γ)). �

Corollary 6.0.6. There is an increasing function 𝐶ℎ𝑒𝑟𝐻1 : N→ N such that, for any pair of finite groups
Δ ⊂ Γ, any involution 𝜃 of Δ and any prime 𝑝 > 2,

|𝐻1 (𝑆2,Δ) | < 𝐶ℎ𝑒𝑟𝐻1 (rd𝑝 (Γ)).

Proof. Define

𝐶ℎ𝑒𝑟𝐻1 (𝑛) := 𝐶𝑚𝑜𝑛 (𝑛)𝐶𝐻1 (𝑛).

By Corollary 4.1.2, there is a 𝜃-invariant normal subgroup Δ◦ � Δ such that rd𝑝 (Δ◦) ≤ rd𝑝 (Γ) and
[Δ : Δ◦] ≤ 𝐶𝑚𝑜𝑛 (rd𝑝 (Γ)). The previous proposition (Proposition 6.0.5) implies that |𝐻1 (𝑆2,Δ◦) | <

𝐶𝐻1 (rd𝑝 (Γ)). From the exact sequence

𝐻1 (𝑆2,Δ
◦) → 𝐻1(𝑆2,Δ) → 𝐻1 (𝑆2,Δ/Δ

◦),

we get

|𝐻1 (𝑆2,Δ) | ≤ |𝐻1 (𝑆2,Δ
◦) | · |𝐻1 (𝑆2,Δ/Δ

◦) |

≤ 𝐶𝐻1 (rd𝑝 (Γ)) [Δ : Δ◦]

≤ 𝐶𝐻1 (rd𝑝 (Γ))𝐶𝑚𝑜𝑛 (rd𝑝 (Γ))

= 𝐶ℎ𝑒𝑟𝐻1 (rd𝑝 (Γ)). �

7. Bounds on 𝐻2 (Γ, 𝜇𝑝∞)

Let 𝑙𝜇.. 𝑝∞ denote the group of roots of unity of order which is a power of p. In this section, we prove that
𝐻2 (Γ, 𝑙𝜇.. 𝑝∞) is trivial whenever Rad𝑝 (Γ) = 1 and p is large with respect to rd𝑝 (Γ). See Proposition
7.0.2 below.
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We will need the following:

Lemma 7.0.1. For any short exact sequence of finite groups

1 → Γ1 → Γ2 → Γ3 → 1,

we have

1. If 𝑝 � |Γ1 |, then 𝐻𝑖 (Γ2, F𝑝) � 𝐻𝑖 (Γ3, F𝑝), for all i.
2. If 𝑝 � |Γ3 |, then 𝐻𝑖 (Γ2, F𝑝) � 𝐻𝑖 (Γ1, F𝑝)

Γ3 , for all i.

Proof. For a pair finite group Γ � Γ′, let 𝐼Γ′Γ : MF𝑝 (Γ
′) → M(Γ′/Γ) be the functor of Γ-invariants

from the category of F𝑝-representations of Γ′ to the category of F𝑝-representations of Γ′/Γ. Note that,
if 𝑝 � |Γ|, then 𝐼Γ

′

Γ is exact. Also denote

𝐼Γ := 𝐼ΓΓ .

Now

1. If 𝑝 � |Γ1 |, then

𝐻𝑖 (Γ2, F𝑝) � 𝑅𝑖 (𝐼Γ2) (F𝑝) � 𝑅𝑖 (𝐼Γ3
◦ 𝐼Γ2

Γ1
) (𝐹𝑝) � 𝑅𝑖 (𝐼Γ3

) ◦ 𝐼Γ2
Γ1
(F𝑝) �

� 𝑅𝑖 (𝐼Γ3
) (F𝑝) � 𝐻𝑖 (Γ3, F𝑝).

2. If 𝑝 � |Γ3 |, then

𝐻𝑖 (Γ2, F𝑝) � 𝑅𝑖 (𝐼Γ2) (F𝑝) � 𝑅𝑖 (𝐼Γ3
◦ 𝐼Γ2

Γ1
) (𝐹𝑝)

� 𝐼Γ3
◦ 𝑅𝑖 𝐼Γ2

Γ1
(F𝑝) � 𝐼Γ3

(𝐻𝑖 (Γ1, F𝑝)) � 𝐻𝑖 (Γ1, F𝑝)
Γ3 . �

Now we can prove the main result of this section:

Proposition 7.0.2 (vanishing of 𝐻2 for large p). There is an increasing function 𝐶𝐻2 : N → N such
that for any

1. integer n,
2. prime 𝑝 > 𝐶𝐻2 (𝑛),
3. finite group Γ such that Rad𝑝 (Γ) = 1 and rd𝑝 (Γ) ≤ 𝑛,

the group 𝐻2 (Γ, 𝑙𝜇.. 𝑝∞) is trivial.

Proof. It is enough to show the claim after replacing 𝑙𝜇.. 𝑝∞ by F𝑝 . Define

𝐶𝐻2 (𝑛) := max(3, 𝐶𝐿𝑃0(𝑛), 4𝑛).

Fix n. Let 𝑝 > 𝐶𝐻2 (𝑛) be a prime and Γ be a finite group such that Rad𝑝 (Γ) = 1, and rd𝑝 (Γ) ≤ 𝑛. We
have to show that

𝐻2(Γ, F𝑝) = 0.

By Corollary 4.0.13 applied with trivial involution,1 there are a normal subgroup Δ � Γ, a connected
reductive algebraic group H defined over F𝑝 and an injective homomorphism 𝜌 : Δ → H(F𝑝) such that

1. [Γ : Δ] ≤ 𝐶𝐿𝑃 (𝑛).
2. H(F𝑝)

′ < 𝜌(Δ) < H(F𝑝).
3. dimH ≤ 2𝑛.

1In fact, Proposition 4.0.8 is enough.
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Applying 7.0.1(2) to the embedding Δ ⊂ Γ, it is enough to prove that 𝐻2 (Δ , F𝑝) = 0. We will identify
𝜌(Δ) with Δ .

Let Δ0 = Δ ∩ H′(F𝑝). We have an embedding of Δ/Δ0 into (H/H′) (F𝑝). Thus, 𝑝 � [Δ ,Δ0]. By
descent of 𝐻2 to a subgroup (Lemma 7.0.1(2)), this implies that it is enough to show that

𝐻2(Δ0, F𝑝) = 0.

By Lemma 3.1.6, [Δ0 : H′(F𝑝)
′] ≤ 4𝑛. By Lemma 7.0.1(2), it is enough to show that

𝐻2 (H′(F𝑝)
′, F𝑝) = 0.

Let 𝜋 : H̃′ → H′ the universal cover. By Corollary 3.1.3,

𝐻2(H′(F𝑝)
′, F𝑝) = 𝐻2 (𝜋(H̃′(F𝑝)), F𝑝),

and the latter group vanishes by combining descent of 𝐻2 to a quotient (Lemma 7.0.1(1)) and vanishing
of 𝐻2 for simply connected groups (Theorem 3.1.1(2)). �

8. The case of trivial p-radical

In this section, we prove a twisted version of the main result of the paper for the special case when Γ
has a trivial p-radical (see Corollary 8.0.5 below).

We start with the case that Γ is a finite group of Lie type. This case, in the larger generality of
spherical pairs but without a twist, was proved in [She]. A variation of the argument of [She] proves the
twisted case. We include this variation in Appendix A. In particular, the following is a special case of
Theorem 1.0.1:

Theorem 8.0.1. There is an increasing function 𝐶𝑟𝑑 : N → N such that, for every finite field F of
characteristic > 3, every connected reductive group G and every involution t of G, we have

𝜇(G(𝐹), 𝑡) < 𝐶𝑟𝑑 (dim(G)).

In order to apply this theorem to arbitrary groups with trivial p-radical, we will need the following:

Lemma 8.0.2 (cf. [AA19, Lemma 3.2.1]). Let 𝜙 : Γ1 → Γ2 be morphism finite groups and let 𝜃1, 𝜃2 be
involutions of Γ1, Γ2 such that 𝜃2 ◦ 𝜙 = 𝜙 ◦ 𝜃1. Then,

1. 𝜇(Γ2, 𝜃2) ≤ [Γ2 : 𝜙(Γ1)]𝜇(Γ1, 𝜃1).
2. 𝜈(Γ2, 𝜃2) ≤ [Γ2 : 𝜙(Γ1)]𝜈(Γ1, 𝜃1).

Lemma 8.0.3. For every prime p and every connected reductive group H over F𝑝 , we have[
H(F𝑝) : H(F𝑝)

′ · 𝑍 (H) (F𝑝)
]
≤ 22dim H.

Proof. The map 𝜙 : H′ × 𝑍 (H) → H is an isogeny. By Lemma 3.1.5 and Theorem 3.1.1,[
H(F𝑝) : H′(F𝑝) · 𝑍 (H) (F𝑝)

]
≤ |(ker 𝜙) (F𝑝) | = |𝑍 (H′(F𝑝) | ≤ |𝑍 (H̃′(F𝑝)) | ≤ 2dim H′

,

where H̃′ is the universal cover of H′. By Lemma 3.1.6, [H′(F𝑝) : H(F𝑝)
′] ≤ 2dim H′ , and the result

follows. �

The following lemma is straightforward.

Lemma 8.0.4. If 𝐴, 𝐵 are finite groups and 𝜃𝐴, 𝜃𝐵 are involutions of 𝐴, 𝐵, then 𝜇(𝐴 × 𝐵, 𝜃𝐴 × 𝜃𝐵) =
𝜇(𝐴, 𝜃𝐴)𝜇(𝐵, 𝜃𝐵).

Corollary 8.0.5. There is an increasing function 𝐶𝑛𝑟 : N→ N such that, for any prime 𝑝 > 3 and any
finite group Γ that has a trivial p-radical, we have 𝜇(Γ) < 𝐶𝑛𝑟 (rd(Γ)).
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Proof. Set

𝐶𝑛𝑟 (𝑛) := 𝐶𝐿𝑃 (𝑛)16𝑛𝐶𝑟𝑑 (2𝑛).

Let 𝜃 be an involution of Γ. Applying Corollary 4.0.13 to Γ, we get a triple Δ ,H, 𝑡. By Lemma 8.0.2,
we have

𝜇(Γ, 𝜃) ≤ [Γ : Δ] · 𝜇(Δ , 𝜃) ≤ 𝐶𝐿𝑃 (rd𝑝 (Γ))𝜇(Δ , 𝜃).

Denote 𝑆 = H(F𝑝)
′ and 𝑍 = 𝑍 (H) (F𝑝). Note that S and Z are t-invariant subgroups of H(F𝑝). By

Lemma 8.0.3,

𝜇(Δ , 𝜃) ≤ [Δ : Δ ∩ 𝑆 · 𝑍]𝜇(Δ ∩ 𝑆 · 𝑍, 𝜃) ≤ 2dim H𝜇(Δ ∩ 𝑆 · 𝑍, 𝜃) ≤ 4rd𝑝 (Γ)𝜇(Δ ∩ 𝑆 · 𝑍, 𝜃).

Let 𝜑 : 𝑆 × 𝑍 → 𝐻 (F𝑝) be the multiplication map. 𝜑 is equivariant if we use the involution 𝜃 × 𝜃 on
𝑆 × 𝑍 . By Lemma 8.0.2(1),

𝜇(Δ ∩ 𝑆 · 𝑍, 𝜃) ≤ 𝜇(𝜑−1 (Δ), 𝜃 × 𝜃).

Since 𝑆 ⊂ Δ , we get that 𝜑−1 (Δ) = 𝑆 × 𝐴, for some 𝐴 ⊂ 𝑍 . Therefore, by Lemma 8.0.4,

𝜇(𝜑−1(Δ), 𝜃 × 𝜃) ≤ 𝜇(𝑆, 𝜃).

Finally, by Lemma 3.1.6,

𝜇(𝑆, 𝜃) ≤
[
H′(F𝑝) : 𝑆

]
𝜇(H′(F𝑝), 𝑡) ≤ 2dim(H′)𝜇(H′(F𝑝), 𝑡) ≤ 4rd𝑝 (Γ)𝜇(H′(F𝑝), 𝑡),

and the result follows from Theorem 8.0.1. �

9. Clifford theory

We recall the elements of Clifford theory. The following lemma is standard.

Lemma 9.0.1. Let Γ be a finite group, let 𝜌 be an irreducible representation of Γ and let 𝑁 � Γ be a
normal subgroup of Γ. Let 𝜏 be an irreducible subrepresentation of 𝜌 �𝑁 and let 𝜎 be the 𝜏-isotypic
component of 𝜌 �𝑁 . Let Δ := Γ𝜏 be the stabilizer of 𝜏 ∈ Irr(𝑁) with respect to the adjoint action. Then
𝜎 is Δ-invariant and

𝜌 � indΓΔ 𝜎.

Lemma 9.0.2. Let Γ be a finite group, let 𝜌 be an irreducible representation of Γ and let 𝑁 � Γ be a
normal p-subgroup of Γ, and 𝜌 ∈ Irr(Γ). Assume that 𝜌 �𝑁 is isotypic and that 𝐻2 (Γ/𝑁, 𝑙𝜇.. 𝑝∞) is trivial.

Then there exist 𝜋1, 𝜋2 ∈ Irr(Γ) such that 𝜋1 �𝑁 is irreducible, the action of N on 𝜋2 is trivial, and
𝜌 � 𝜋1 ⊗ 𝜋2.

Proof. Write 𝜌 �𝑁= 𝜏⊕𝐶 , where (𝜏,𝑉) ∈ 𝐼𝑟𝑟 (𝑁). Recall the construction of the 2-cocycle corre-
sponding to the triple (Γ, 𝑁, 𝜏): choose a set of coset representatives 𝑇 ⊂ Γ such that 1 ∈ 𝑇 . For every
𝑡 ∈ 𝑇 \ {1}, choose an isomorphism 𝐴𝑡 : 𝜏𝑡 → 𝜏 such that det(𝐴𝑡 ) = 1, and let 𝐴1 = 𝐼.

Define a map 𝜋 : Γ → EndC(𝑉) by 𝜋(𝑡𝑛) = 𝐴𝑡𝜏(𝑛) for 𝑡 ∈ 𝑇 and 𝑛 ∈ 𝑁 . This is a projective
representation of Γ that extands 𝜏 and satisfies 𝜋(𝑡𝑛) = 𝜋(𝑡)𝜋(𝑛) and

𝜋(𝑛𝑡) = 𝜋(𝑡𝑡−1𝑛𝑡) = 𝐴𝑡𝜏(𝑡
−1𝑛𝑡) = 𝐴𝑡𝜏

𝑡 (𝑛) = 𝜏(𝑛)𝐴𝑡 = 𝜋(𝑛)𝜋(𝑡).

https://doi.org/10.1017/fms.2024.58 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.58


Forum of Mathematics, Sigma 25

For every 𝛾1, 𝛾2 ∈ Γ, the map

𝜋(𝛾−1
2 )𝜋(𝛾−1

1 )𝜋(𝛾1𝛾2)

is an intertwiner of 𝜏, so

𝜋(𝛾−1
2 )𝜋(𝛾−1

1 )𝜋(𝛾1𝛾2) = 𝛼(𝛾1, 𝛾2)𝐼,

for some 𝛼(𝛾1, 𝛾2) ∈ C×. The map 𝛼 : Γ × Γ → C× is a 2-cocycle of Γ with coefficients in C×,
and a simple computation shows that 𝛼 descends to a 2-cocycle on Γ/𝑁 . Since N is a p-group,
det(𝜏(𝑛)) ∈ 𝑙𝜇.. 𝑝∞ , for every 𝑛 ∈ 𝑁 . Since det(𝐴𝑡 ) = 1, for every 𝑡 ∈ 𝑇 , we get that 𝛼(𝛾1, 𝛾2)

dim 𝜏 ∈ 𝑙𝜇.. 𝑝∞ .
Since dim 𝜏 is a p-th power, we get that 𝛼(𝛾1, 𝛾2) ∈ 𝑙𝜇.. 𝑝∞ .

By assumption, this implies that 𝛼 is cohomologous to the trivial cocycle, and, therefore, there is a
representation 𝜏1 of Γ such that 𝜏1 �𝑁= 𝜏. Since 𝜏 is irreducible, so is 𝜏1. By [Isa06, Corollary 6.17],
𝜌 = 𝜏1 ⊗ 𝜏2, for some 𝜏2 ∈ Irr(Γ/𝑁). �

10. Proof of the main theorem

In this section, we prove Theorem c and deduce Theorem A and Corollary B.

Lemma 10.0.1 the main theorem for product case. Let𝐶𝑛𝑟 be the increasing function given by Corollary
8.0.5. Then, for every

◦ prime 𝑝 > 2,
◦ symmetric pair of finite groups (Γ, Γ𝜃 ),
◦ 𝜌1 ∈ Irr(Γ) such that 𝜌1 |Rad𝑝 (Γ) is irreducible,
◦ 𝜌2 ∈ Irr(Γ) that factors through Γ/Rad𝑝 (Γ),

we have

dim
(
(𝜌1 ⊗ 𝜌2)

Γ𝜃
)
< 𝐶𝑛𝑟 (rd(Γ)).

Proof. Since odd order symmetric pairs are Gelfand pairs (Corollary 5.0.5(1)), we have

dim𝜌
𝑅𝑎𝑑𝑝 (Γ) 𝜃

1 ≤ 1.

If (𝜌1 ⊗ 𝜌2)
Γ𝜃

= 0, the claim trivially holds. Otherwise, let 𝜒 be the character with which Γ𝜃/𝑅𝑎𝑑𝑝 (Γ) 𝜃

acts on 𝜌
𝑅𝑎𝑑𝑝 (Γ) 𝜃

1 . Using Corollary 8.0.5,

dim(𝜌1 ⊗ 𝜌2)
Γ𝜃

= dim(𝜒 ⊗ 𝜌2)
Γ𝜃/𝑅𝑎𝑑𝑝 (Γ) 𝜃 ≤ 𝜇(Γ/𝑅𝑎𝑑𝑝 (Γ)) ≤ 𝐶𝑛𝑟 (rd(Γ/𝑅𝑎𝑑𝑝 (Γ))) ≤ 𝐶𝑛𝑟 (rd(Γ)).

�

Using Clifford theory, the last lemma implies the following:

Corollary 10.0.2. There is an increasing function 𝐶𝜈′ : N → N such that, for every prime 𝑝 > 2 and
any finite group Γ, we have

𝜈′𝑝 (Γ) < 𝐶𝜈′ (rd𝑝 (Γ)),

where 𝜈′𝑝 is the function defined in Notations 2.2.4.

Proof. Define 𝐶𝜈′ (𝑛) = max((𝐶𝐻2 (𝑛) + 1)𝑛, 𝐶𝑛𝑟 (𝑛)). We will prove the corollary by analyzing two
cases:
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Case 1. 𝑝 ≤ 𝐶𝐻2 (rd(Γ)).
In this case,

|Γ/𝑅𝑎𝑑𝑝 (Γ) | ≤ (𝑝 + 1)rd(Γ) ≤ (𝐶𝐻2 (rd(Γ)) + 1)rd(Γ) ≤ 𝐶𝜈′ (rd(Γ)).

Since we can control multiplicities when we pass to subgroup of bounded index (Lemma 8.0.2),
we get that

𝜈(Γ) ≤ |Γ/𝑅𝑎𝑑𝑝 (Γ) | · 𝜈(𝑅𝑎𝑑𝑝 (Γ)).

Since odd order symmetric pairs are Gelfand pairs (Corollary 5.0.5(1)), we have that

𝜈(𝑅𝑎𝑑𝑝 (Γ)) = 1.

We obtain

𝜈′𝑝 (Γ) ≤ 𝜈(Γ) ≤ #(Γ/𝑅𝑎𝑑𝑝 (Γ)) ≤ 𝐶𝜈′ (rd(Γ))

Case 2. 𝑝 > 𝐶𝐻2 (rd(Γ)).
By Proposition 7.0.2, the group 𝐻2 (Γ, 𝑙𝜇.. 𝑝∞) is trivial. Let 𝜌 ∈ Irr(Γ) be such that 𝜌 |𝑅𝑎𝑑𝑝 (Γ) is
isotypic. By Clifford theory (Lemma 9.0.2), there exist 𝜋1, 𝜋2 ∈ Irr(Γ) such that 𝜋1 |𝑅𝑎𝑑𝑝 (Γ) is
irreducible, the action of 𝑅𝑎𝑑𝑝 (Γ) on 𝜋2 is trivial and 𝜌 � 𝜋1 ⊗ 𝜋2. Thus, the main theorem
for product case (Lemma 10.0.1) implies that, for any involution 𝜃 of Γ, we have

𝜌Γ
𝜃
= (𝜋1 ⊗ 𝜋2)

Γ𝜃
≤ 𝐶𝑛𝑟 (rd(Γ)) ≤ 𝐶𝜈′ (rd(Γ)). �

We are now ready to prove the main theorem:

Proof of Theorem 2.3.1. Define C recursively by

1. 𝐶 (0) := 1
2. 𝐶 (𝑛) := 𝐶ℎ𝑒𝑟𝐻1 (𝑛) max(𝐶𝜈′ (𝑛), 𝐶 (𝑛 − 1)𝐶𝑚𝑜𝑛 (𝑛)),

where 𝐶ℎ𝑒𝑟𝐻1 is given by Corollary 6.0.6, 𝐶𝜈′ is given by Corollary 10.0.2 and 𝐶𝑚𝑜𝑛 is given by Corollary
4.1.2. We will prove the theorem by induction. We assume the theorem holds if rd𝑝 (Γ) < 𝑛 and prove
it in the case rd(Γ) = 𝑛.

Let 𝜃 be an involution of Γ and 𝜌 ∈ Irr Γ. Let 𝑁 := 𝑅𝑎𝑑𝑝 (Γ). If (𝜌 |𝑁 )
𝑁 𝜃

= 0, we are done.
Otherwise, let 𝜏 be an irreducible direct summand of 𝜌 |𝑁 such that (𝜏)𝑁 𝜃

≠ 0. By the Lapid–Prasad
property for symmetric pairs of odd order (Corollary 5.0.5(2)), we have (𝜏) 𝜃 � 𝜏∗. LetΔ := Γ𝜏 . We have

𝜃 (Δ) = Γ𝜏 𝜃 = Γ𝜏∗ = Γ𝜏 = Δ ,

showing that Δ is 𝜃-stable.
By Clifford theory (Lemma 9.0.1), we have

𝜌 = 𝑖𝑛𝑑ΓΔ (𝜎),

where 𝜎 ∈ Irr(Δ) is such that 𝜎 |𝑁 is 𝜏-isotypic. Therefore,

𝜌Γ
𝜃
= (𝑖𝑛𝑑ΓΔ (𝜎))

𝐻 = ⊕[𝑔] ∈Δ\Γ/Γ𝜃𝜎Δ∩(Γ𝜃 )𝑔 = ⊕[𝑔] ∈Δ\Γ𝑑𝑖𝑠/Γ𝜃𝜎Δ∩(Γ𝜃 )𝑔 , (2)
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where

Γ𝑑𝑖𝑠 = {𝑔 ∈ Γ|𝜎Δ∩(Γ𝜃 )𝑔 ≠ 0} ⊂ {𝑔 ∈ Γ|𝜎𝑁∩(Γ𝜃 )𝑔 ≠ 0} = {𝑔 ∈ Γ|𝜏𝑁∩(Γ𝜃 )𝑔 ≠ 0} =

= {𝑔 ∈ Γ| (𝜏𝑔)𝑁∩(Γ𝜃 ) ≠ 0} = {𝑔 ∈ Γ| (𝜏𝑔)𝑁
𝜃
≠ 0} ⊂ {𝑔 ∈ Γ| (𝜏𝑔)∗ ◦ 𝜃 � 𝜏𝑔} =: Γ𝑖𝑛𝑣 .

The last inclution is by the Lapid-Prasad property for symmetric pairs of odd order (Corollary 5.0.5(2)).
We analyze the quotient Δ\Γ𝑖𝑛𝑣/Γ𝜃 . Since (𝜏𝑔)∗ ◦ 𝜃 = (𝜏∗ ◦ 𝜃) 𝜃 (𝑔) = 𝜏𝜃 (𝑔) , we have

Γ𝑖𝑛𝑣 = {𝑔 ∈ Γ|𝜏𝜃 (𝑔) � 𝜏𝑔} = {𝑔 |𝜏𝑔𝜃 (𝑔
−1) � 𝜏} = {𝑔 |𝑔𝜃 (𝑔−1) ∈ Δ}.

Thus, for any 𝑔 ∈ Γ𝑖𝑛𝑣 , we have

𝜃 (𝑎𝑑 (𝑔−1) (Δ)) = 𝑎𝑑 (𝜃 (𝑔−1)) (Δ) = 𝑎𝑑 (𝑔−1𝑔𝜃 (𝑔−1)) (Δ) = 𝑎𝑑 (𝑔−1) (Δ),

and hence, 𝑎𝑑 (𝑔−1) (Δ) is 𝜃-stable.
We also have

Γ𝑖𝑛𝑣/Γ𝜃 = {𝑔𝜃𝑔−1 ∈ Δ |𝑔 ∈ Γ},

and thus,

Δ\Γ𝑖𝑛𝑣/Γ𝜃 = 𝐾𝑒𝑟 (𝐻1(𝑆2,Δ) → 𝐻1(𝑆2, Γ)).

Combining the last equality with (2), we get

dim𝜌Γ
𝜃
≤ |𝐻1 (𝑆2,Δ) | max

𝑔∈Γ𝑖𝑛𝑣
dim𝜎Δ∩(Γ𝜃 )𝑔

= |𝐻1 (𝑆2,Δ) | max
𝑔∈Γ𝑖𝑛𝑣

dim(𝜎 ◦ 𝑎𝑑 (𝑔)) (𝑎𝑑 (𝑔
−1) (Δ))∩Γ𝜃

= |𝐻1 (𝑆2,Δ) | max
𝑔∈Γ𝑖𝑛𝑣

dim(𝜎 ◦ 𝑎𝑑 (𝑔)) (𝑎𝑑 (𝑔
−1) (Δ)) 𝜃

= |𝐻1 (𝑆2,Δ) | max
𝑔∈Γ𝑖𝑛𝑣

dim𝜎Δ𝑎𝑑 (𝑔)◦𝜃◦𝑎𝑑 (𝑔−1 )

≤ |𝐻1 (𝑆2,Δ) | max
𝜃′ is an involution of Δ

(dim(𝜎Δ 𝜃′

)).

By our bound on 𝐻1 (𝑆2,Δ) (Corollary 6.0.6),

dim𝜌Γ
𝜃
≤ 𝐶ℎ𝑒𝑟𝐻1 (rd𝑝 (Γ)) max

𝜃′ is an involution of Δ
(dim(𝜎Δ 𝜃′

)). (3)

We finish the proof by analyzing the following cases:

Case 1. Rad𝑝 (Γ) ≠ Rad𝑝 (Δ):
In order to bound 𝜈(Δ), we fix an involution 𝜃 ′ of Δ . By Corollary 4.1.2, we can find a 𝜃 ′-
invariant subgroup Δ◦ � Δ such that

rd𝑝 (Δ◦) < rd𝑝 (Γ)

and

[Δ : Δ◦] ≤ 𝐶𝑚𝑜𝑛 (rd𝑝 (Γ)).
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The induction assumption implies that 𝜈(Δ◦) ≤ 𝐶 (rd𝑝 (Γ) − 1). Lemma 8.0.2(2) implies that

𝜈(Δ , 𝜃 ′) ≤ [Δ : Δ◦] · 𝜈(Δ◦, 𝜃 ′ |Δ◦ ) ≤ 𝐶𝑚𝑜𝑛 (rd𝑝 (Γ))𝐶 (rd𝑝 (Γ) − 1),

so

𝜈(Δ) ≤ 𝐶𝑚𝑜𝑛 (rd𝑝 (Γ))𝐶 (rd𝑝 (Γ) − 1).

It follows that

dim𝜌Γ
𝜃
≤ 𝐶ℎ𝑒𝑟𝐻1 (rd𝑝 (Γ)) · 𝐶𝑚𝑜𝑛 (rd𝑝 (Γ))𝐶 (rd𝑝 (Γ) − 1) ≤ 𝐶 (rd𝑝 (Γ)),

as required.
Case 2. Rad𝑝 (Γ) = Rad𝑝 (Δ).

In this case, rd𝑝 (Δ) ≤ rd𝑝 (Γ), and 𝜎 |Rad𝑝 (Δ) is isotypic. By (3) and Corollary 10.0.2,

dim𝜌Γ
𝜃
≤ 𝐶ℎ𝑒𝑟𝐻1 (rd𝑝 (Γ)) · 𝜈′(Δ)

≤ 𝐶ℎ𝑒𝑟𝐻1 (rd𝑝 (Γ))𝐶𝜈′ (rd𝑝 (Δ))

≤ 𝐶ℎ𝑒𝑟𝐻1 (rd𝑝 (Γ))𝐶𝜈′ (rd𝑝 (Γ)) ≤ 𝐶 (rd𝑝 (Γ)). �

10.1. Deduction of Theorem A, Corollary B and Corollary D

We will now deduce Theorem A from our main result, first reminding its formulation.

Theorem A. There is an increasing function 𝐶fin : N→ N such that, for any

◦ odd prime p,
◦ positive integer d,
◦ finite group Γ,
◦ normal p-subgroup 𝑁 � Γ,
◦ an embedding Γ/𝑁 ↩→ 𝐺𝐿𝑑 (F𝑝),
◦ an involution 𝜃 of Γ,
◦ an irreducible representation 𝜌 of Γ,

we have dim𝜌Γ
𝜃
≤ 𝐶fin (𝑑).

Proof. Set

𝐶fin (𝑑) := 𝐶𝑚𝑜𝑛 (𝑑
2)𝐶 (𝑑2).

By Corollary 4.1.2, we have a subgroup Δ � Γ/𝑁 such that

rd(Δ) ≤ rd(𝐺𝐿𝑑 (F𝑝)) = 𝑑2

and

[Γ/𝑁 : Δ] ≤ 𝐶𝑚𝑜𝑛 (rd(𝐺𝐿𝑑 (F𝑝))) = 𝐶𝑚𝑜𝑛 (𝑑
2).

Let Γ◦ be the preimage of Δ under the projection Γ → Γ/𝑁 . We have

rd(Γ◦) = rd(Δ) ≤ 𝑑2.

By the main theorem (Theorem 2.3.1),

𝜈(Γ◦) ≤ 𝐶 (𝑑2).
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Lemma 8.0.2(2) implies that

𝜈(Γ) = [Γ : Γ◦]𝜈(Γ◦) = [Γ/𝑁 : Δ]𝜈(Γ◦) ≤ 𝐶𝑚𝑜𝑛 (𝑑
2)𝐶 (𝑑2) = 𝐶fin (𝑑). �

Proof of Corollary B. Set Λ = 𝐶fin(𝐶𝑙𝑖𝑛 (𝑑)), where 𝐶𝑙𝑖𝑛 is the function given by Lemma 3.2.2.
Let 𝜓 : G → R be the reductive quotient of G and let 𝜑 : R → 𝐺𝐿𝐶𝑙𝑖𝑛 (𝑑) ,𝐹 be the embedding given

by Lemma 3.2.2. The group 𝜑 ◦ 𝜓(𝐾) is a compact subgroup of 𝐺𝐿𝐶𝑙𝑖𝑛 (𝑑) (𝐹) and, after conjugation,
we may assume that 𝜑 ◦ 𝜓(𝐾) ⊂ 𝐺𝐿𝐶𝑙𝑖𝑛 (𝑑) (𝑂𝐹 ). Let 𝐾1 ⊂ 𝐺𝐿𝐶𝑙𝑖𝑛 (𝑑) (𝑂𝐹 ) be the first congruence
subgroup.

Set 𝑀 := 𝐾 ∩ (𝜑 ◦𝜓)−1(𝐾1), 𝐿 := 𝑀 ∩ker 𝜌, and 𝑃 := 𝐿∩ 𝜃 (𝐿). The claim now follows by applying
Theorem A to Γ := 𝐾/𝑃, 𝑁 := 𝑀/𝑃, and the embedding Γ/𝑁 = 𝐾/𝑀 ↩→ GL𝐶𝑙𝑖𝑛 (𝑑) (𝑂𝐹 )/𝐾1 =
GL𝐶𝑙𝑖𝑛 (𝑑) (F𝑝). �

Proof of Corollary D. There is a constant 𝐶 = 𝐶 (G, 𝜃) such that, for every prime p, the number of
connected components of G𝜃 × Spec(F𝑝) is at most C. We claim that, for every p, the set X(Z𝑝) is a
union of at most 𝐶 G(Z𝑝)-orbits. Corollary D follows from

◦ The claim.
◦ The fact that each G(Z𝑝)-orbit has the form G(Z𝑝)/G(Z𝑝)

𝜃𝑖 , for some involutions 𝜃𝑖 of G(Z𝑝).
◦ dimHom

(
𝜌, 𝐶∞(G(𝑂)/G(𝑂) 𝜃𝑖 )

)
= dim𝜌G(𝑂) 𝜃𝑖 .

◦ Corollary B.

It remains to prove the claim. For this, it is enough to show that, for every prime p and every natural
number n, the number of G(Z/𝑝𝑛)-orbits in X(Z/𝑝𝑛) is bounded by C. Recall that the Greenberg
functor is a functor from the category of Z/𝑝𝑛-schemes to the category of F𝑝-schemes that satisfies
that 𝐺𝑟𝑛 (𝑋) (F𝑝) = 𝑋 (Z/𝑝𝑛). There is a natural transformation 𝐺𝑟𝑛 (𝑋) → 𝑋 × Spec(F𝑝). For the
definition of the Greenberg functor, see, for example, [BLR90, pp. 276].

From the long exact sequence of Galois cohomologies of Gal(F𝑝/F𝑝) with coefficients in
𝐺𝑟𝑛 (G𝜃 ), 𝐺𝑟𝑛 (G) and 𝐺𝑟𝑛 (X) (see, for example, [Ser02, §5.4, Corollary 1]), the orbit space of
𝐺𝑟𝑛 (X) (F𝑝) = X(Z/𝑝𝑛) under 𝐺𝑟𝑛 (G) (F𝑝) = G(Z/𝑝𝑛) embeds into 𝐻1 (Gal(F𝑝/F𝑝), 𝐺𝑟𝑛 (G𝜃 )).
The kernel of 𝜋 : 𝐺𝑟𝑛 (G𝜃 ) → G𝜃 × Spec(F𝑝) is an iterated extension of additive groups, so
it is absolutely connected. By Lang’s theorem and the long exact sequence of Galois cohomolo-
gies with coefficients in ker(𝜋), 𝐺𝑟𝑛 (G𝜃 ) and G𝜃 × Spec(F𝑝), the set 𝐻1

(
Gal(F𝑝/F𝑝), 𝐺𝑟𝑛 (G𝜃 )

)
embeds into 𝐻1

(
Gal(F𝑝/F𝑝),G𝜃 × Spec(F𝑝)

)
which itself embeds into 𝐻1

(
Gal(F𝑝/F𝑝), 𝜋0

(
G𝜃

) )
.

Since Gal(F𝑝/F𝑝) is pro-cyclic, a 1-cocycle is determined by its value at a topological generator, so
𝐻1

(
Gal(F𝑝/F𝑝), 𝜋0

(
G𝜃

) )
≤ |𝜋0

(
G𝜃

)
(F𝑝) | ≤ 𝐶. �

A. Bounds on twisted multiplicities for spherical spaces of finite groups of Lie type

In this appendix, we prove the following:

Theorem A.0.1. Let S be a scheme of finite type, let G → S be a connected reductive group scheme of
finite type over S and let H ⊆ G be a closed (not necessarily connected) reductive subgroup scheme.
Assume that, for every geometric point s of S , the pair (G𝑠 ,H𝑠) is spherical. Then there is a constant
C such that, for every finite field F, any 𝑠 ∈ S (𝐹), any irreducible representation 𝜌 of G𝑠 (𝐹) and any
1-dimensional character 𝜃 of H𝑠 (𝐹),

dim HomG𝑠 (𝐹 )

(
𝜌, IndG𝑠 (𝐹 )

H𝑠 (𝐹 )
𝜃
)
< 𝐶.

The proof is very similar to the one in [She]. The main additional ingredient is the geometrization of
(1-dimensional) characters of finite groups of Lie type.
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Given a Weil Qℓ-local system 𝔏 on a scheme X over a finite field F, the sheaf to function correspon-
dence gives a function 𝑋 (𝐹) → Qℓ which we denote by 𝜒𝔏.

Lemma A.0.2. LetS be a scheme of finite type and letH → S be a (not necessarily connected) reductive
group scheme of finite type over S . There is a constant C such that, for every finite field F of size greater
then 9, any prime ℓ ≠ 𝑐ℎ𝑎𝑟 (𝐹), any 𝑠 ∈ S (𝐹) and any 1-dimensional character 𝜒 : H𝑠 (𝐹) → Qℓ , there
is a Qℓ-local system 𝔏 over H𝑠 with a Weil structure of pure weight zero such that 𝜒𝔏 is a character of
a representation of H𝑠 (𝐹) of dimension at most C that contains 𝜒 as one of its irreducible constituents.

Proof. For every (not necessarily connected) reductive group G defined over a field F, let (G◦)′ be the
derived subgroup of the connected component of G and let G̃ be the the product of the universal cover
of (G◦)′ and the radical of G. The map G̃(𝐹̄) → G(𝐹̄) has finite kernel and cokernel.

By a stratification argument, there is a constant c such that, for every field F, any 𝑠 ∈ S (𝐹), the
kernel and cokernel of the map H̃𝑠 (𝐹̄) → H𝑠 (𝐹̄) are bounded by c. By Lemma 3.1.5, if F is a finite
field, the kernel and cokernel of the map H̃𝑠 (𝐹) → H𝑠 (𝐹) are bounded by 𝑐2. We will show that the
lemma holds with 𝐶 = 𝑐4.

Given 𝐹, ℓ, 𝑠, 𝜒 as in the lemma, denote the map H̃𝑠 → H𝑠 by 𝜑. Let 𝑅(H𝑠) be the radical of H𝑠 .
By [Lus85, §5], there is a 1-dimensional local system F on 𝑅(H𝑠) such that 𝜒F = 𝜒 �𝑅 (H𝑠) .

By Theorem 3.1.1(3), the character 𝜒 ◦ 𝜑 �H̃′
𝑠 (𝐹 )

is trivial. Therefore, under the decomposition
H̃𝑠 = H̃′

𝑠 × 𝑅(H𝑠), we have

𝜒 ◦ 𝜑 = 1H̃′
𝑠 (F𝑝)

� 𝜒 �𝑅 (H𝑠)= 1H̃′
𝑠 (F𝑝)

� 𝜒F = 𝜒1H̃′
𝑠
�F ,

where 1H̃′
𝑠

denotes the 1-dimensional trivial local system on H̃′
𝑠

Setting 𝔐 = 𝜑! (1H̃′
𝑠
� F), the function 𝜒𝔐 is equal to 𝜑∗(𝜒 ◦ 𝜑). It follows that the restrictions

of 𝜒𝔐 and | ker 𝜑(𝐹) |𝜒 to 𝜑(H̃𝑠 (𝐹)) coincide. Choose coset representatives 𝑔1, . . . , 𝑔𝑐 ∈ H𝑠 (𝐹) to
𝜑(H̃𝑠 (𝐹)) and let 𝔏 =

⊕
Ad(𝑔𝑖)∗(𝔐). We have that

𝜒𝔏 = IndH𝑠 (𝐹 )

𝜑 (H̃𝑠 (𝐹 ))
𝜒𝔐 �𝜑 (H̃𝑠 (𝐹 ))

= Ind𝜑 (H̃𝑠 (𝐹 ))H𝑠 (𝐹 ) ResH𝑠 (𝐹 )

𝜑 (H̃𝑠 (𝐹 ))
| ker 𝜑(𝐹) |𝜒,

which implies the claim. �

Now we will continue with the original argument of [AA19, She], adapting it to include the character
𝜒 and its geometrization 𝔏.

Definition A.0.3. If G is an algebraic group acting on a variety X, we let XG =
{(𝑥, 𝑔) ∈ 𝑋 × G | 𝑔 · 𝑥 = 𝑥}.

Lemma A.0.4. Let G,H be reductive algebraic groups, let X = G/H and consider the diagram

G × H
𝑝

��

𝑎 �� XG

H

where 𝑎(𝑔, ℎ) = (𝑔H, 𝑔ℎ𝑔−1) and 𝑝(𝑔, ℎ) = ℎ. If 𝔏 is an H-equivariant local system on H, then there
is a local system 𝔐 on 𝑋𝐺 such that 𝑎∗𝔐 � 𝑝∗𝔏.

Proof. We construct 𝔐 using descent. The main point is that (G × H) ×XG (G × H) � G × H × H via
the map ((𝑔1, ℎ1), (𝑔2, ℎ2)) ↦→ (𝑔1, 𝑔

−1
2 𝑔1, ℎ1). We get a diagram
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G × H × H
𝑎1 ��
𝑎2

��

𝑝2

��

G × H 𝑎 ��

𝑝1

��

XG

H × H
𝑏1 ��
𝑏2

�� H

where 𝑎1, 𝑎2, 𝑝1, 𝑝2 are the projections, 𝑏1 (𝑥, 𝑦) = 𝑥 and 𝑏2(𝑥, 𝑦) = 𝑥𝑦𝑥−1. We have 𝑏𝑖 𝑝2 = 𝑝1𝑎𝑖 for
𝑖 = 1, 2. The equivariance of 𝔏 gives an identification 𝛼 : 𝑏∗1𝔏 → 𝑏∗2𝔏, which gives an identification
𝛽 : 𝑎∗1𝑝

∗
1𝔏 = (𝑏1𝑝2)

∗𝔏 → (𝑏2𝑝2)
∗𝔏 = 𝑎∗2𝑝

∗
1𝔏, and it is easy to check that 𝛽 satisfies the cocycle identity.

By descent, 𝑝∗1𝔏 is the pullback of a sheaf 𝔐 on XG. Since a is onto, we get that 𝔐 is a local system. �

In the next lemma, we use the notion of induced character sheaf; see [AA19, Definition 2.2.1].

Lemma A.0.5. Let S be a scheme of finite type, let G → S be a connected reductive group scheme of
finite type over S and let H ⊆ G be a closed (not necessarily connected) reductive subgroup scheme.
Assume that, for every geometric point s of S , the pair (G𝑠 ,H𝑠) is spherical. There is a constant 𝐶1 such
that, for any finite field 𝐹, any 𝑠 ∈ S (𝐹), any induced character sheaf 𝔎 on G𝑠 and any H𝑠-equivariant
local system 𝔏 on H𝑠 of weight zero, dimHomG𝑠 (𝐹 )

(
𝜒𝔎, IndG𝑠 (𝐹 )

H𝑠 (𝐹 )
𝜒𝔏

)
< 𝐶1 · rk𝔏.

Proof. For every geometric point s of S , let Fl𝑠 be the flag variety of G𝑠 . Let 𝐶1 be such that, for every
geometric point s of S , the number of connected components of (G𝑠/H𝑠 × Fl𝑠)G𝑠 is bounded by 𝐶1.

Let 𝐹, 𝑠,𝔎,𝔏 be as in the lemma. Denote G = G𝑠 ,H = H𝑠 ,X = G/H and fix a Borel subgroup B of
G defined over F. Consider the diagram

(X × G/B)G
𝑓

����
���

���
��

𝑞

��

𝜋

		���
���

���
�

XG

𝑓


��

���
���

���
(G/B)G

𝜋

�����
���

���
���

G

𝑝

��
Spec(𝐹)

where 𝑓 , 𝜋, 𝑓̃ , 𝜋̃ are the projections and 𝑞 = 𝜋 ◦ 𝑓̃ = 𝜋̃ ◦ 𝑓 .
By definition, there is a weight zero local system 𝔉 on (G/B)G such that 𝔎 is a direct summand of

𝑅𝜋∗𝔉. Applying Lemma A.0.4 to𝔏, we get a local system𝔐 on XG. Since𝔏 has weight zero, so does𝔐.
By construction, 𝜒𝑅 𝑓!𝔐 = Ind 𝜒𝔏. Denoting the standard inner product of functions on 𝐺 (𝐹) by

〈−,−〉, we get

dimHomG(𝐹 )

(
𝜒𝔎, IndG(𝐹 )

H(𝐹 )
𝜒𝔏

)
=
〈
𝜒𝔎, IndG(𝐹 )

H(𝐹 )
𝜒𝔏

〉
=
〈
𝜒𝔎, 𝜒 𝑓!𝔐

〉
=
〈
𝜒𝔎⊗ 𝑓!𝔐∨ , 1

〉
= trace

(
𝐹𝑟𝐹 | 𝑝! (𝔎 ⊗ 𝑓!𝔐

∨)
)
,

where 𝐹𝑟𝐹 is induced by the Frobenius map of Spec(𝐹).
For every n, denote the degree n extension of 𝐹 by 𝐹𝑛 and denote the pullbacks of 𝔏,𝔎 to G𝐹𝑛 ,H𝐹𝑛

by 𝔏𝑛,𝔎𝑛. From the same reasoning as before, we get

dimHomG(𝐹𝑛)

(
𝜒𝔎𝑛 , IndG(𝐹𝑛)

H(𝐹𝑛)
𝜒𝔏𝑛

)
= trace

(
𝐹𝑟𝑛𝐹 | 𝑝! (𝔎 ⊗ 𝑓!𝔐

∨)
)
.
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The complex 𝑝! (𝔎 ⊗ 𝑓!𝔐∨) is a direct summand of 𝑝! (𝜋!𝔉 ⊗ 𝑓!𝔐∨). Since

𝜋! 𝑓̃!

(
𝑓̃ ∗𝔉 ⊗ 𝜋̃∗𝔐∨

)
= 𝜋!

(
𝔉 ⊗ 𝑓̃!𝜋̃

∗𝔐∨
)
= 𝜋!

(
𝔉 ⊗ 𝜋∗ 𝑓!𝔐

∨
)
= 𝜋!𝔉 ⊗ 𝑓!𝔐

∨,

we get that 𝑝! (𝔎 ⊗ 𝑓!𝔐∨) is a direct summand of 𝑝!𝑞!

(
𝑓̃ ∗𝔉 ⊗ 𝜋̃∗𝔐∨

)
. Since 𝑓̃ ∗𝔉 ⊗ 𝜋̃∗𝔐∨ has weight

zero, we get that the complex 𝑝! (𝔎 ⊗ 𝑓!𝔐∨) has weight zero, is concentrated in degrees 0, . . . , 2dim(X×

G/B)𝐺 = 2dimG and

dim𝐻2dimG𝑝!
(
𝔎 ⊗ 𝑓!𝔐

∨
)
≤ dim𝐻2dimG𝑝!𝑞!

(
𝑓̃ ∗𝔉 ⊗ 𝜋̃∗𝔐∨

)
≤ 𝑐 rk𝔏.

Thus,

lim sup
𝑛→∞

trace
(
𝐹𝑟𝑛𝐹 | 𝑝!𝔎 ⊗ 𝑓!𝔐

∨
)
≤ 𝑐 rk𝔏,

so, by [AA19, Lemma 2.4.1 and the proof of Theorem 2.1.3],

dimHomG(𝐹 )

(
𝜒𝔎, IndG(𝐹 )

H(𝐹 )
𝜒𝔏

)
= trace

(
𝐹𝑟𝐹 | 𝑝!𝔎 ⊗ 𝑓!𝔐

∨
)
≤ 𝑐 rk𝔏 �

Proposition A.0.6. For any d, there are integers 𝑁,𝐶 such that, if

1. F is a finite field of size greater than N,
2. G is a reductive group defined over F of dimension at most d,
3. 𝜒 is an irreducible character of G(𝐹),

then there are induced character sheaves 𝔎1, . . . ,𝔎𝐶 and real numbers 𝛼1, . . . , 𝛼𝐶 ∈ [−𝐶,𝐶] such
that

∑
𝛼𝑖𝜒𝔎𝑖 − 𝜒 is a non-negative combination of irreducible characters of G(𝐹).

Proof. [She, Lemma A.1, Theorem 2.2, Theorem 3.3] (the last two are due to Laumon and Lusztig). �

Proof of Theorem A.0.1. Without loss of generality, we may assume that |𝐹 | > 9. Let 𝜌 be an irreducible
representation of 𝐺 (𝐹) and let 𝜃 be a character of 𝐻 (𝐹). Let 𝐶,𝔎𝑖 , 𝛼𝑖 be as in Lemma A.0.6 (applied
to 𝜌) and let 𝔏 be as in Lemma A.0.2 (applied to 𝜃). By Lemma A.0.5, we have

dimHom(𝜌, Ind 𝜃) ≤
〈∑

𝛼𝑖𝜒𝔎𝑖 , Ind 𝜒𝔏

〉
≤
∑

|𝛼𝑖 | ·


〈𝜒𝔎𝑖 , Ind 𝜒𝔏

〉

 < 𝐶2 · 𝐶1 · 𝐶. �

B. A versal family of symmetric pairs of reductive groups over finite fields

In this appendix, we prove Lemma 3.2.2 and construct a family of symmetric pairs of reductive groups
that includes all symmetric pairs of reductive groups of a given dimension over all finite fields (Lemma
3.2.1).

B.1. Proof of Lemma 3.2.2

For the proof, we will need the following:

Lemma B.1.1. There is an increasing function 𝐶𝑠𝑝𝑡 : N→ N such that any reductive algebraic group
G over an arbitrary field F splits over an extension 𝐹 ′/𝐹 of degree at most 𝐶𝑠𝑝𝑡 (dim G).

Proof. Set 𝐶𝑠𝑝𝑡 (𝑑) := 3𝑑3 .
There is a maximal torus of G that is defined over F ([ABD+64, XIV 1.1]), so we can assume that

G is a torus. Denote 𝑑 = dim G.
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Since G is an F-form of G𝑑𝑚, we get a continuous homomorphism 𝜌 : Gal𝐹 → Aut(G𝑑𝑚) = GL𝑑 (Z).
The image of 𝜌 is finite. Since the kernel of GL𝑑 (Z) → GL𝑑 (Z/3) is torsion-free, 𝜌(Gal𝐹 ) embeds in
GL𝑑 (Z/3), so

|𝜌(Gal𝐹 ) | ≤ | GL𝑑 (Z/3) | < 3𝑑
3
= 𝐶𝑠𝑝𝑡 (𝑑). �

Proof of Lemma 3.2.2. Since there are finitely many split reductive groups of given dimension, there
is a function 𝐶𝑙𝑖𝑛𝑆𝑝𝑡 such that every split reductive group H has a faithful representation of di-
mension 𝐶𝑙𝑖𝑛𝑆𝑝𝑡 (dim H). Given an arbitrary reductive group G, Lemma B.1.1 implies that G splits
over an extension 𝐹 ′/𝐹 of degree at most 𝐶𝑠𝑝𝑡 (dim G). Hence, there is a faithful representation
G → Res𝐹 ′/𝐹 GL𝐶𝑙𝑖𝑛𝑆𝑝𝑡 (dim G) , so we can take 𝐶𝑙𝑖𝑛 (𝑛) = 𝐶𝑙𝑖𝑛𝑆𝑝𝑡 (𝑛)𝐶𝑠𝑝𝑡 (𝑛). �

B.2. Sketch of the proof of Lemma 3.2.1

We first show that there are finitely many root data of a given dimension (see Lemma B.3.1 below).
Thus, we restrict our attention to a given root datum 𝔛. We denote by G the split reductive group scheme
corresponding to 𝔛. By Lemma B.1.1, there is an integer k such that any reductive group of type 𝔛 over
a finite field splits after passing to a field extension of degree k.

We then construct a finite etale map of schemes E → F that forms a family containing all degree k
extensions of finite fields. This means that, for any degree k extension of finite fields 𝐸/𝐹, we can find
an F-point y of F whose fiber E𝑦 is Spec 𝐸 . Moreover, we equip E with an action of the cyclic group 𝐶𝑘
such that, if F is a finite field, we can find y as above such that the action of 𝐶𝑘 on E𝑦 is the Frobenius.
See Lemma B.4.1 below.

By Lang’s theorem, a reductive group of type 𝔛 over a finite field F that splits over a degree k
extension 𝐸/𝐹 is determined by an action of 𝐶𝑘 on 𝔛. We show that there are finitely may such actions
up to conjugation (see Lemma B.3.2 below). Thus, we can fix one such an action 𝜉. We can also consider
𝜉 as an action on G.

At this point, we can construct a group scheme H → F containing all groups of type (𝔛, 𝜉) over
finite fields. Namely, we first construct a group scheme H′ → F whose fiber over 𝑦 ∈ F (𝐹) is the
restriction of scalars of GE𝑦 to F. Using the two actions of 𝐶𝑘 on E and G, we equip H′ with an action
of 𝐶𝑘 . Finally, set H := (H′)𝐶𝑘 .

Next, we incorporate all possible involutions. We first note that, up to inner automorphisms, there are
only finitely many involutions of 𝔛 commuting with the action of 𝐶𝑘 (see Lemma B.3.2 below). Thus,
we can restrict our attention to a specific such involution 𝜂. We then construct an F-scheme S whose
F-points are pairs (𝑦, 𝑡) consisting of a point 𝑦 ∈ F (𝐹) and an involution t of GE𝑦 which commutes
with 𝜉 and is of outer class 𝜂.

Finally, we pull back the group schemes H′ and H to S and denote the resulting groups schemes R′

and R. Both R and R′ are equipped with a natural involution 𝜏. The group scheme R → S with the
involution 𝜏 gives the required family.

Remark B.2.1. In the proof, below we skip H,H′ and construct R,R′ directly.

B.3. Some preparations

Lemma B.3.1. For any integer 𝑛 > 0, there is a finite number of isomorphism classes of complex
connected reductive groups of dimension n.

Proof. Fix a complex connected reductive group G. Let G̃′ be the universal cover of its derived group,
let 𝑍0 (G) be the connected component of the center of G and let Γ be the kernel of the multiplication
map G̃′ × 𝑍0 (G) → G.

Let 𝑍 (G̃′) be the center of G̃′. Note that 𝑍 (G̃′) is finite, that Γ ⊂ 𝑍 (G̃′) × 𝑍0(G) and that Γ∩ 𝑍0(G)

is trivial. Thus, Γ is a graph of a morphism from subgroup of 𝑍 (G̃′) to 𝑍0 (G). This implies that
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Γ < 𝑍 (G̃′) × 𝑍0 (G) [|𝑍 (G̃′) |], where for an integer k, the group 𝑍0 (G) [𝑘] is the subgroup of elements
of order dividing k in 𝑍0 (G).

Any complex connected reductive group G is uniquely determined (up to isomorphism) by the
following:

◦ the simply conected semi-simple complex group G̃′.
◦ the complex algebraic torus 𝑍0 (G).
◦ the finite subgroup Γ < 𝑍 (G̃′) × 𝑍0 (G) [|𝑍 (G̃′) |].

Since each of those has only finitely many options given the dimension of G, the claim follows. �

Lemma B.3.2. For any complex connected reductive group G and any finite abelian group A,

#𝑀𝑜𝑟 (𝐴,𝑂𝑢𝑡 (G))/𝐴𝑑 (𝑂𝑢𝑡 (G)) < ∞.

Proof. Any automorphism of G is determined by its restrictions to the derived subgroup G′ and to the
connected component 𝑍0 (G) of the center. We first claim that the map Aut(G) → Aut(𝑍0 (G))×𝐴𝑢𝑡 (G′)

has finite cokernel. Indeed, let K be the kernel of the map G′ × 𝑍0 (G) → G. The group K is finite. Let
M ⊂ G′ × 𝑍0 (G) be the product of the center 𝑍 (G′) and the finite group of elements of 𝑍0 (G) of order
dividing |K|. The group M is finite, contains K and is characteristic in G′ × 𝑍0 (G). It follows that the
subgroup of Aut(𝑍0 (G)) × 𝐴𝑢𝑡 (G′) fixing K has finite index. Any element in this subgroup extends to
an automorphism of G.

Let 𝜙 be the composition 𝐴𝑢𝑡 (G) → 𝐴𝑢𝑡 (𝑍0(G)) × 𝐴𝑢𝑡 (G′) → 𝐴𝑢𝑡 (𝑍0(G)) × 𝑂𝑢𝑡 (G′). By the
paragraph above, the cokernel of 𝜙 is finite. Note also that the kernel of 𝜙 is the subgroup of inner
automorphisms. In particular, we have an embedding 𝑂𝑢𝑡 (G) → 𝐴𝑢𝑡 (𝑍0 (G)) ×𝑂𝑢𝑡 (G′) with a finite
cokernel.

The group 𝑂𝑢𝑡 (G′) is finite. Denote it by Γ. The group 𝐴𝑢𝑡 (𝑍0(G)) is isomorphic to 𝐺𝐿𝑛 (Z) for
some integer n. We get

|𝑀𝑜𝑟 (𝐴,𝑂𝑢𝑡 (G))/𝐴𝑑 (𝑂𝑢𝑡 (G)) | ≤ |𝑀𝑜𝑟 (𝐴, 𝐺𝐿𝑛 (Z) × Γ)/𝐴𝑑 (𝑂𝑢𝑡 (G)) |

≤ [𝐺𝐿𝑛 (Z) × Γ : 𝑂𝑢𝑡 (G)] · |𝑀𝑜𝑟 (𝐴, 𝐺𝐿𝑛 (Z) × Γ)/𝐴𝑑 (𝐺𝐿𝑛 (Z) × Γ) |

≤ [𝐺𝐿𝑛 (Z) × Γ : 𝑂𝑢𝑡 (G)] · |Γ| · |𝑀𝑜𝑟 (𝐴, 𝐺𝐿𝑛 (Z))/𝐴𝑑 (𝐺𝐿𝑛 (Z)) |.

By [PR94, Theorem 4.3], 𝑀𝑜𝑟 (𝐴, 𝐺𝐿𝑛 (Z))/𝐴𝑑 (𝐺𝐿𝑛 (Z)) is finite, proving the lemma. �

B.4. Construction of the family

Lemma B.4.1. For any integer 𝑛 > 0, there exists a finite etale morphism Ψ𝑛 : E𝑛 → F𝑛 of schemes of
finite type over Z with an action of 𝐶𝑛 on E𝑛 over F𝑛 such that, for any degree n extension 𝐸/𝐹 of finite
fields, there exists 𝜈 : Spec 𝐹 → F𝑛 such that

Spec(𝐸) � Spec(𝐹) ×F𝑛 E𝑛

as a 𝐶𝑛-scheme. Here, the action of 𝐶𝑛 on E is the Galois action.

Proof. For a unital ring A and an integer k, let 𝐴𝑘 [𝑡] be the set of polynomials of degree ≤ 𝑘 and let
𝐴′
𝑘 [𝑡] be the set of monic polynomials of degree k. Denote the resultant of two polynomials 𝑓 (𝑡), 𝑔(𝑡)

by 𝑟𝑒𝑠𝑡 ( 𝑓 , 𝑔). Let

F𝑛 (𝐴) := {( 𝑓 , 𝑔) ∈ 𝐴′
𝑛 [𝑡] × 𝐴𝑛−1 [𝑡] | 𝑟𝑒𝑠𝑡 ( 𝑓 , 𝑓

′) ∈ 𝐴× and 𝑓 divides 𝑓 ◦ 𝑔 and 𝑔◦𝑛 − 𝑡}

and let

E𝑛 (𝐴) := {( 𝑓 , 𝑔, 𝑧) ∈ 𝐴′
𝑛 [𝑡] × 𝐴𝑛−1 [𝑡] × 𝐴 | ( 𝑓 , 𝑔) ∈ F𝑛 and 𝑓 (𝑧) = 0}.
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Define an action of 𝐶𝑛 on E𝑛 (𝐴) by

𝑘 · ( 𝑓 , 𝑔, 𝑧) ↦→ ( 𝑓 , 𝑔, 𝑔◦𝑘 (𝑧)).

By construction, the assignments 𝐴 ↦→ F𝑛 (𝐴) and 𝐴 ↦→ E𝑛 (𝐴) give rise to representable functors.
We denote the representing schemes by F𝑛 and E𝑛. Similarly, the action of 𝐶𝑛 on E𝑛 (𝐴) gives rise to an
action of 𝐶𝑛 on E𝑛 over F𝑛. Denote by Ψ𝑛 : E𝑛 → F𝑛 the projection. The map Ψ𝑛 is an etale map.

Suppose that 𝐸/𝐹 is a degree n extension of finite fields. Let 𝛼 ∈ 𝐸 be a generator and let 𝑓 ∈ 𝐹𝑛 [𝑡]
be its (monic) minimal polynomial. Let 𝑔 ∈ 𝐹𝑛−1 [𝑡] be the polynomial of degree < 𝑛 such that
𝐹𝑟𝐹 (𝛼) = 𝑔(𝛼). The tuple ( 𝑓 , 𝑔) is a point in F𝑛 (𝐹) (i.e., it defines a morphism Spec 𝐹 → F𝑛). It is
easy to see that

Spec(𝐸) � Spec(𝐹) ×F𝑛 E𝑛,

as required. �

We now prove the main result of this appendix.

Proof of Lemma 3.2.1. Let 𝔛 be a pair consisting of a root datum and a choice of positive roots, and let
k be an integer. Let 𝛼 : 𝑆2 × 𝐶𝑘 → 𝐴𝑢𝑡 (𝔛) be a morphism.

Let G𝔛 → SpecZ be the split reductive group scheme corresponding to 𝔛. Let 𝛼2 : 𝑆2 × 𝐶𝑘 →

𝐴𝑢𝑡 (G𝔛) be the corresponding action.
Let 𝐴𝑢𝑡G𝔛/Z : 𝑆𝑐ℎ𝑒𝑚𝑒𝑠𝑜𝑝 → 𝐺𝑟𝑜𝑢𝑝𝑠 be the functor defined by 𝐴𝑢𝑡G𝔛/Z(𝑆) = 𝐴𝑢𝑡𝑆 (G𝔛 ×SpecZ 𝑆);

cf. [Con, Definition 7.1.3]. By [Con, Theorem 7.1.9], this functor is representable by a (not necessarily
finite type) Z-group scheme that we also denote 𝐴𝑢𝑡G𝔛/Z.

Denoting 𝑆2 = {1, 𝜀}, let I𝔛,𝛼 ⊂ 𝐴𝑢𝑡G𝔛/Z be defined by

I𝔛,𝛼 (𝑆) :=
{
𝑎 ∈ 𝐴𝑢𝑡G𝔛/Z(𝑆)





 𝑎 commutes with 𝛼2(𝐶𝑘 )𝑆 and, for every geometric point 𝑠 of 𝑆,
the automorphism 𝑎𝑠 is in the class 𝛼(𝜀, 0)

}
,

where S is an affine scheme. For an automorphism 𝛽 of G𝔛 , we denote by 𝛽𝑆 its restriction to G𝔛 × 𝑆.
By [Con, Theorem 7.1.9], I𝔛,𝛼 is of finite type.

Define an action 𝛼3 : 𝑆2 × 𝐶𝑘 → 𝐴𝑢𝑡I𝔛,𝛼 (G𝔛 × I𝔛,𝛼) by

𝛼3 (𝜀
𝑖 𝑗) (𝑥, 𝜂) = (𝜂𝑖𝛼2 ( 𝑗)𝑥, 𝜂),

where 𝑖 ∈ Z, 𝑗 ∈ 𝐶𝑘 and (𝑥, 𝜂) ∈ G𝔛 × I𝔛,𝛼 (𝑆).
Let F𝑘 , E𝑘 be as in Lemma B.4.1 and define S𝔛,𝛼 := (I𝔛,𝛼 ×F𝑘 ) ∧F𝑘

E𝑘 , where ∧ denotes the internal
morphism space; see, for example, [AA, §§3.1]. An F-point of S𝔛,𝛼 is a pair (𝑧, 𝑦), where 𝑦 ∈ F𝑘 (𝐹)
and 𝑧 ∈ I𝔛,𝛼 ((E𝑘 )𝑦). Let

R′
𝔛,𝛼 =

(
G𝔛 × S𝔛,𝛼

) ∧

S𝔛,𝛼

(
E𝑘 ×F𝑘 S𝔛,𝛼

)
.

Note that R′
𝔛,𝛼 has a natural structure of a group scheme over S𝔛,𝛼. By their constructions,

E𝑘 ,S𝔛,𝛼,R′
𝔛,𝛼 all have an action of 𝑆2 × 𝐶𝑘 (𝑆2 acts trivially on E𝑘 ). Denoting the 𝑆2 × 𝐶𝑘 -action

on R′
𝔛,𝛼 by

𝛼4 : 𝑆2 × 𝐶𝑘 → 𝐴𝑢𝑡S𝔛,𝛼 (R′
𝔛,𝛼),

let

R𝔛,𝛼 := (R′
𝔛,𝛼)

𝛼4 (𝐶𝑘 ) ,
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and

𝑡𝔛,𝛼 := 𝛼4(𝜀) |R𝔛,𝛼 .

Denote 𝑛𝔛 := 𝐶𝑠𝑝𝑡 (dimSpecZ (G𝔛)), where 𝐶𝑠𝑝𝑡 is the function given by Lemma B.1.1.
Let

Δ𝑛 := {(𝔛, 𝑑, 𝜅) |𝔛 is a root datum of dimension ≤ 𝑛; 𝑑 ≤ 𝑛𝔛; 𝜅 ∈ 𝑀𝑜𝑟 (𝑆2 × 𝐶𝑑 ,Aut(𝔛))/𝑎𝑑 (Aut(𝔛))}.

Since there are finitely many root data of a given dimension (Lemma B.3.1) and finitely many actions
of 𝑆2 × 𝐶𝑑 (𝑑 ≤ 𝑛𝔛) on a given root datum (Lemma B.3.2), the set Δ𝑛 is finite. Finally, set

S𝑛 :=
⊔

(𝔛,𝑑, [𝛼]) ∈Δ𝑛

S𝔛,𝛼,

R𝑛 :=
⊔

(𝔛,𝑑, [𝛼]) ∈Δ𝑛

R𝔛,𝛼,

and

𝑡𝑛 :=
⊔

(𝔛,𝑑, [𝛼]) ∈Δ𝑛

𝑡𝔛,𝛼 .

We claim that (R𝑛,S𝑛, 𝑡𝑛) satisfies the requirements of the lemma.
Parts (1,3) follow from the fact that, for any geometric point x of S𝔛,𝛼, the group scheme (R𝔛,𝛼)𝑥 is

reductive and its absolute root system is 𝔛. It remains to show Part (2).
Let n be an integer, let F be a finite field, let G be a reductive group of dimension ≤ 𝑛 defined over

F and let t be an involution of G. We need to find an element 𝑤 ∈ S𝑛 (𝐹) such that

(G, 𝑡) � ((R𝑛) |𝑤 , 𝑡𝑛 |(R𝑛) |𝑤 ).

Let 𝔛 be the absolute root datum of G. By Lemma B.1.1, there is a field extension 𝐸/𝐹 of degree
𝑑 ≤ 𝑛𝔛 and an isomorphism G𝐸 � (G𝔛)𝐸 .

Denoting the group of E-automorphisms of the algebraic group (G𝔛)𝐸 by 𝐴𝑢𝑡𝐸 ((G𝔛)𝐸 ), we get an
element in 𝐻1(𝐺𝑎𝑙 (𝐸/𝐹), 𝐴𝑢𝑡𝐸 ((G𝔛)𝐸 )). By Lang’s theorem, this element comes from an element
𝐻1 (𝐺𝑎𝑙 (𝐸/𝐹), 𝑂𝑢𝑡𝐸 ((G𝔛)𝐸 )) via the embedding 𝑂𝑢𝑡𝐸 ((G𝔛)𝐸 ) � 𝑂𝑢𝑡 (𝔛) ⊂ 𝐴𝑢𝑡𝐸 (G𝔛)𝐸 . Since the
action of Gal(𝐸/𝐹) on 𝑂𝑢𝑡𝐸 ((G𝔛)𝐸 ) is trivial, this element is a homomorphism 𝜉 : 𝐺𝑎𝑙 (𝐸/𝐹) →

𝑂𝑢𝑡𝐸 ((G𝔛)𝐸 ) = 𝐴𝑢𝑡 (𝔛).
Let [𝑡] ∈ 𝐴𝑢𝑡 (𝔛) be the involution corresponding to 𝑡 ∈ Aut(G). We get an action 𝛼 : 𝑆2 × 𝐶𝑑 →

𝐴𝑢𝑡 (𝔛). By Lemma B.4.1, there is an element 𝑦 ∈ F𝑑 (𝐹) such that (E𝑑) |𝑦 = Spec 𝐸 and the action 𝐶𝑑
on this fiber is the Frobenius action.

Let 𝑡𝐸 be the automorphism of G𝐸 corresponding to t. We will consider it as an element
in 𝐴𝑢𝑡G𝑋/Z(𝐸) = 𝐴𝑢𝑡𝐸 ((G𝔛)𝐸 ). By construction, 𝑡 ∈ I𝔛,𝛼 (𝐹). The tuple (𝑦, 𝑡) gives a point
𝑤 ∈ S𝔛,𝛼 (𝐹) ⊂ S𝑛 (𝐹). Finally,

(G, 𝑡) � ((R𝑛) |𝑤 , 𝑡𝑛 |(R𝑛) |𝑤 ). �
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