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Abstract

In the early 70s A. Kaneko studied the problem of continuation of regular solutions of systems of
linear partial differential equations with constant coefficients to compact convex sets. We show here
that the conditions he obtained for real analytic solutions also hold in the quasi-analytic case. In
particular we show that every quasi-analytic solution of the system p(D)u = 0 defined outside a
compact convex subset K or R” can be continued as a quasi-analytic solution to K if and only if the
system is determined and the #module Ext!(Coker p’, ) has no elliptic component; here 2 is the
ring of polynomials in n variables, p is a matrix with elements from £ and p’ is the transposed matrix.
In the scalar case, i.e. when p is a single polynomial, these conditions mean that p has no elliptic
factor.

1980 Mathematics subject classification ( Amer. Math. Soc.): 35 B 60, 35 E 99.
Keywords and phrases: partial differential equations, continuation of solutions, removable singularities,
quasi-analytic functions.

1. Introduction

While an analytic function of one complex variable may have lots of non-remova-
ble isolated singularities (except when it satisfies some a priori local boundedness
condition, cf. a classical theorem of Riemann [19]), it was shown by Hartogs [7]
that isolated singularities of an analytic function of several complex variables are
always removable. This phenomenon has been explained by Bochner [3] from the
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standpoint of overdetermined systems of differential equations (the Cauchy-
Riemann system). A closer examination of the circumstances made by Ehrenpreis,
Komatsu, Malgrange and Palamodov [5, 14, 16, 18] revealed that any compact
convex set is a removable singularity for any general (i.e. distribution or hyper-
function) solution of an overdetermined system of differential equations with
constant coefficients. More precisely, any distribution (hyperfunction) solution of
such a system defined outside a convex compact set in R"” can be uniquely
continued to that set as a distribution (hyperfunction) solution. Although this
property is characteristic for overdetermined systems, an analogous property with
only regular (e.g. € or real analytic) solutions allowed, is not. The first to
observe this was probably Grusin {6] who gave a sufficient condition for every
isolated singularity of a %> -solution of the scalar equation p(D)u = 0 to be
removable: every irreducible factor of the polynomial p should have a real simple
characteristic direction. Some related results can be found in Palamodov [18,
Chapter VIII, §14)]. Later, Kaneko [9, 10] succeeded in characterizing the systems,
the real analytic solutions of which, have all compact convex sets as removable
singularities:

THEOREM 0 [10, Theorem 2.3]. Let K C U c R", K compact and convex, U open.
Let p(D) be a matrix of linear partial differential operators with constant coeffi-
cients and let p’ be its transposed matrix. Let P be the ring of polynomials in n
variables. Then every real analytic solution of p(D)u = 0 on U\ K can be continued
to K as a hyperfunction solution of this system if and only if Ext'(Coker p’, #) has
no elliptic component in its primary decomposition. In order that every real analytic
solution on U\ K be continuable to K as a real analytic solution on U it is necessary
and sufficient, that in addition to the condition above, the system is determined (i. e.
Hom(Coker p’, #) = 0).

This result was the starting point of some impressive generalizations developed
since then by Kaneko in the direction of micro-local analysis of singularities of
systems with variable coefficients, mostly within the framework of real analytic
regularity. A recent introduction to the subject with a historical background and
all relevant references can be found in the survey lecture [13].

The aim of the present note is to show that Theorem 0 extends, as it stands, to
the case of quasi-analytic regularity (but not beyond—cf. Remark 3, Section 3).
This is the content of our Theorem 1, formulated in complete analogy with
Theorem 2.3 of [10]. In proving the least obvious part of the latter, i.e. the
sufficiency of the Ext!-condition in case of determined systems, Kaneko used
hyperfunction theory (in particular the flabbiness property!) and a hyperfunction
version of the Fundamental Principle which he developed on this occasion. Later,
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in [12], he gave an elementary proof for the scalar case, employing the Ehrenpreis’
cut-off functions. Our proof of the corresponding part of Theorem 1 is modeled
on that of [12]; it is elementary in the sense that, except for some defining
notions, it uses neither homological algebra nor hyperfunction theory and it needs
only (a part of) the classical Palamodov Fundamental Principle. Decisive for the
treatment of the general quasi-analytic case has been the replacement of Carlson’s
lemma in [12] by the more powerful [2, Theorem 6.3.6]; it is needed in the proof
of Lemma 2. It may be interesting to remark in this context that Hormander (8]
recently proved the flabbiness of (what one may perhaps call) the sheaves of
infra-hyperfunctions, i.e. the sheaves related to the quasi-analytic classes in the
same way the hyperfunctions relate to the analytic class. This result may make it
possible, if desired, to construct an infra-hyperfunction proof of Theorem 1
analogous to the proof in [10].

In [1] Kaneko significantly relaxed the condition on the geometry of the virtual
singularity K, replacing its convexity by the connectedness of its complement. We
would have done likewise in Theorem 1, were we able to assert the triviality of the
cohomology of the quasi-analytic sheaf on R”; whether this is the case is,
however, not known to the author. It would also be interesting to see some of the
micro-local real analytic results of Kaneko find their counterparts in the quasi-
analytic case.

The reader may find it helpful to read this note together with [9, 10, 12]. The
notation used here is that of [9, 10], which, in turn, leans on Palamodov {18].
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2. Preliminaries

P-modules and associated varieties. Let P be the ring of polynomials in n
variables {,,...,{, and let p({): #* - P’ be a t X s-matrix with polynomial
coefficients. Put M = Coker p’ = #°/p’®* where p’ is the transposed matrix of p
and let

(1.1) OeMeP Ll pne ...
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be a free resolution of the #~module M. Recall that the sequences
0 > Hom(M, 2) - #* 5
and
0 - Ext{(M, #) > ' /ps 55

are exact by definition, that M is called determined if Hom(M, #) =0 and
overdetermined if, in addition, Ext!(M, 2) = 0. Recall also that to any finite
#module 2 one may associate a family of irreducible affine algebraic varieties
{N,(2)} in C" defined as follows: if

0=2,Nn --- N2,

is a non-redundant primary decomposition of the zero submodule of 2, then
N,(2) is the zero-set of the annihilator ideal of 2,,A = 0,1,...,1

Let us briefly review some well-known facts about projective extentions of
complex affine varieties. Consider C” imbedded in the complex projective space
P " by means of a mapping ¢ which to { = ({,,...,{,) € C" associates the point
in P" represented by the homogeneous coordinates (1, {;,...,¢,). To an affine
variety V' in C" corresponds then the projective extention of V'—the smallest
projective variety V* in P” containing ¢(¥'). Of course, V'* and ¢(V') differ (at
most) by some points of P"\ ¢(C") (=: H_, the hyperplane at infinity), which
are called the points at infinity of V. We recall in passing that a #-module 2 is
called elliptic [17] if none of the associated varieties N,(2), A = 0,...,/, has a real
point at infinity (i.e. a point at infinity with a real homogeneous coordinate
representation). The conic set in C” consisting of points ({,...,{,) such that
0, {,---,¢,) is a homogeneous coordinate representation of a point at infinity of
V is called the Zariski cone of V. In the sequel we shall need a description of the
asymptotic position of an affine algebraic variety in relation to its Zariski cone.
Assume V irreducible. Then, starting from any point on V, one can asymptoti-
cally approach the “direction” of any specified complex line in the Zariski cone of
V by an irreducible algebraic curve on V; moreover, one can make the approach
regular (i.e. complex analytic):

PrROPOSITION 1 ([17, §4]). Let V be an irreducible affine algebraic variety in C".
For any pair of points §, in V and §{ in the Zariski cone of V, there exists an
irreducible algebraic curve T on V through {, and a regular algebraic mapping v:
A — T, defined on the outside of a disc around the origin in the complex plane slit
along the negative imaginary axis, with values in T, such that, for some § > 0,
vs)

B =0(s7%), s> 00, sEA;
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in other words, y(s) = s - { + n(s), where the components of 1 are regular algebraic
functions in A and, for some p < 1,

. n(s)
(2.2) 11% 5 =0.

PROOF. This rather well-known result will be crucial for Lemma 1 in the next
section. Since the proof is not hard (but not easy to find in standard references)
we give a brief outline referring for details to [17] and the references given there.
See also [1, Chapter 3, §A.1].

It is known that any two points on a projective irreducible algebraic variety can
be joined by an irreducible curve on the variety. Accordingly, we may join the
point at infinity p corresponding to { with the point ¢({,) by a curve I'* on the
projective extension of V. Let I' = ¢~1(I'*) be the corresponding affine curve on
V. Using a normalization of I'* one can parametrize a neighbourhood of p in a
branch of I'* by a regular algebraic function o defined in a small disc around the
origin in a complex plane, with ¢(0) = p. Obviously, I'* meets H_, only in a finite
number of points, hence, shrinking the domain of o if necessary, we may assume
that, except for a(0), the values of o stay in ¢(V"). By expressing ¢ in a convenient
local affine coordinate system, composing it with ¢! and conveniently changing
its parameter, one finally obtains the desired parametrization y of a branch of T,
where, to begin with, one can only say that n(s) = o(s); the sharper, final
estimate (2.2) is obtained by expanding each of the components of 7 in Puiseux
series around s = co.

NOETHERIAN OPERATORS. Let &’[K] be the set of distributions on R” with
support in the compact convex set K. The Fourier transform of u € £’[K] is the
entire function

€3¢ = a(§) = u(e™CD);

denote the set of all such & by &’[ K ]. The matrix p({) gives rise to the natural
mapping p({): €’[ K]° = &’[ K] the range of which is described by the so-called
Fundamental Principle for &’[ K] (see [18, Chapter 1V, §4, 2°] or [1, Chapter 8,
§4D:

PROPOSITION 2. There exists a family of (matrix-) differential operators d = {3*
= ¢, D,), A =0,1,...,1} with polynomial coefficients (the so-called Noetherian
Operator associated with the matrix p) with the following property: the conditions

M D) |y ppy =0 A=0,1,...,1,
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are necessary and sufficient for f € &'[ K" to be in the image of p($): &'[K]*
— &'[KY; here D = (D, Dy ), Dy = i

QUASI - ANALYTIC CLASSES. Let L = (Ly, L,,...), L, = 1, be a logarithmically
convex sequence of positive numbers and let U be an open set in R". By € “(U)
we denote the subspace of ¥*(U) consisting of functions f which on every
V c c U satisfy

ID*f(x)|< Cl*' - L, VaeZr,

with a constant C depending on V and f. In order to make ¢ %(U) stable under
differential operators of finite order we assume that L, ,, < C*- L, for some
constant C and all k > 0. We also assume that L, > k!, k > 0, thus ensuring that
% L(U) contains the real analytic functions. It will not cause confusion to let the
letter L also denote the increasing convex function on the positive numbers
defined by L(t) = sup{t*/L,: k > 0}; note that L(¢) > 1. We shall assume that

fw log (1) dt = c.
0

2.3
(2:3) 1+ ¢2

By the Denjoy-Carleman theorem this is a necessary and sufficient condition for
%L(U) to contain no non-trivial element with compact support. €%(U) is then
called a gquasi-analytic class. The corresponding sheaf obtained as U varies
through the open sets of R” is also called quasi-analytic.

3. Continuation of solutions

Let % be the sheaf of hyperfunctions on R”. When #is a subsheaf of Z and U
is an open set in R” we let, as is customary, %,,(U) denote the set of solutions in
F(U)* of the system p(D)u = 0, where p(D) is the differential operator associ-
ated with the matrix p, D = (D,,...,D,), D, = -ia%], i = Y-1; M stands here, as
above, for the Z-module #°*/p'P"*.

Let K ¢ U c R”", K compact, U open, both sets assumed convex. We may form
the quotient space #,(U\ K )/%,,(U), where, by a slight abuse of notation,
F,(U) stands for the image of the restriction mapping %, (U) = %, (U\ K).
Obviously, an element u of #,,(U \ K) can be extended to an element of #,,(U)
if and only if u is equal to zero in the quotient space %, (U \ K )/%,,(U). More
generally, let # C 9 be subsheaves of % and consider the map

Fu(UNK) _ 9,(U\K)
FU) T 9,(U)
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induced by the inclusion #C ¢. It is obvious that u € %, (U\ K) can be
extended to an element of #%,,(U) if and only if the image of u + .%,,(U) under
this map is zero.

THEOREM 1. Let % be a quasi-analytic sheaf on R". Let K UC R", K

compact and convex, U open. In order that the image of the natural map
€4(UNK) o By (U\K)
¢L(U) By (U)

be zero, it is necessary and sufficient that Ext'(M, P) has no elliptic component in
its primary decomposition. In order that €.5(U\ K)/€5(U) = 0, it is necessary
and sufficient that, in addition to the above condition on Ext'(M, P), M is
determined.

REMARK 1. Consider the natural mappings
€5(UNK) « 2;,(UNK) « Byy(U\K)
€n(U) 2,(U) Bu(U)
where 9;,(U) = {u € 2;,,(U\K): U2V 22K, Y, € 9;,(U) such that
u;, = u on U\ V}. By [10, Corollary 1.4], the map a” is injective. Hence the

image of a = a” e a’ is 0 if and only if the image of &’ is 0. The same reasoning
also applies to the mappings

€ (U\K) N ¢ (U\K) N Zy(U\K)
€u(U) &2(U) Zy(U)
with €57 (U) defined like 2;,(U). Thus, by replacing #,,(U\ K)/%,(U) by

2;,(U\K)/ 2;,(U) or by €2(U\ K)/ €3(U ), one obtains two other, equiva-
lent versions of Theorem 1.

REMARK 2. The module Ext!(M, ) in Theorem 1 may be replaced by the
module 2/ /pP*, Indeed, (cf. [18, Chapter VIII, §14, 3°]) both modules have the
same family of associated irreducible varieties except for the component of
dimension n (which, of course, is not elliptic). The above condition on Ext}( M, )
thus means that each of the varieties N,(#'/p#°), A = 1,...,1, has a real point
at infinity.

REMARK 3. Theorem 1 fails if €L is not quasi-analytic. Following Remark 3 at
the end of [9], consider p € #and K with non-empty interior. Let f € €(K) be
such that p(D)u = f has no solution with compact support. It is well known that
one can solve this equation in €L(U); the solution is then a non-zero element of
€LUNK)/E5WU).
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PrOOF OF THEOREM 1. The second part of Theorem 1 follows from the first
part and the fact that « is injective if and only if M is determined. This fact is an
analogue of the second part of Corollary 1.4 in [10] and is proved analogously; we
only remark that at a certain stage of the proof of necessity one has to use a
family of cutoff functions instead of a single one, as it is done, for example, in [4].

The necessity in the first part of Theorem 1 follows via Lech’s theorem [15]
exactly as it is indicated in {10] for the real analytic case—so we may turn to the
proof of the sufficiency.

Let u € €L(U\ K). Define the Grusin transform of u, denoted by d.u, to be
the family {J ".u} of vector-valued analytic functions on the algebraic varieties
N, = Ny(2'/pP*),A = 0,1,...,1, obtained as follows:

du =38, D) (p(D)( ~ )w)) e A=0.1,....l,
where x € %§°(U) is equal to one in a neighbourhood of K and 9*({, D;) are the
operators of Proposition 2. In other words, d.u is the composition of the
Noetherian Operator d with the Fourier transform, applied to p(D)(1 — x)u),
and then restricted to N,. Note that this definition does not depend on the choice
of x:

M p(D)((1 = x))u))],, — M2 (DYQA — x2)u)) ],

= a>\P({)((Xz - XI)u)Ale =0
by the defining property of 0*, A = 0,1,...,/.

The crucial point of the proof is to show the triviality of d.u. If the family { N, }
contains a component of dimension n, say N,, then by [18, Chapter 1V, §4, 3°,
Proposition 1] we may take 3°(¢, D;) = py(§), where p, is the matrix defined by
(1.1): clearly

d%u=p -(p(D)(1 - x)u))'= (p,(P)p(D)(1 - x)u))'= 0.

That d*.u = 0 also for the remaining values of A, will be shown in two steps. The
first step (Lemma 1) will establish estimates on the growth of d*.u, A > 0; the
estimates will depend on the regularity of u outside K. The second step (Lemma
2) will show that, in case each N, has a real point at infinity, the obtained
estimates can only be satisfied by d.u = 0. Having obtained this, the proof is
easily concluded. By Proposition 2 d.u = 0 implies that p(D)(1 — x)u) = p(D)v
for some v € &'[K’]*, where K’ is the convex hull of supp x and x is any function
allowed in the definition of the Grusin transform of w. Then (1 — x)u — v is in
2;,(U) and coincides with u on U\ K’. By the freedom of choice of x the set K’
is an arbitrary convex compact neighbourhood of K, hence ¥ = 0 considered as
an element of 2;,(U\ K)/ 2,,(U). The mapping a’ of Remark 1 has thus image
zero. By the same remark, this is also true about the mapping a. The proof is thus
complete except for the two crucial lemmas.
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LEMMA 1. Let K’ be a convex compact subset of U containing K in its interior.
Then there exists a constant C such that

(3.1)  |d*u($)|< C-exp H,(,(Im{)—logL(l—gl)), 1<sA<y

here Hy. is the supporting function of K’: Hy/(x) = sup{{x, y):y € K’}.

PROOF. Let (x ;)50 be a sequence of test functions with support in K’, equal
to one in a fixed open neighbourhood V of K, and such that

Dox(x)|< Cl* Lk xe R, o<k,
k

with some constant C independent of k. (Such test functions are sometimes
referred to as the Ehrenpreis cutoff functions. For their construction see for
example [4].) By the Leibniz’ rule

[ID*((1 — x )v)(x)|< CE*M - L,, x€E, l|a|<k,

for any compact set E on which v is a function of class €L (recall that
L, > k! > (k/e)*); cf. [4, Lemma 2]. Moreover,

(32) |D%(x, DY((1 = Xpem)V)(x)|< CEXY - L, x€E, o<k,

whenever q(x, D) is a differential operator of order m with polynomial coeffi-
cients. Now, for any multi-index a and for any test function x with support in K’
and equal to one on the neighbourhood ¥ of K, ¢* - 9*(¢, DY p(DX(1 - x)u))
is the Fourier transform of the % *-function D*3*(D, —-x) p(DX(1 — x)u) with
support in K’ \ V. Hence

[£20* (8, D) (P(D)((1 = x)u)) (})]
DaaA(D, -X)P(D)((l - X)u)”L'(K'\V) : exP(HK'(Imf))

for all { € C". Each component of 0*(D, —x)p(D)}(1 ~ x)u) is a finite sum of
terms of the form g(x, D)(1 — x)v), q being a differential operator with poly-
nomial coefficients and v € ¥L(U\ K). Each of these terms, upon choosing
X = Xx+m With m determined by the degrees of the operators 0*(D, -x) and
p(D), satisfies (3.2). Hence, observing that K'\ V ¢ c U\ K, we have

(3.3)

<|

(3.4) |D*3*(D,-x) p(D)((1 = Xpsm) )|k < C¥1- Ly,
la| < k, with a constant C independent of k. By (3.3) and (3.4) we may conclude
that

(33) = [0 D)(P(DY = oo ()] < € exp(Hie(im ),
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{e€C" k=0,1,..., possibly with a new constant C. Since all the functions
¢, D) (p(DX( - xk+m)u))A, k > 0, coincide on N,, we finally obtain (3.1) by
taking the least upper bound of all the left sides in (3.5).

LEMMA 2. Let A € R, C > 0. If an analytic function f on C" satisfies the estimate

(36) )< ¢ - expl 4 limgi - tog (K1)
on an irreducible algebraic variety V with a real point at infinity then f vanishes
identically on V.

PROOF. By the assumption there exists a real vector { (# 0) in the Zariski cone
of V. Let {, € V. Apply Proposition 1 and consider the composed analytic
function g = f o y on A. By (2.2) and (3.6) we may estimate the growth of g:

loglg(s)| < C, + A,|tm 5| + ByJs|" - logL(I%)
1
for some constants 4,, B,, C;, p <1, and all s in the, somewhat shrunk if
necessary, set A. In particular, g is of exponential type (recall that L > 1). Hence,
whenever r € R and R + it € A, we must have

w log*|g(e + it)|
(37) ‘/:oo Tdo < 0.
Also, by (2.3),

< |logjg(o + it)]|
38 —===——""do = 0.
( ) ‘/:oo 1 + 02 ¢

But, by [2, Theorem 6.3.6] the only analytic function of exponential type on a
half-plane containing R + it which satisfies (3.7) and (3.8) is the trivial function.
Hence g = 0. We conclude that f = 0 on the open set Y(A) of T', and therefore, by
the uniqueness of analytic continuation, f = 0 on the connected analytic manifold
of regular points of I'. The set of regular points is dense in I, hence f = O on I'; in
particular f({,) = 0. Since {, was an arbitrary pointof V, f=0on V.
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