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Aggregating multiple probability intervals to improve calibration
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Abstract

We apply the principles of the “Wisdom of Crowds (WoC)” to improve the calibration of interval estimates. Previous

research has documented the significant impact of the WoC on the accuracy of point estimates but only a few studies have

examined its effectiveness in aggregating interval estimates. We demonstrate that collective probability intervals obtained by

several heuristics can reduce the typical overconfidence of the individual estimates. We re-analyzed data from Glaser, Langer

and Weber (2013) and from Soll and Klayman (2004) and applied four heuristics Averaging, Median, Enveloping, Probability

averaging-suggested by Gaba, Tsetlin and Winkler (2014) and new heuristics, Averaging with trimming and Quartiles. We

used the hit rate and the Mean Squared Error (MSE) to evaluate the quality of the methods. All methods reduced miscalibration

to some degree, and Quartiles was the most beneficial securing accuracy and informativeness.

Keywords: overconfidence, subjective probability, probability intervals, hit rate, Wisdom of Crowds.

1 Introduction

Overconfidence, “the excessive faith that you know the

truth” (Moore & Healy, 2008), is a widely documented bias

in judgment and a fundamental cause of defective decision

making (Bazerman & Moore, 2013). Notwithstanding the

prevalence of overconfidence in everyday life, the concept

is not fully understood and cannot be explained by a single

and robust theory (Moore, Tenney & Haran, in press) and

there is still a lot of room to study its essence and seek to

reduce the bias.

1.1 Overconfidence in subjective probability

estimation

The most common format in predic-

tion/forecasting/estimation studies is, simply, to ask

people to provide a subjective point estimate of the target

quantity. In Budescu and Chen (2015) judges (subjects in a

large forecasting tournament) were asked to provide subjec-

tive probabilistic forecasts of the likelihood of occurrence

of various business, economy, policy, politics, and military

events. In other contexts, judges were presented with

pairs of statements (e.g., (a) Cleveland is more populous
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then Cincinnati and (b) Cincinnati is more populous then

Cleveland), asked to select the more probable one and

report a confidence level between 0.50 and 1.0 (Ariely,

Au, Bender, Budescu, Dietz, Gu, Wallsten & Zauberman,

2000). The questions employed for this forced binary

choice format can relate either to factual statements (as in

the population example) or future events (e.g., which of two

teams, A or B, will win next week’s game). Researchers

typically ask each judge to make many judgments of this

type, allowing the researchers to assess the accuracy of the

subjective confidence. The forecasts are said to be over-

(under-) confident in their judgment if the mean level of

confidence across items exceeds (is lower) than proportion

of events that actually occur (Moore et al., in press). Typ-

ically, people are found to be over-confident (Gigerenzer,

Hoffrage & Kleinbölting 1991; Lichtenstein, Fischhoff, &

Phillips, 1982; Moore & Healy, 2008) but the generality of

the results was questioned (Budescu & Du, 2007; Juslin,

Winman, & Olsson, 2000) and there are several theoretical

accounts for the observed pattern (Gigerenzer, Hoffrage &

Kleinbolting, 1991; Juslin, Winman & Hanson, 2007).

1.2 Overconfidence in subjective probability

interval estimates

Alternatively, people can be asked to provide subjective

probability intervals1 for the target quantities correspond-

ing to a confidence assigned by the researcher, i.e., to state a

pair of values, Low and High, such that Pr(Low ≤ True ≤

1We use the term probability interval throughout the paper to avoid con-

fusion with confidence intervals that are calculated by statistical formulas

based on sample statistics (e.g., means, variances) and appropriate assump-

tions (e.g., independent observations from a Normal distribution).
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High) = Target confidence. Researchers have adopted 3 for-

mats for question in this context. People may be asked (1)

simply to report lower and upper limits to achieve a cer-

tain level of confidence, and in some cases to also report the

best estimate of the quantity; or (2) assess full probability

distributions for uncertain quantities. In one classic study,

Alpert and Raiffa (1982) asked people to judge 5 fractiles

(.01, .25, .50, .75, and .99) for 10 questions (e.g., the per-

centage of first-year students who prefer bourbon to scotch,

excluding those who never drink). The fractile estimates

were transformed to obtain two bounds of specific probabil-

ity intervals (e.g., the .10 and .90 generate the 80% proba-

bility interval). Abbas, Budescu, Yu and Haggerty (2008)

describe some variations on this approach; or (3) be pre-

sented with the entire possible range of outcomes divided

into several intervals and estimate each interval’s likelihood

of containing the true value. This format can be used to

obtain multiple probability intervals. For example, Haran,

Moore and Morewedge (2010) required subjects to estimate

the high temperature in Pittsburgh one month from the day

when they completed the survey with all formats. People

were asked to judge lower and upper bounds for a 90% prob-

ability interval format, the 5th and 95th fractiles for a frac-

tile format, or subjective probability interval estimates. For

the last format, called Subjective Probability Interval Esti-

mate (SPIES), subjects were presented with 9 temperature

intervals—below 40◦F, 40–49, 50–59, 60–69, 70–79, 80–

89, 90–99, 100–109, and above 110◦F—and estimated their

subjective probability that each bin would contain the actual

temperature.

Calibration of probability intervals is measured by the hit

rate over intervals for several uncertain quantities, at a cer-

tain level of confidence, C. For instance, imagine that sub-

jects are asked to provide 90% probability intervals for N

(e.g., N = 100) unknown quantities. The hit rate is the

proportion of intervals, X
N

, that bracket the actual quan-

tity (0 ≤ X
N

≤ 1). If X
N

matches the target probabil-

ity/confidence (e.g., X
N

= C), the judge is said to be perfectly

calibrated (McKenzie, Liersch & Yaniv, 2008). If X
N

< C—

say only 60% of the supposedly 90% interval estimates con-

tain the actual value—the judges are said to be overconfi-

dent since the hit rate is lower than the target confidence

and, on average, the intervals are too narrow. Conversely, if
X
N

> C, the judges are said to be underconfident since the hit

rate exceeds the assigned confidence and the intervals are

too wide, on average. The common practice of aggregat-

ing responses to a number of questions to measure calibra-

tion caused some researchers to question the “true existence

of overconfidence” and offer alternative ways of comparing

and interpreting intervals on different scales (Glaser, Langer

& Weber, 2013).

One of the most pervasive findings is that assessors

display overconfidence when generating interval estimates

(Alpert & Raiffa, 1982; Lichtenstein, Fischhoff & Phillips,

1982; Jain, Mukherjee, Bearden & Gaba, 2013). The as-

sessed extreme fractiles are systematically biased toward the

center (underestimating tail probabilities), so the subjective

intervals tend to be too narrow (Moore et al., in press). Over-

confidence has been found in estimation of general knowl-

edge questions as well as when forecasting real-life uncer-

tain quantities (Soll & Klayman, 2004; Budescu & Du,

2007; Speirs-Bridge, Fidler, McBride, Flander, Cumming

& Burgman, 2010).

There have been many attempts to reduce overconfidence

in probability intervals by helping respondents widen esti-

mated intervals prior to their estimation. Common mecha-

nisms applied are feedback, training, incentive schemes, in-

spiring people to search for more internal sources in mem-

ory, decomposing forecast task into smaller pieces and in-

dicating estimates separately, and warning judges about the

overconfidence bias (Jain et al., 2013; Moore et al., in press).

Soll and Klayman (2004) compared three elicitation for-

mats: The range condition (e.g., I am 80% sure that this

happened between __ and __.) asks judges to specify the

lower and upper bounds of the probability interval, the two-

point condition (e.g., I am 90% sure that this happened after

__. and I am 90 % sure that this happened before __.) asks

them to report the two bounds separately in two questions.

The three-point condition is a variation on this format that

asks judges to make one more estimate (e.g., I think it is

equally likely that this happened after or before __.). The

two- and three-point conditions encourage judges to sample

their knowledge more than once and these estimates may

have different systematic and random errors, as if they are

obtained from different judges. This is similar to the ap-

proach taken by Herzog and Hertwig (2009) for point es-

timates. The authors showed that the three-point method

indirectly helped people to be better calibrated.

Haran, Moore and Morewedge (2010) showed that SPIES

induced better calibration than the range and the two points

format by mitigating overconfidence. Jain et al. (2013)

tried to reduce overconfidence with another approach, called

“time unpacking”. MBA students were randomly as-

signed to one of two conditions, packed or unpacked, and

were asked to predict the lower and upper limits for 90%

probability intervals of three financial indicators. In the

packed condition, people forecasted the three quantities

three months ahead. In the unpacked condition, they pre-

dicted the same quantities one month, two months, and three

months ahead, in that order. The mean width (across the

three quantities) of the predicted intervals in the unpacked

condition was significantly larger than in the packed condi-

tion, which indicates that the time unpacking can also reduce

overconfidence.

https://doi.org/10.1017/S1930297500003910 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500003910


Judgment and Decision Making, Vol. 10, No. 2, March 2015 Aggregating probability intervals to improve calibration 132

1.3 Wisdom of Crowds as a way of aggregat-

ing multiple predictions

“Wisdom of Crowds” (WoC) refers to the empirical observa-

tion that aggregates of opinions or estimates of multiple peo-

ple often outperform judgments of experts. Galton (1907)

asked people who attended the West England Fat Stock and

Poultry Exhibition to guess the weight of an ox. The group

median estimate, 1,207 pounds, was surprisingly close to the

actual weight, 1,198 pounds. Psychologists discovered that

averaging several predictions led to more accurate estimates

than those of the average person (e.g., Gordon, 1924), and

concluded that the aggregation approach reduces the impact

of individual errors.

Simple (equal weighting) averaging, the most natural way

to combine opinions, often yields more accurate estimate

than the individual judgments on which they are based (Lar-

rick & Soll, 2006). Larrick, Mannes & Soll (2011) distin-

guish between two qualitatively different cases. If the es-

timates of several decision makers are on opposite sides of

the true value—some overestimate it and some underesti-

mate it–they “bracket the truth”. The distance between the

estimates and the true value will be reduced by averaging

them, because the average is closer to the actual value. Av-

eraging improves the accuracy of the prediction because the

errors from the two sides of the truth cancel each other. If

all the judgments are located on the same side of the true

value—all over-estimate, or all under-estimate it—they can-

not cancel out each other. Averaging locks in the average

individual error. Obviously, bracketing generates more ac-

curate estimates.

The averaging method works well even in one

mind/person. Herzog and Hertwig (2009) found that ask-

ing people to estimate unknown quantities more than once

and aggregating the two outputs of the same person can im-

prove the quality of the judgment. The assumption is that

the second dialectical estimate has different systematic and

random errors based on a different set of knowledge and

process integrating the information than the first one, even

though they are solicited within one mind. The study indi-

cated that accuracy gain and bracketing rate were highest in

the dialectical-bootstrapping condition where people gener-

ated a second estimate after being told that their first one is

off the mark and instructed to think about new reasons and

new perspectives.

Wisdom of crowds works because, even if individuals

have biased knowledge that cause them to underestimate

or overestimate certain unknown quantities, the pooled esti-

mate could be much closer to the true value by offsetting

the biases (see analysis by Davis-Stober, Budescu, Dana

& Broomell, 2014). Integrating various opinions (a) max-

imizes the amount of information available to predict some

events; (b) minimizes the impact of extreme sources that

might bring about the estimate to be far from the true value;

and (c) yields valid and ecologically representative aggre-

gates (Budescu, 2005). In this sense averaging can trans-

form inputs that are individually biased and, possibly, far

from the actual quantity into a collectively wise output near

the mark (Lyon, Wintle & Burgman, in press). Therefore,

biased individual predictions could be a useful resources

when forecasting uncertain events or quantities, if they con-

tain relevant information that can be pooled to improve

the accuracy of aggregate estimate (Wallsten & Diederich,

2001). As a result, enhancing the diversity of the judges

who provide estimates is considered one of the best ways to

enhance the WoC (Herzog & Hertwig, 2009; Larrick et al.,

2011; Surowiecki, 2004).

One can question the optimality of equally weighting all

the members of the crowd, as this method ignores differ-

ences in expertise, experience, etc. If additional informa-

tion that can help identify more knowledgeable members of

the group is available, differential weighting of the mem-

bers may work better. For example, Budescu and Chen

(2015) showed how to improve the quality of aggregate pre-

dictions by identifying better performing individuals. Their

contribution weighted model (CWM) beat the unweighted

model by about 28%. The power of this model was derived

from (a) its ability to isolate experts in the crowd and (b)

to weight them accordingly. Unequal weighting models re-

quire measures of relative contribution, past performances,

or subjective confidence. However the information is not

always available, so we cannot always select judges who

increase the accuracy of the group. In addition, it is some-

times difficult to define and identify experts, and in some

domains they are no more accurate than non-experts (Wall-

sten & Budescu, 1983).

To summarize, equally averaging opinions of crowds has

three obvious advantages. The strategy lets errors cancel

out, gives some weight at least to the expert members, and

can be applied without any information about relative exper-

tise (Larrick et al., 2011).

1.4 Collective wisdom in probability intervals

to rectify overconfidence

Only a few studies have looked into the possibility and ben-

efits of aggregating probability intervals, in the spirit of the

WoC, to mitigate overconfidence and improve forecast ac-

curacy by applying optimal mathematical combination rules

of multiple intervals. Previous attempts to reduce overconfi-

dence in interval estimates have focused on assisting people

to be less overconfident by generating wider intervals. All

WoC inspired methods are post hoc and do not try to affect

the quality of the individual estimates.

Gaba et al. (2014) suggested several heuristics for com-

bining interval forecasts. Assume that n judges were re-

quested to provide subjective C=100(1 − α)% intervals on

an unknown quantity, in the form of lower and upper bounds
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Table 1: Psychologically and statistically motivated aggregation methods studied by Lyon et al. (in press) Psychological

improvement

Psychological improvement

Precision-weighted average J = 1
N

∑N

i=1 mi(1− li), where mi is the midpoint of interval, li is the interval

length rescaled between 0 to 1, and N =
∑N

i=1(1− li) is an approximate

normalization factor

Probability-weighted average J = 1
N

∑N

i=1 mipi, where pi is the confidence level assigned to the interval with

midpoint mi

Certainty-weighted average J = 1
N

∑N
i=1 mi(1− li)pi

Entropy-weighted average J = 1
N

∑N
i=1 mi(max{ej}-ei) ,where ei is a measure of the uncertainty in a

random variable, N =
∑N

i=1 max{ej}-ei, ei = −
∑

qj ln(qj), and qj is the

probability of the normal distribution from the probability interval of mi.

Statistical improvement

Median judgment Not sensitive to extremes compared to average of midpoints

Median absolute deviation (MAD)

unweighted average

Trims outliers and averages the rest of observations

(Li, Ui) where i=1,2,.,n. The intervals are divided by the

average width, w̄ = 1
n

∑n
i=1(Ui − Li), by quantity and

time period being forecasted for the purpose of rescaling

them. Let the combined intervals derived from approach A

be (L∗

A, U
∗

A). The Averaging (A1) and Median (A2) heuristic

utilize the mean and the median of the distribution of esti-

mates for each bound, respectively. The minimum of lower

bounds and the maximum of the upper bounds, across all

n respondents, define an Enveloping approach (A3). The

Probability averaging heuristic (A4) assumes that each in-

terval judgment follows an individual normal distribution.

Under normality the 90% probability intervals, for instance,

can be expressed as (L∗

4 = µ̄− 1.645σ̄, U∗

4 = µ̄+ 1.645σ̄),

where µ̄ = 1
n

∑n
i=1

Li+Ui

2 and σ̄ =

√∑
n

i=1
(
Ui−Li

3.29
)2

n
. Sim-

ple averaging of midpoints and probability averaging of

bounds (A1.4), combining A1 and A4 and their benefits,

uses midpoints of estimated intervals with the widths from

A4.

Gaba et al. (2014) asked 59 analysts working at an Asian

brokerage firm to forecast 90% subjective intervals for 5

questions one month, two months, and three months from

the day when they answered. The judgments for each quan-

tity were combined according to the various heuristics using

group sizes, k, ranging from 1 to 20. The hit rate with A3

(Enveloping) increased rapidly and was close to 100% at

k=20, which is an indication of underconfidence, while the

rates with A1 (Averaging) and A2 (Median) did not increase

as much and the combined intervals remained overconfident

at the highest k. The hit rate with A4 (Probability averaging)

increased as a function of k, but not as fast as with Envelop-

ing, but it reduced overconfidence significantly.

The Mean Absolute Error (MAE), the distance between

the actual value and the midpoint of interval is another mea-

sure of evaluating the quality of the procedures. The MAE

of A3 (Enveloping) increased fast, as a function of group

size, whereas the errors of the other heuristics fell at differ-

ent rates. The hit rate of A1.4 closely followed the one in A4

(Probability averaging) and MAE in A1.4 had, as expected,

the same values as A1 (Averaging).

Lyon et al. (in press) meta analyzed results from 15 ex-

periments to examine whether various aggregation methods

of probability intervals perform better than the unweighted

average. Their work did not focus on the intervals’ hit rate

but on the distance between the midpoint of the intervals

and the actual value. This is an interesting approach but it

does not address at all the key issue of the mis-calibration

research, the width of the intervals. Lyon et al. compared

four methods that they describe as psychologically moti-

vated and statistically motivated methods, as well as some

more complicated methods integrating elements of the two

approaches. The various methods are listed in Table 1.

All methods outperformed the unweighted average and

the statistically motivated methods produced more accurate

point estimates than the psychologically motivated ones.

The most accurate methods were certainty-weighted aver-

age and MAD-filtered unweighted averages.

1.5 The current paper

Decades of research have investigated the WoC effect on

the accuracy of point estimates and showed that various ag-

gregate predictions tend to have less error than individual

predictions. Only a few studies have paid attention to the
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Table 2: Description of heuristics applied to the current study

Heuristic Definition Explanation

A1 Averaging Calculate the means of the lower and upper bounds

A2 Median Calculate the medians of the lower and upper bounds

A3 Enveloping Use minimum of the lower bounds and the maximum of the upper

bounds

A4 Probability Averaging Calculate 100(1− α)% intervals under normality assumption

A5 Quartiles Calculate the first (lower) quartile of the lower bounds, and the third

(higher) quartile of the upper bounds

A1_A10 Asymmetrically trimming averaging Calculate the means of the lower and upper bounds excluding

observations below the 10th percentile of the lower limit distribution,

and above the 90th percentile of the upper limit distribution

A1_A25 Asymmetrically trimming averaging Calculate the means of the lower and upper bounds excluding

observations below the 25th percentile on the lower limit distribution

and above the 75th percentile on the upper limit distribution

A1_S10 Symmetrically trimming averaging Calculate the means of the lower and upper bounds trimming 10% in

both tails of lower- and upper-limit distributions

A1_S25 Symmetrically trimming averaging Calculate the mean of the lower and upper bounds trimming 25% in

both tails of lower- and upper-limit distributions

WoC effectiveness in aggregating interval estimates. Our

goal is to fill this gap by testing the ability of several WoC

algorithms to improve calibration of interval estimates. All

the algorithms operate on pairs of lower and upper bounds

of various quantities provided by groups of judge operat-

ing individually and independently of each other. We will

demonstrate that such collective probability interval esti-

mates can reduce the typical overconfidence of the indi-

vidual estimates, will attempt to determine which method

yields the most accurate and best calibrated intervals, and

provide some insights into the aggregation process.

Naturally, we start with the methods described by Gaba

et al. (2014). Their Enveloping heuristic, A3, generated ex-

treme combined lower and upper bounds, and resulted in

collective underconfidence, while the other heuristics failed

to fully eliminate the overconfidence. We propose a few ad-

ditional heuristics, which have the potential to come closer

to the target confidence level: The first, A5, which we label

Quartiles, is based on the lower quartile (Q1) of the n lower

bounds and the upper quartile (Q3) of the n upper bounds. It

is a variation of the Enveloping heuristic (A3) with a view to

removing extreme estimates of the lower and upper bounds

of respondents who heed Alpert and Raiffa’s (1982, p. 301)

advice to “For heaven’s sake, Spread Those Extreme Frac-

tiles! Be honest with yourselves! Admit what you don’t

know!” and produce excessively wide intervals (see Glaser

et al., 2013; Russo & Schoemaker, 1992).

We also consider 4 variations of the Averaging (A1) that

trim extreme observations. We consider two symmetrically

trimmed, and two asymmetrically trimmed versions. The

idea is, as in the Quartiles (A5) heuristic that the extreme es-

timates are from respondents who have unreasonably wide

intervals. Asymmetrically trimming Averaging heuristics,

A1_A10 and A1_A25, trim observations that are below 10th

or 25th percentiles on the lower-limit distribution and above

90th or 75th percentiles on the upper-limit distribution and

average the rest of observations. The rationale for the trim-

ming is to exclude the estimates of judges heed Alpert and

Raiffa’s advice. The heuristics, A1_S10 and A1_S25, trim

10 or 25% in both tails of the upper- and lower-limit distri-

butions, eliminating 20% and 50% of the total judgments,

respectively, and average the rest of observations. The ad-

ditional trimming on the other side of the distributions leads

to intervals that are wider than A1_A10 and A1_A25 by re-

moving values that are above 90th or 75th percentiles among

lower bound estimates and 10th or 25th percentiles below

upper bound estimates. Table 2 summarizes all heuristics

that are applied to our study.

We re-analyze a few published data sets (see details be-

low), and we focus on the hit rate of the various aggregated

intervals, as a function of the group size. This dependent

variable allows us to compare meaningfully results from

various domains and using different scales. The hit rate of

probability intervals is affected by two distinct factors, their

bias and their width. To fully understand the effect of the

various aggregation algorithms on the crowds’ performance,

we also compare the effects of the various aggregation meth-

ods of these two factors.
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2 Method

2.1 Subjects and data

We conducted a literature review of studies of probability

interval estimates searching for datasets providing (a) both

lower and upper bounds, (b) the true values, (c) a large

enough number of items, and (d) a large enough number

of judges. We selected two studies for our analysis in ac-

cordance with these considerations. The data sets selected

allow us to compare the various aggregation methods, and

examine the effects of group size on calibration.

Glaser, et al. (2013) collected probability intervals for

general knowledge questions, and stock market forecasts in

3 distinct phases of an experiment. We re-analyze only the

knowledge questions. The subjects were required to report

upper and lower limits of 90% probability intervals for 10

questions concerning general knowledge (e.g., the length of

the river Orinoco in kms, or the weight of an empty Boeing

747 in kgs) and 10 economics and finance questions (e.g.,

the number of pharmacies in Germany in May 2001, or the

number of cars that BMW has sold in March 2001 world-

wide). Thirty three professionals working as traders in a

large German bank and 75 advanced students majoring in

Banking and Finance at the University of Mannheim partic-

ipated in the project. 13 students were excluded from our

re-analysis due to excessive rates of missing data. We an-

alyze results of 95 subjects-33 traders and 62 students. We

refer to these data as GLW.

We also analyzed data from the Soll and Klayman (2004)

paper. Thirty three undergraduate and graduate students

from the University of Chicago were recruited and assigned

into either range (e.g., “two numbers such that you are 80%

sure that the correct answer lies somewhere between the

two”) or two-point condition (e.g., “a lower estimate such

that you are 90% sure that the child is not younger than that

and an upper estimate such that you are 90% sure that the

child is not older than that”). The subjects estimated 80%

probability intervals for 50 quantities from 4 domains in-

cluding college’s overall quality score, the average box of-

fice gross of ’90s movies, invoice price of cars, and win-

ning % of National Basketball Association teams. Typically,

judges have to rely on their knowledge and memory when

making predictions, but in this instance the researchers pro-

vided relevant objective cue values and the judges had to

decide how to combine the additional resources and their

knowledge for answering accurately (e.g., academic repu-

tation rating, number of films she has starred in, size of

car, average points per game for each domain). Because

of missing data and a programming error in the original re-

search only data from 25 students and 48 questions were

re-analyzed across subject groups, the item domains, and

elicitation methods. We refer to these data as SK.

Procedure

Grouping: The general approach is to create groups of

size k = 2g(g= 0 to 6), aggregate the lower and upper bounds

within each group according to the various methods and cal-

culate the level of calibration of the group. In order to iden-

tify the net effect of grouping (as opposed to the extra infor-

mation associated with larger groups) we used the following

method, illustrated with the GLW (2012) data:

(1) A set of 64 observations were randomly selected from

the n = 95 judges. These 64 judges were randomly assigned

to smaller groups and analyzed as 64 individuals (k=1); 32

groups of size k =2; 16 groups of size, k =4; 8 groups of

size, k =8; 4 groups of size, k =16; 2 groups of size, k =

32; and one group of size k = 64. In all these cases the

complete information (from all 64 judges) was considered,

but the grouping was different.

(2) To reduce the effect of the random selection and

reshuffling, this process was repeated R=100 times with dif-

ferent random groupings.

The four heuristics suggested by Gaba et al. (2014) and

Quartiles (A5) analyze all the observations, some of the

new heuristics that involve trimming use fewer observations.

Methods A1_A10, A1_A25, A1_S10, and A1_S25 analyze

only 85, 71, 75, and 47 of the judges, respectively. Thus, for

the A1_S25 method we analyze groups of size k = 2, 4, 8,

16, 32, and 47. Table 3 summarizes the design by presenting

the number of observations and group sizes. For each of the

groups created by this process, the nine heuristics were used

to aggregate the judgments and create “collective probabil-

ity intervals” (Note that A5 (Quartiles) can only be created

for k ≥ 4, so it does not apply to k=2).

For the SK (2004) data, we used the same process but

because of the smaller sample size, we compare only k=1 to

16 or 1 to 32. Also, given the small number of judges, we

did not include the 4 heuristics involving trimming.

Measures of Performance: We evaluate the combined in-

tervals on two measures. The first measure (Ck), hit rate,

tests the calibration by calculating how many aggregate in-

tervals bracket the true value. The measure is defined as:

Ck =
1

R · nk

nk
∑

i=1

R
∑

j=1

Pijk

where Pijk is the proportion of intervals containing the ac-

tual value based on groups of size k, and it is being averaged

across all R replications and nk groups of size k. The av-

erage hit rates were obtained for each group size and com-

pared to see if, and how fast, the rates are reaching the target

levels, e.g., 90% by increasing group size and the different

methods.
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Table 3: The number of observations and group size used in the re-analysis of GLW data by the various heuristics.

Group Size (k)

Heuristic 1 2 4 8 16 32 47 64

Number of observations A1 to A5 64 32 16 8 4 2 - 1

A1_A10 64 32 16 8 4 2 - 1

A1_A25 64 32 16 8 4 2 - 1

A1_S10 64 32 16 8 4 2 - 1

A1_S25 47 23 11 5 2 1 1 -

Number of datasets A1 to A5 100 100 100 100 100 100 - 100

A1_A10 100 100 100 100 100 100 - 100

A1_A25 100 100 100 100 100 100 - 100

A1_S10 100 100 100 100 100 100 - 100

A1_S25 100 100 100 100 100 100 100 -

Total number of observations A1 to A5 6400 3200 1600 800 400 200 - 100

A1_A10 6400 3200 1600 800 400 200 - 100

A1_A25 6400 3200 1600 800 400 200 - 100

A1_S10 6400 3200 1600 800 400 200 - 100

A1_S25 4700 2300 1100 500 200 100 100 -

Table 4: The number of observations and group size used in

re-analyzing the SK data

Group size

(k)

Number of

observations

in each

dataset

Number of

datasets

Total number

of

observations

1 16 100 1600

2 8 100 800

4 4 100 400

8 2 100 200

16 1 100 100

The Mean Squared Error (MSE) is the overall variation

of the observed hit rates around the target confidence level:

MSEk =
1

R

R
∑

j=1

∑nk

i=1(Pij − target%)2

nk

MSE can be decomposed into Mean Variance (MV) and

Mean Squared Bias (MSB) in order to track the source of

miscalibration. It is expected that both MV and MSB would

decrease when combining the intervals and increasing the

group size. The MV measures how spread out the hit rates

of the various subgroups of judges are. If MV decreases as

a function of group size it indicates that the hit rates across

subjects become more regular by combining observations.

The MVk is defined as:

MVk =
1

R

R
∑

j=1

∑nk

i=1(Pij − P̄j)
2

nk

The Mean Squared Bias (MSB) is defined as the squared

discrepancy between the proportion of well-calibrated inter-

vals and the target confidence.

MSBk =
1

R

R
∑

j=1

(P̄j − target%)2

For instance, if a person was asked to report 80% proba-

bility intervals for 100 unknown quantities and 70 intervals

indeed contained the actual value, her squared bias is (70%-

80%)= (-10%)2. The squared biases of judges are averaged

across replications for each k.

3 Results

3.1 Re-analysis of the GLW data

We compared first the hit rates of 4 variations on Averaging

(A1) (with different trimmings) in each item domain, iden-

tified the best trimming method and included it in the com-

parison with the 5 heuristics (no trimming). Figure 1 present
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Figure 1: Hit rates of 4 variations on averaging with trim-

ming as a function of group size in general knowledge and

economics/finance questions (GLW data). Note. The largest

group size only for A1_S25 is 47.
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the hit rates achieved in 4 variations separately for each do-

main. The symmetric methods, A1_S25 and A1_S10 show

the highest performance in both domains and A1_A10 has

the worst performance.

Figure 2 present the hit rates of 5 heuristics and the best

functioning trimming heuristic in each domain. The eco-

nomics and finance domain initially (k = 1) had lower hit

Figure 2: Hit rates of and of 5 heuristics and the best vari-

ation on the Averaging (A1) as a function of group size in

general knowledge and economics/finance questions (GLW

data). Note.The largest group size only for A1_S25 is 47.
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rate (22% compared to 33%), indicating more serious over-

confidence. The hit rate of Median (A2) tends to be higher

than Averaging (A1) for larger group sizes, but both rates

increase relatively slowly and do not come close to the tar-

get, 90%, indicating that they cannot substantially mitigate

overconfidence. In fact, the hit rates of the simple Averag-
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ing (A1) are not monotonic2 in k. Enveloping (A3) performs

well increasing calibration rates up to the 100% in both do-

mains but over-corrects, and for large k the intervals are

too wide and result in underconfidence. Probability averag-

ing (A4) shows mixed results, by mitigating overconfidence

rather successfully in one domain but over-correcting in the

other. The Quartiles method (A5) leads to much higher rates

than Averaging and Median method but not as high as En-

veloping, and increases at a moderate rate. Also it does not

seem to need large group size because the hit rate does not

change much after k=4. The best versions of the trimmed

mean heuristics correct for overconfidence noticeably better

than Averaging (A1) and even Median (A2) by excluding

extreme observations, but are not as good as Quartiles (A5)

and probability Averaging (A4).

Figure 3 presents the mean squared error (MSE) and its

components-mean variance (MV) and mean squared bias

(MSB). Note that MV and MSE are not defined for the case

with max(log2 k) = 6 as there is only one observation for

each item. Several results stand out: (1) MSB dominates

MV (2) MV tends to decrease monotonically as a function

of group size with a few minor exceptions and (3) MSB also

decreases except for in Averaging and Enveloping cases.

Typically, MSE was also monotonic in group size, with a

few exceptions due to the increase in MSB in Averaging.

The MSE of Enveloping (A3) decreases most rapidly and

asymptotes at k=4 with only minor changes for larger sam-

ples. Averaging (A1) and Median (A2) are less sensitive to

group size, than the other heuristics. The MSE of A1_S25

and A1_S10 drop significantly faster than Averaging (A1),

proving the trimming procedure prior to averaging is bene-

ficial. Finally, Probability averaging (A4) and the Quartiles

method (A5) showed less rapid decline than Enveloping, but

clearly outperformed Averaging (including the trimmed ver-

sions) and the Median. Overall, the MSE of Quartiles (A5)

seems the better of the two.

3.2 Analysis of SK data

Figure 4 present the hit rates in the SK data, combined

across all the conditions in the study. Miscalibration was

reduced by combining intervals but at different rates for the

5 heuristics. The hit rates with Enveloping (A3) increased

in leaps and bounds significantly alleviating overconfidence

but exceeded the target rate, 80%, generating underconfi-

dent intervals for large groups. Averaging (A1), Median

(A2), and Probability Averaging (A4) performed less well

in reducing overconfidence and the hit rates never exceeded

65%. Quartiles (A5) was the best procedure attaining 81.5%

at k=8 which is very close to the target even though the rates

at k=8 and 16 (83%) were slightly higher than 80%. It did

2This can be attributed to the fact that on each replication we select a

different subset of 64 judges, so the non-monotonicity is due to the varia-

tions between the subsets of judges selected.

Figure 3: Mean Variance (MV), Mean Squared Bias (MSB),

and Mean Squared Error (MSE) in general knowledge and

economics/finance questions as a function of group size for

six aggregation heuristics (GLW data).
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not present a manifest increase at k=16 as shown in the pre-

vious study.

The results of MV, MSB, and MSE replicate the patterns

of the first study. Both MV and MSB decreased mono-

tonically with all heuristic all the way down to k=16 ex-

cept for some cases of MSB which increased, occasionally,
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Figure 4: Average hit rates across question domains and

elicitation conditions as a function of group size for five ag-

gregation heuristics (SK data). Note. The rate of log2 4 (=2)

in Quartiles replaced by the one in A1.
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Figure 5: Mean square error across question domains and

elicitation conditions as a function of group size for five ag-

gregation heuristics (SK data).
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due to underconfidence. Averaging and Median methods

showed only modest declines in MSE and Enveloping (A3)

and Quartiles (A5) reduced MSE most efficiently followed

closely by Probability averaging (A4) (Figure 5).

Figure 6: Log base 2 of Median width of grouped intervals

for two questions as a function of hit rate and groups size

for Averaging, Quartiles, and Enveloping heuristics (GLW

data). Circle size ordered by group size, 1 . . . 64.
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Discussion

All methods compared were beneficial: They all reduced

overconfidence, increased the hit rates, and reduced the

MSE to different degrees in both studies, indicating that

WoC can be used in this context. One of the remarkable

results in the WoC literature on point estimates is that very

simple procedures, such as calculating the mean or the me-

dian of all the estimates, work extremely well. Clearly, sim-

ple averages are not sufficient in the context of interval esti-

mates. Trimmed averaging performs better than unweighted

averaging (A1). Interestingly, symmetrically-trimmed av-
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erages outperform the asymmetric-trimming methods, indi-

cating that it is important not only to exclude extremely high

(low) estimates of the upper (lower) bounds that may lead

to too excessively wide intervals but also to reduce the im-

pact of extremely high (low) estimates of the lower (upper)

bounds that tend to increase the bias.

The degree of improvement in the calibration of the prob-

ability intervals by averaging and the median is quite mod-

est. Interestingly, we do not replicate the results reported

by Gaba et al. (2014), who found that the average was bet-

ter than the median. In our data they function equally well

in some cases and the median improved the calibration of

the interval estimates more than the average in the general

knowledge questions in the GLW study. The inconsistency

may be explained the skewness of the distributions of up-

per and lower limits. In the GLW study the distributions

were positively skewed in both groups: the average skew-

ness of two estimates across 20 items is 5.33 and 6.34 for

the lower and upper bounds, respectively. In the SK study,

the estimates are less skewed: the mean skewness across the

47 items was 0.42 and −0.32 for the lower and upper limit

distributions, respectively, and averaging works somewhat

better. Support for this explanation is obtained from the

fact that symmetric trimming, which reduces the skewness,

performs better than regular averaging for both measures of

performance in GLW.

Although the hit rates of the Enveloping method increased

rapidly, mitigating overconfidence and reducing MSE sub-

stantially in both studies, Enveloping is not a particularly

good procedure because its hit rate exceeds the target con-

fidence for moderate sample sizes by widening the dis-

tance between two end points rendering the aggregate in-

terval enormous, coarse and uninformative (Yaniv & Foster,

1995).

Figure 6 illustrates this point. It shows the median widths

of intervals of two questions (Q5 and Q15) in the GLW

study for the Averaging, Enveloping, and Quartiles heuris-

tics. The median widths of the Enveloping intervals were

much wider at the largest k whereas the width with Aver-

aging and Quartiles are relatively constant. In other words,

Enveloping simply replaces overconfidence with excessive

underconfidence.

Is one type of miscalibration better or worse than the

other? In some cases, one could invoke cost considerations

to answer this question as the costs associated with the two

may vary widely. But, in general, people may not wish to

trade-off the informativeness of narrow intervals for higher

hit rates (Yaniv & Foster, 1995).

Both probability averaging (A4) and the Quartiles method

(A5) offer a nice compromise as they reduce overconfidence

markedly and help reduce MSE. The Quartile heuristic has

the advantage of not relying on assumptions about the shape

of the distributions3, and we propose that it provides an ex-

3In a few cases the estimated mean and variance of the best fitting nor-

Figure 7: Hit rates as a function of group size for five aggre-

gation heuristics (DB data).
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cellent tool for combining interval forecasts. The key prin-

ciple driving the Quartiles heuristic are the same ones that

drive MAD filtered Unweighted Average (Lyon et al., in

press), namely trimming extremes that give rise to various

biases prior to aggregating interval forecasts. In this case,

we treat estimates below the 25th percentile in the distri-

bution of lower bounds and greater than the 75th percentile

of the upper bounds as “extremes”. Since the average and

the medians of these distributions do not widen the intervals

enough to rectify overconfidence, and since the Enveloping

heuristic induces underconfidence, the Quartiles Heuristic is

a happy compromise between these extremes.

We have illustrated the efficacy of the Quartiles heurists in

two separate studies where the original judgments were ex-

tremely overconfident, but we hasten to caution that it may

not always work. We illustrate the point with data from an-

other study (Budescu & Du, 2007) where the judges were

only slightly overconfident. Sixty-three graduate students

who attended in the Business school of the University of

Illinois at Urbana-Champaign were asked to forecast future

prices of 40 anonymized stocks. Subjects were shown time

series of the monthly prices of all stocks for Year 1 and

asked to predict the price of Month 3 for Year 2. Among

other judgments, they provided 50%, 70% and 90% proba-

bility intervals. We chose only 90% interval estimate data

that displayed slight overconfidence (mean hit rate = 82%).

We refer to these data as BD.

Figure 7 displays the hit rates bases of the 5 heuristics,

as a function of group size. The various procedures reduce

mal distributions violated theoretical constraints (e.g., the estimated means

and variances produced negative lower bounds in cases where the target

value must be non-negative.)
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Figure 8: Mean variance, Mean squared bias, and Mean

squared error as a function of group size for five aggrega-

tion heuristics (DB data).
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overconfidence, and the ordering of the rate of increase in

the hit rate is similar to the one shown in the previous stud-

ies. Enveloping (A3) widens the intervals and 99.4% of the

actual prices lie between its two bounds at k=8. The hit

rates in Probability Averaging (A4) and Quartiles (A5) also

exceed the target confidence level (90%) for k ≥ 4 (hit rate

of Quartiles reaches a plateau at k=4). Both Averaging and

Median increase more slowly and, in this case, they achieve

the best results (especially the median). Figure 8 shows the

MSE and its components. MV dominates MSB in smaller k

and MV decreases as a function of group size for all meth-

ods. MSE also tends to be diminished except in Enveloping

(A3). However MSB shows an apparent rebound due to un-

derconfidence except for the Median (A2). Thus, Quartiles

is not the best aggregation heuristic if we need to resolve less

severe overconfidence. In this case, one would do better by

using the Median.

Our examples suggest that (1) the Quartiles method works

best when most judges are highly overconfident; (2) when

overconfidence is low, the Median is a better choice, but

(c) if one has access to only a small group of forecasters,

Enveloping could be one’s best bet. These conclusions are

consistent with the results reported by Gaba et al. (2014).

Future work should seek to identify and fully characterize

the cases where different heuristics perform best in terms of

reducing overconfidence while taking into account various

factors such as maximal group size available for aggrega-

tion, the degree and the type of the skewedness of the two

distributions and the correlation between the various mem-

bers of the crowd.

Like most work on this topic in the JDM literature, we

focused on the hit rate and its distance to the target confi-

dence levels. Given our interest in aggregation over mul-

tiple judges we also reported results related to the MSE.

We did not study systematically the width of the various

aggregated intervals and the absolute distance between the

midpoint of intervals and the realized value as a function

of group size. The data sets we re-analyzed used multiple

items from various domains measured in different metrics

that vary widely (for example, in the GLW data they range

from 58 years to 11 million customers). The direct implica-

tion is that the width and the distance from the target can-

not be easily compared across items. One possible solu-

tion is to re-scale the judges’ estimates to of the lower and

upper limits for the return. Gaba et al. (2014) rescaled by

( lowerlimit
actualvalue

− 1, upperlimit
actualvalue

− 1) to place all the estimates

be on the same scale.

Another appealing possibility is to focus on scoring rules

that consider simultaneously the hit rate and the width of the

interval, like the one proposed by Jose and Winkler (2009).

For 100(1 − α)% probability intervals their Q-score is de-

fined as:

Q{L,U, x} = 2g − (α/2)(U − L)−Max(L− x, 0)

−Max(x− U, 0),

where L and U are the lower and upper limits of the inter-

vals provided by the judge, x is the actual value, and g is a

scaling constant. Without any loss of generality set g = 0, so

all scores are negative. It follows that the closer a score is

to 0 (less negative), the better it is. Q-scores increase (i.e.,

improve) when the interval (U −L) is tight and informative,

and when the distance between the actual value and the rel-

evant end point is short, so the Q-score is a comprehensive

measure of the quality of the probability interval that aggre-

gates accuracy and informativeness (Yaniv & Foster, 1995).

To illustrate the approach and compare its results to our

analysis we display in Figure 9 the average Q-scores for

items 5 and 15 from the GLW data (the same one analyzed

in Figure 6) for the five approaches used in our analysis as

a function of the group size. The Q-scores of Enveloping

(A3) drop rapidly as a function of k confirming the detri-

mental effect of the wide intervals. The Quartiles (A5) and

Median (A2) methods perform best, followed by Averaging

(A1) and Probability averaging (A4).

One obvious problem of the Q-scores is that they are

scale-specific so one can’t combine them meaningfully

across multiple items, unless they use the same units. To

overcome this problem, we calculated the Kendall τ rank

correlation between group size and the mean Q-score for

every item and each method. Figure 10 compares the dis-

tribution of the 20 coefficients for each method. Only Av-

eraging and Quartiles have consistent positive correlations
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Figure 9: Average Q-scores as a function of group size for

the 5 methods for two items.

0 1 2 3 4 5 6

−250

−200

−150

−100

−50

0

Item 5

Log base 2 of k (k=1 to 64)

A
ve

ra
ge

 Q
−

S
co

re

Averaging
Median
Enveloping
ProbAve
Quartiles

0 1 2 3 4 5 6

−20

−15

−10

−5

0

Item 15

Log base 2 of k (k=1 to 64)

A
ve

ra
ge

 Q
−

S
co

re

Averaging
Median
Enveloping
ProbAve
Quartiles

(with 3 outliers for some very difficult items), and we ob-

serve mixed result for Probability averaging (A4) and Me-

dian (A2). These additional analyses using the alternative

measures highlight the excellent performance of the newly

proposed Quartiles heuristic.

Figure 10: Distributions of Kendall rank correlation be-

tween mean Q-scores and group size for all methods.
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