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WEAK L- SPACES

YIN-ZHU GAO

In this paper, semi-weak L-spaces and weak L-spaces (which are generalisations
of Lindeléf spaces) are introduced and studied .

1. INTRODUCTION

The Jordan curve theorem ([4]) is one of the classical theorem of mathematics.
Making abstracts of the properties of this theorem, Michael [5] introduced and studied
the J-space. A space X is a J-space if, whenever { A, B} is a closed cover of X with AnB
compact, then A or B is compact. A compact space is a J-space, but not conversely. In
the definition of the J-space, “A or B is compact” cannot be weakened to “A or B is
Lindelof”. In 2], the L-space is introduced and studied which generalised the J-space.
A space X is an L-space if, whenever {A, B} is a closed cover of X with AN B compact,
then A or B is Lindeldf. J-spaces are L-spaces, but not conversely. The real line R is
such an example.

In this note, we introduce and study semi-weak L-spaces and weak L-spaces which
contain the class of L-spaces. This study generalised and enriched Michael’s study in [5].

Throughout the note, spaces are Hausdorff. A space X is Lindel6f if every open
cover of X has a countable subcover. All maps are continuous. The first uncountable
ordinal is denoted by w;.

Recall that a map f : X — Y is monotone if all fibres f~!(y) are connected and
amap f : X = Y is boundary-perfect ([5]) if f is closed and the boundary of f~}(y)
is compact for any y € Y. The long line Z is the space Z = [0,w;) x [0,1) with the
order topology generated by the lexicographical order. Clearly Z is non-Lindelsf, locally
compact, countably compact and connected. Z* = Z U {w, } is called the extended long
line (that is, for any 2z € Z,2 < w; and Z* with the order topology, equivalently, Z* is
the one-point compactification of Z) (see [7]).

For a subset A of the space X, we reserve A4 and A° for the boundary and interior of
A respectively. R is the set of all real numbers, Z* is the set of all non-negative integers,
I is the usual closed unit interval (0,1, R* = {z € R:z 20} and R- = {z e R: z < 0}.
For other terms and symbols see [1].
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2. PROPERTIES

DEFINITION 1: A space X is a semi-weak L-space if, whenever A and B are disjoint
closed subsets of X with A4 and 0B compact, then A or B is Lindel6f.

DEFINITION 2: A space X is a weak L-space if, whenever {A, B, K'} is a closed
cover of X with K compact and AN B =0, then A or B is Lindelof.
PROPOSITION 1.
(1) A semi-weak L-space X is a weak L-space, but not conversely;
(2) Let A C X be closed and 0A compact. If X is a semi-weak L-space, so is
A
Proor: (1) Let {A, B, E} be a closed cover of X with K compact and AN B =@.
Then the closed subsets 34 and 8B of K are compact. Since X is a semi-weak L-space,
A or B is Lindel6f. By Example 3, the converse is false.

(2) Let F, B be disjoint closed subsets of A with compact boundaries in A, then F
and B are closed in X. Noticing that

F=FNX-FCFN(X-AUFnN(A=F) Cd(A) U (OF)4,

where (3F), is the boundary of F in A, we have that OF is compact. Similarly, 4B is
compact. Hence F or B is Lindeldf. a

Clearly, a Lindelof space is a semi-weak L-space. The Example 1 shows that the
converse is not true. Proposition 1(2) is not true for weak L-spaces (see Example 3(3)).

PROPOSITION 2. Let {X;,X,} be a closed cover of X with X, Lindelof. If X,
is a (semi-)weak L-space, so is X.

PROOF: If X, is a semi-weak L-space, let A, B be disjoint closed subsets of X with
8A, 8B compact. Put A, = AN X;, By = BN X;. Then A, N B, = 0 and 84,, 8B,
compact and so 4; or B is Lindel6f. Hence A or B is Lindel6f. Thus X is a semi-weak
L-space. If X, is a weak L-space, let {A4, B, E'} be a closed cover of X with ANB =0
and E compact. Since {ANX,;, BNX,, ENX,} is a closed cover of X;, ANX; or BNX;
is Lindel6f and thus A or B is Lindelof. So X is a weak L-space. 0

COROLLARY 1. Let X = EUO with O open in X and O compact. IfE is a
semi-weak L-space, so is X.

PROOF: Note that the closed A = X\O C F has a compact boundary in X and
thus in E, so A is a semi-weak L-space by Proposition 1(2). The closed cover {4, 0} of
X satisfies the condition of Proposition 2, so X is a semi-weak L-space.

COROLLARY 2. Let the closed cover {X;, X2, K} of X be with X, N X, = 0 and
K compact. Then the following are equivalent.

(1) X is a (semi-)weak L-space;
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(2) One of X, and X, is Lindeldf and the other is a (semi-)weak L-space.

PROOF: Suppose that X is a weak L-space. (2)= (1) is by Proposition 2.
(1)= (2). Suppose (1), and let X, be Lindelsf, {A, B,W} a closed cover of X, with
ANB = @ and W compact. Then the closed cover {AUX,, B, WUK} of X satisfies that
AU X, or B is Lindel6f. Thus A or B is Lindel6f and (2) holds. Now suppose that X is
a semi-weak L-space. Noticing that d(X,), 8(X;) C K are compact, (1)<>(2) is obvious
by Propositions 1 and 2.

PROPOSITION 3. Let {X;,X;} be a closed cover of X with X, N X, non-
Lindelof. If X, and X, are weak L-spaces, so is X.

Proposition 3 is not true for semi-weak L-spaces (see Example 3(1), (2)).

PROPOSITION 4. The following are equivalent for a space X.
(1) X is a semi-weak L-space.
(2) Iff:X —Y is boundary-perfect, then f~!(y) is non-Lindeléf for at most
oney €Y.

COROLLARY 3. If f is a closed map from a paracompact semi-weak L-space X
onto a g-space Y, then f~!(y) is non-Lindeléf for at most oney € Y.

PRroor: This follows from Proposition 4 since every closed map f: X — Y from a
paracompact space X on to a g-space Y is boundary-perfect (see [6]). 0

PROPOSITION 5. Let f: X — Y be a perfect map onto Y. If X is a (semi-
)weak L-space, so is Y. The converse is not true.

Proor: If Y is a weak L-space, let {A,B,K} be a closed cover of Y with
ANB = 0 and K compact. Since {f~'(A), f~1(B), f~}(K)} is a closed cover of X
and f~1(A)N f~Y(B) = 0 and f~}(K) is compact, f~1(A) or f~1(B) is Lindel6f. Hence
A or B is Lindelof. If Y is a semi-weak L-space, let A, B be disjoint closed subsets of
Y with compact boundaries. Then f~'(A) N f~'(B) = 0. Since 8(f~'(A4)) C f~'(0A)
and f~1(8A) is compact, 8(f~*(A)) is compact. Similarly, 8(f~!(B)) is compact. Thus
f7}(A) or f~Y(B) is Lindeldf and so A or B is Lindeléf. In Example 2, f is a monotone
perfect map and Y is a semi-weak L-space, but X is not a weak L-space. So the converse
is false. 1]

In [5], the following two classes of spaces are defined and studied.

A space X is a semi-weak J-space if, whenever A and B are disjoint closed subsets
of X with compact boundaries, then A or B is compact. A space X is a weak J-space if,
whenever {A, B, K'} is a closed cover of X with K compact and AN B = 0, then A or B
is compact.

Clearly, a semi-weak J-space is a semi-weak L-space and a weak J-space is a weak
L-space, but the converses are not true (see Theorem 1).
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PROPOSITION 6. ([5])) Suppose that X is a J-space and Y = X U {yo}. Then
Y is a semi-weak J-space.

PROPOSITION 7. Suppose that X is an L-space and Y = X U {yo}. ThenY is
a semi-weak L-space.

Proor: By modifying the proof of Proposition 6. 0

PROPOSITION 8. IfX isa connected L-space (a connected J-space), then the
quotient space Q = (X x I)/(X x {1}) is a semi-weak L-space (a semi-weak J-space).

PRroOF: Denote by y, the point X x {1} of @Q, then the space Q can be represented
as (X x [0,1)) U {so}.

Suppose that X is a connected L-space. If X is compact, then the projection f :
X x [0,1) — [0,1) is perfect. For any closed cover {4, B} of X x [0,1) with AN B
compact, f(A) is closed and Lindelof since [0, 1) is Lindeléf. So f~!(f(A)) is Lindelsf
and thus A is Lindeldf. This shows that X x [0,1) is an L-space. If X is not compact,
then by [5, Proposition 2.5], X x [0,1) is a J-space, hence an L-space. By Proposition
7, @ is a semi-weak L-space.

Suppose that X is a connected J-space. Since R* is a J-space ([5, Proposition
2.4]), [0,1) is a J-space. By [5, Corollary 5.8(d)] the product X x [0, 1) of two connected
J-spaces is a J-space. So by Proposition 6, Q is a semi-weak J-space. 0

It is showed that J = semi-weak J = weak J, but the converses are false; in locally
compact spaces, the three properties coincide (see [5]).

THEGREM 1. Suppose that X is a space and

(C) X is an L-space; (¢) X is a J-space;
(D) X is a semi-weak L-space; (d) X is a semi-weak J-space;
(E) X is a weak L-space; (e) X is a weak J-space.

Then
(1) (C)=(D)=(E), (c)=(C), (d)=(D), (e)=>(E), but not conversely;
(2) the six properties are not productive (respectively not additive, preserved
by quotient maps);
(3) if X is locally compact, then (C)<(D)< (E);
(4) if X is countably compact, then (C)&(c), (D)<(d) and (E)<(e).
ProorF: (1) (C)= (D): let A, B be disjoint, closed subsets of X with compact
boundaries, then {4, X \ A} is a closed cover of X with AN X \ A compact. By (C), A
or B is Lindelof and thus (D) holds. (D)= (E) is by Proposition 1. (c)=> (C), (d)= (D)
and (e)= (E) are obvious.
(D)# (C) is by Example 1, (E)# (D) is by Example 3.
The real line X = R is Lindel6f, so it satisfies (C), (D) and (E). But X is not a weak
J-space, thus X does not satisfy (e), (d), (c).
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(2) Not productive: let X = {0,1} x Z. Clearly, {0,1} is a J-space. The lone
line Z is a J-space (in fact, let {A, B} be a closed cover of Z with AN B compact, then
AN B c [(0,0), (@, 0)] for some a € [0,w,) since the compact AN B is bounded. Put
K[(0,0),(a, 0)]. Noticing that Z \ K is connected, we have A C K or B C K and thus
A or B is compact because K is compact). Put A = {0} x Z,B = {1} x Z. Since Z is
not Lindeldf, for the closed cover {A, B,8} of X neither A nor B is Lindeldf, so X is not
a weak L-space.

Not additive: The topological sum Z & Z of two J-spaces is not a weak L-space.

Not preserved by the quotient map: the space P in Example 4 is a J-space, but the
quotient space @ is not a weak L-space.

(3) Let X be locally compact. By modifying the proof of (e)=> (c) in [5], we have
(E)= (C). Then by (1), (C)& (D)« (E)

(4) Note that in a countably compact space, Lindelofness<> compactness. 0

To be clear at a glance, we give the following diagram, note that none of the impli-
cations is reversible.

J —m L

! l

semi-weak J — semi-weak L

1

weak J

weak L

3. EXAMPLES
ExaMPLE 1. A semi-weak L-space Y which is not an L-space (so not Lindeldf).

PrROOF: Let X =R x Z and T = R x Z*, where R is the real line, Z the long line
and Z* the extended long line. By [5, Proposition 2.5], X is a J-space. The subspace
Y=Xu {(0, wl)} of T is a semi-weak J-space by Proposition 6, so a semi-weak L-space.
Put A= {{r,m) €Y :r <0} and B= {{r,m) €Y : 7 > 0}, the {A, B} is a closed
cover of Y with AN B compact, but neither A nor B is not Lindeldf. 0

EXAMPLE 2. A space X which is not a weak L-space, whose image Y under a monotone
perfect map is a semi-weak J-space (so a semi-weak L-space).

PROOF: Let X = (R x Z)U ([~1,1] x {w;}) be the subspace of R x Z* ,

A={(r,m)e X:rg -1},
B={(r,m)e X:r>1} and
E=[-1,1]x Z".
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Then {A, B, E} is a closed cover X with AN B = @ and E compact, but neither A nor
B is Lindelof. So X is not a weak L-space. Since R x Z is a J-space, the subspace
Y = (R x Z)U{(0,w1)} of X is a semi-weak J-space by Proposition 6.

Now we define f : X — Y as follows. If (r,m) € A, then f({r, m)) = (r+1,m);
if (r,m) € B, then f((r,m)) = (r — 1,m); if (r,m) € E, then f((r,m)) = (0,m). It is
easy to see that f is a monotone perfect map. 0

The following example shows that, adding two points to a J-space (respectively
an L-space) may not result in a semi-weak J-space (respectively a semi-weak L-space)
(compare it with Propositions 6 and 7).

ExXAMPLE 3. A weak L-space Y such that
(1) Y has a closed cover {Y}, Y2} by semi-weak L-spaces Y; and Yz with Y;NY,
non-Lindelof;
(2) Y is not a semi-weak L-space;
(3) Y has a closed subset F' with F compact so that F' is not a weak L-space.

PROOF: (1) Put X =R x Z. Let Y = X U {(~1,w),(1,w;)} be the subspace of

R x Z*,
=R x2)U{(-1,wi)} and Y2 = (R* x Z)U {(1,w))}.
Then {Y), Y2} is a closed cover of Y, and Y1 NY; = {0} x Z is not Lindelof. Since R~ x Z
and Rt x Z are J-spaces, Y;, Y, are semi-weak J-spaces by Proposition 6 and thus are
semi-weak L-spaces, Y is a weak L-space by Propositions 1 and 3.
(2) Put

A={{r,m)eY :r< -1},
B={(rrm)eY:r>1}.

Then A, B are disjoint, closed subsets of Y with A, 0B compact, but neither A nor B
is Lindel6f. So Y is not a semi-weak L-space.

(3) Put F = AU B, then F is a closed subset of Y with F = ({-1} x Z*) U
({1} x Z*) compact, but F is not a weak L-space.

Let X = R? be the “bow-tie” space, that is, it has a topology so that a neighbourhood
of a point (s,t) € X is the “bow-tie”:

{(s,t)}u{(s’,t') :0<|s—s|<e and [( —t)/(s —9)| < 6},

where € > 0 and § > 0 can vary (see [3]).

EXAMPLE 4. A J-space P whose quotient space @ is not a weak L-space.
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PROOF: First we show that the bow-tie space X has a subspace @ which is not a
weak L-space. Put

C={{z,y) :z+y<-lLz< -1 and y >0} U {(-1,0)},

D={{z,y):z—y>1,z>1 and y>0}U{(1,0)} and

E ={-1,1] x {0}.
Let @ = CU DU E be the subspace of X. Then the closed cover {C, D, E} of Q is with
CnND =0 and E compact. Take 2o < —1 and ¢ < d such that the closed non-Lindel6f
{zo} x [¢,d] C C, hence C is not Lindelof. Similarly, D is not Lindeldf.

Now we show that C and D are connected, and thus @ is connected.

Let us show that C is connected. Assume C = A, U B; is with A;, B; closed,
ANB, =0, A # 0 and B, # 0. For any y € R*, since R, = {(z,y) : {z,y) € C}
is connected, we have R, C A, or R, C B,. Take (z,,y1) € A;, (T2,%2) € Bi. Then
y1 # yo. Without loss of generality, let y; < y,. Put

H={yeR*:R,C A,y <wy},
then y; € H. Let yo = sup H, then R,, C A, or R, C B,. If R, C A,, then 3 <y,
and for any y» > y > yo, Ry C By. So for any z € Ry, any neighbourhood U, of z,
U,NR, # 0 for some y2 >y > yo. SoU,N B, #0. Since By = By, z € B; and thus

R,, C A, N B,. A contradiction. If R,, C B,, we can similarly show that R,, C A, N B,
and a contradiction arises again, thus C is connected. Similarly, D is connected. So @ is

connected.
Put P = @ xR. Then by Proposition 2.5 of [5], P is a J-space. Then the projection
p: P — @ is a quotient map and @ is the quotient space. 0
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