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W E A K L- SPACES

YIN-ZHU G A O

In this paper, semi-weak L-spaces and weak L-spaces (which are generalisations
of Lindelof spaces) are introduced and studied .

1. INTRODUCTION

The Jordan curve theorem ([4]) is one of the classical theorem of mathematics.
Making abstracts of the properties of this theorem, Michael [5] introduced and studied
the J-space. A space X is a J-space if, whenever {A, B} is a closed cover of X with AC\B
compact, then A or B is compact. A compact space is a J-space, but not conversely. In
the definition of the J-space, "A or B is compact" cannot be weakened to "A or B is
Lindelof. In [2], the L-space is introduced and studied which generalised the J-space.
A space X is an L-space if, whenever {A,B} is a closed cover of X with Ar\B compact,
then A or B is Lindelof. J-spaces are L-spaces, but not conversely. The real line R is
such an example.

In this note, we introduce and study semi-weak L-spaces and weak L-spaces which
contain the class of L-spaces. This study generalised and enriched Michael's study in [5].

Throughout the note, spaces are Hausdorff. A space X is Lindelof if every open
cover of X has a countable subcover. All maps are continuous. The first uncountable
ordinal is denoted by u>\.

Recall that a map / : X —> Y is monotone if all fibres f~l(y) are connected and
a map / : X -»• Y is boundary-perfect ([5]) if / is closed and the boundary of f~l(y)
is compact for any y 6 Y. The long line Z is the space Z = [0,wi) x [0,1) with the
order topology generated by the lexicographical order. Clearly Z is non-Lindelof, locally
compact, countably compact and connected. Z* = ZU {u\} is called the extended long
line (that is, for any z € Z, z < u)\ and Z* with the order topology, equivalently, Z* is
the one-point compactification of Z) (see [7]).

For a subset A of the space X, we reserve dA and A° for the boundary and interior of
A respectively. R is the set of all real numbers, Z + is the set of all non-negative integers,
/ is the usual closed unit interval [0,1], R+ = {x G R : x ^ 0} and R" = {x e R : x ^ 0}.
For other terms and symbols see [1].
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30 Yin-Zhu Gao [2]

2. PROPERTIES

DEFINITION 1: A space A" is a semi-weak L-space if, whenever A and B are disjoint
closed subsets of X with dA and dB compact, then A or B is Lindelof.

DEFINITION 2: A space A" is a weak L-space if, whenever {A, B, K} is a closed
cover of X with K compact and A D B = 0, then A or B is Lindelof.

PROPOSITION 1.

(1) A semi-weai L-space X is a wealc L-space, but not conversely;

(2) Let A C X be closed and dA compact. If X is a semi-weak L-space, so is

A.

PROOF: (1) Let {A, B, E} be a closed cover of X with K compact and A D B = 0.
Then the closed subsets dA and dB of if are compact. Since X is a semi-weak L-space,
A or B is Lindelof. By Example 3, the converse is false.

(2) Let F, B be disjoint closed subsets of A with compact boundaries in A, then F
and B are closed in X. Noticing that

dF = FnX-FcF(l(X-A)u(Fn(A-F)c d{A) U {dF)A,

where (dF)A is the boundary of F in A, we have that 9F is compact. Similarly, dB is
compact. Hence F or 2? is Lindelof. D

Clearly, a Lindelof space is a semi-weak L-space. The Example 1 shows that the
converse is not true. Proposition 1(2) is not true for weak L-spaces (see Example 3(3)).

PROPOSITION 2 . Let {XUX2} be a closed cover of X with X2 Lindelof. If Xx

is a (semi-)weak L-space, so is X.

PROOF: If Xx is a semi-weak L-space, let A, B be disjoint closed subsets of X with
dA, dB compact. Put Ax = A D Xx, Bx = B D Xi. Then Ax n Bx = 0 and dAit dBi
compact and so Ax or B\ is Lindelof. Hence A or B is Lindelof. Thus X is a semi-weak
L-space. If X\ is a weak L-space, let {A,B,E} be a closed cover of X with An B = ID
and E compact. Since {Af)Xi, BnXi, EHXi} is a closed cover of Xx, AC\XX or BC\XX

is Lindelof and thus A or B is Lindelof. So X is a weak L-space. D

COROLLARY 1 . Let X = EUO with O open in XandO compact. If E is a
semi-weak L-space, so is X.

PROOF: Note that the closed A = X\O C E has a compact boundary in X and
thus in E, so A is a semi-weak L-space by Proposition 1(2). The closed cover {A, 0} of
X satisfies the condition of Proposition 2, so X is a semi-weak L-space. D

COROLLARY 2 . Let the closed cover {Xi, X2, K) ofX be with Xx (~l X2 = 0 and

K compact. Then the following are equivalent.

(1) X is a (semi-)weak L-space;
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(2) One of X\ and X2 is Lindelof and tie other is a (semi-)weak L-space.

PROOF: Suppose that X is a weak L-space. (2)^ (1) is by Proposition 2.
(1)=> (2). Suppose (1), and let X\ be Lindelof, {A,B, W) a closed cover of X2 with
AnB = 0 and W compact. Then the closed cover {AUXi,B, WuK} of X satisfies that
A U Xi or B is Lindelof. Thus .4 or B is Lindelof and (2) holds. Now suppose that X is
a semi-weak L-space. Noticing that d(X\), d(X2) C K are compact, (1)«=>(2) is obvious
by Propositions 1 and 2. D

PROPOSITION 3 . Let {XUX2} be a closed cover of X with Xx n X2 non-
Lindelof. If Xi and X2 are weak L-spaces, so is X.

Proposition 3 is not true for semi-weak L-spaces (see Example 3(1), (2)).

PROPOSITION 4 . The following are equivalent for a space X.

(1) X is a semi-weak L-space.

(2) If f : X -+Y is boundary-perfect, then /-1(j/) is non-Lindelof for at most
one y eY.

COROLLARY 3 . If f is a closed map from a paracompact semi-weak L-space X
onto a q-space Y, then f~x{y) is non-Lindelof for at most one y GY.

PROOF: This follows from Proposition 4 since every closed map / : X —• Y from a
paracompact space X on to a g-space Y is boundary-perfect (see [6]). D

PROPOSITION 5 . Let f : X ->• Y be a perfect map onto Y. If X is a (semi-
)weak L-space, so is Y. The converse is not true.

PROOF: If Y is a weak L-space, let {A, B, K} be a closed cover of Y with
AnB = 0 and K compact. Since {f~l{A), f~l(B), f-l{K)} is a closed cover of X
and f~\A) D f~l{B) = 0 and f~l(K) is compact, f~l{A) or f~l(B) is Lindelof. Hence
A oi B is Lindelof. If Y is a semi-weak L-space, let A, B be disjoint closed subsets of
Y with compact boundaries. Then f~l(A) n f~l(B) = 0. Since d(f~1(A)) c f~\dA)
and f~x(dA) is compact, 3(/~1(^4)) is compact. Similarly, d(f~1{B)) is compact. Thus
f~l(A) or / - 1 ( 5 ) is Lindelof and so A or B is Lindelof. In Example 2, / is a monotone
perfect map and Y is a semi-weak L-space, but X is not a weak L-space. So the converse
is false. D

In [5], the following two classes of spaces are defined and studied.
A space X is o semi-weak J-space if, whenever A and B are disjoint closed subsets

of X with compact boundaries, then A or B is compact. A space X is o weak J-space if,
whenever {A, B, K} is a closed cover of X with K compact and A n B = 0, then A or B
is compact.

Clearly, a semi-weak ./-space is a semi-weak L-space and a weak ./-space is a weak
L-space, but the converses are not true (see Theorem 1).

https://doi.org/10.1017/S0004972700035541 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035541


32 Yin-Zhu Gao [4]

PROPOSITION 6 . ([5]) Suppose that X is a J-space and Y = X U {y0}. Then
Y is a semi-weak J-space.

PROPOSITION 7 . Suppose that X is an L-space and Y = X U {y0}. Then Y is
a semi-weak L-space.

PROOF: By modifying the proof of Proposition 6. D

PROPOSITION 8 . If X is a connected L-space (a connected J-space), then the
quotient space Q = (X x I)/(X x {1}) is a semi-weak L-space (a semi-weak J-space).

PROOF: Denote by j/o the point X x {1} of Q, then the space Q can be represented
as (Xx[0,l))u{yo}.

Suppose that AT is a connected L-space. If X is compact, then the projection / :
X x [0,1) -+ [0,1) is perfect. For any closed cover {A,B} of X x [0,1) with AnB
compact, f(A) is closed and Lindelof since [0,1) is Lindelof. So f~l(f(A)) is Lindelof
and thus A is Lindelof. This shows that X x [0,1) is an L-space. If X is not compact,
then by [5, Proposition 2.5], X x [0,1) is a J-space, hence an L-space. By Proposition
7, Q is a semi-weak L-space.

Suppose that A" is a connected J-space. Since R+ is a J-space ([5, Proposition
2.4]), [0,1) is a J-space. By [5, Corollary 5.8(d)] the product X x [0,1) of two connected
J-spaces is a J-space. So by Proposition 6, Q is a semi-weak J-space. D

It is showed that J =» semi-weak J =>• weak J, but the converses are false; in locally
compact spaces, the three properties coincide (see [5]).

THEOREM 1. Suppose that X is a space and

(C) X is an L-space; (c) X is a J-space;
(D) X is a semi-weak L-space; (d) X is a semi-weak J-space;

(E) X is a weak L-space; (e) X is a weak J-space.

Then

(1) (C)=>(D)=»(E), (c)=>(C), (d)=»(D), (e)=>(E), but not convereeiy;
(2) the six properties are not productive (respectively not additive, preserved

by quotient maps);
(3) ifX is locally compact, then (C)-»(D)-» (E);

(4) if A" is countably compact, then (C)^(c), (D)«*(d) and (E)-»(e).

PROOF: (1) (C)=* (D): let A, B be disjoint, closed subsets of X with compact
boundaries, then {A, X \ A} is a closed cover of X with A D X \ A compact. By (C), A
or B is Lindelof and thus (D) holds. (D)=» (E) is by Proposition 1. (c)=> (C), (d)=> (D)
and (e)=> (E) are obvious.

(D)*- (C) is by Example 1, (E)*- (D) is by Example 3.
The real line X = R is Lindelof, so it satisfies (C), (D) and (E). But X is not a weak

J-space, thus X does not satisfy (e), (d), (c).
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(2) Not productive: let X = {0,1} x Z. Clearly, {0,1} is a ./-space. The lone
line Z is a J-space (in fact, let {.A, B} be a closed cover of Z with A n B compact, then
An B c [(0,0), (a, 0)] for some a 6 [0,wi) since the compact A fl B is bounded. Put
K [(0,0), (a, 0)]. Noticing that Z \ K is connected, we have A C K or B C K and thus
/I or B is compact because K is compact). Put J4 = {0} x Z, B = {1} x Z. Since Z is
not Lindelof, for the closed cover {A, B, 0} of X neither A nor B is Lindelof, so X is not
a weak L-space.

Not additive: The topological sum Z © Z of two J-spaces is not a weak L-space.
Not preserved by the quotient map: the space P in Example 4 is a J-space, but the

quotient space Q is not a weak L-space.

(3) Let X be locally compact. By modifying the proof of (e)=> (c) in [5], we have

(E)=> (C). Then by (1), (C)«* (D)« . (E)

(4) Note that in a countably compact space, Lindelofness^ compactness. D

To be clear at a glance, we give the following diagram, note that none of the impli-
cations is reversible.

XJ

semi-weak J *• semi-weak L

I
weak J *• weak L

3. EXAMPLES

EXAMPLE 1. A semi-weak L-space Y which is not an L-space (so not Lindelof).

PROOF: Let X = K x Z and T = R x Z*, where R is the real line, Z the long line
and Z* the extended long line. By [5, Proposition 2.5], X is a J-space. The subspace
Y — X U {(0, wj)} of T is a semi-weak J-space by Proposition 6, so a semi-weak L-space.
Put A = {(r,m) G Y : r < 0} and B = {(r,m) € Y : r > 0}, the {A,B} is a closed
cover of Y with A n B compact, but neither A nor B is not Lindelof. D

EXAMPLE 2. A space X which is not a weak L-space, whose image Y under a monotone
perfect map is a semi-weak J-space (so a semi-weak L-space).

PROOF: Let X = {Rx Z)\J ([-1,1] x {wj) be the subspace of R x Z* ,

B = {{r,m) 6 X :r> 1} and
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Then {A, B, E} is a closed cover X with A D B = 0 and E compact, but neither A nor
B is Lindelof. So X is not a weak L-space. Since R x Z i s a 7-space, the subspace
Y = (R x Z) U {(0, wi)} of X is a semi-weak ./-space by Proposition 6.

Now we define / : X —)• Y as follows. If (r,m) 6 -A, then f((r,m)) = (r + l,m);
if (r,m) € S, then f((r,m)) = (r - l,m); if (r,m) € £, then /((r,m>) = (0,m). It is
easy to see that / is a monotone perfect map. D

The following example shows that, adding two points to a ./-space (respectively
an L-space) may not result in a semi-weak 7-space (respectively a semi-weak L-space)
(compare it with Propositions 6 and 7).

EXAMPLE 3. A weak .L-space Y such that

(1) Y has a closed cover {Yi, Y2} by semi-weak L-spaces Ft and Y2 with Yi C\Y2

non-Lindelof;

(2) Y is not a semi-weak L-space;

(3) Y has a closed subset F with dF compact so that F is not a weak L-space.

PROOF: (1) Put X = R x Z. Let Y = Xu {(-l,u/i), (l,wi)} be the subspace of
R x Z\

Yx = (R~ x Z ) U {(-l,wi>} and Y2 = (R+ x Z) U {<l,wi».

Then [Yu Y2}isa. closed cover of Y, and Y1nY2 = {0} x Z is not Lindelof. Since R~ x Z
and R+ x Z are 7-spaces, 1^, Y2 are semi-weak J-spaces by Proposition 6 and thus are
semi-weak L-spaces, Y is a weak L-space by Propositions 1 and 3.

(2) Put

Then A, B are disjoint, closed subsets of Y with dA, dB compact, but neither A nor B
is Lindelof. So Y is not a semi-weak L-space.

(3) Put F = A U B, then F is a closed subset of Y with dF = ({-1} x Z") U
({1} x Z*) compact, but F is not a weak L-space. D

Let X = R2 be the "bow-tie" space, that is, it has a topology so that a neighbourhood
of a point (s,t) e X is the "bow-tie":

{{s,t)}L>{(s',t):0<\s-s'\<e and \{i! - t)/(s' - s)\ < <*},

where e > 0 and S > 0 can vary (see [3]).

EXAMPLE 4. A ./-space P whose quotient space Q is not a weak L-space.
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P R O O F : First we show that the bow-tie space X has a subspace Q which is not a

weak L-space. Put

C = { ( z , y ) : x + y < - l , z < - l and y > 0} U {(-1,0)},

D= {(x,y) :x-y > l , x > l and y^0} l j{ ( l , 0 )} and

E = [ - l , l ]x{0} .

Let Q = C U D U E be the subspace of X. Then the closed cover {C, D, E} of Q is with
C n D = 0 and £ compact. Take x0 < - 1 and c < d such that the closed non-Lindelof
{x0} x[c,d] C C, hence C is not Lindelof. Similarly, D is not Lindelof.

Now we show that C and D are connected, and thus Q is connected.

Let us show that C is connected. Assume C = AiLS By is with A\, B\ closed,
Ax n Bx = 0, Ai ^ 0 and Si ^ 0. For any y € R+, since Ry = {{x,y) : (x,y) 6 C}

is connected, we have Ry C At or Ry C Bt. Take (xi.yi) G J4I, (X2>2/2) € J5i. Then
2/i / J/2- Without loss of generality, let y\ <y2- Put

H = {y €R+ : Ry C Auy < y2},

then j / ! e H. Let y0 = sup H, then #„„ C A\ or .Ry,, c Bi. If Ry0 C Alt then y0 < y-z

and for any y2 > y > ya, Ry C. B\. So for any z € ily0, any neighbourhood Uz of z,
t/z D Ry 7̂  0 for some y2 > y > yo- So C/z n Bx ^ 0. Since By = B\, z € £?i and thus
i^p C A\ D Bi. A contradiction. If Rya c B ^ we can similarly show that Ry0 c Ai n Bj
and a contradiction arises again, thus C is connected. Similarly, D is connected. So Q is
connected.

Put P = Q x R. Then by Proposition 2.5 of [5], P is a ./-space. Then the projection
p : P —• Q is a quotient map and Q is the quotient space. D

REFERENCES

[1] R.R. Engelking, General topology, (revised and completed edition) (Heldermann Verlag,
Berlin, 1989).

[2] Y-Z. Gao, 'L-spaces', Czechoslovak Math. J. (to appear).
[3] G.Gruenhage, 'Generalized metrizable spaces', in Handbook of Set Theoretic Topology,

(K. Kunen and J.E. Vaughan, Editors) (North-Holland, Amsterdam, 1984).
[4] J.R. Munkres, Topology (Prentice-Hall, Englewood Clifis, NJ, 1975).
[5] E. Michael, 'J-spaces', Topology Appl. 102 (2000), 315-339.
[6] E. Michael, 'A note on closed maps and compact sets', Israel J. Math. 2 (1964), 173-176.
[7] L.A. Steen and J.A. Seebach, Jr, Counterexamples in topology (Springer-Verlag, New

York, 1978).

Department of Mathematics
Nanjing University
Nanjing 210093
China
e-mail: yzgao@jsmail.com.cn

https://doi.org/10.1017/S0004972700035541 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035541

