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Abstract. It is proved that every non-trivial Latin square has an upper embedding
in a non-orientable surface and every Latin square of odd order has an upper
embedding in an orientable surface. In the latter case, detailed results about the possible
automorphisms and their actions are also obtained.

2010 Mathematics Subject Classification. 05B15, 05C10.

1. Introduction. A triangular embedding of a complete tripartite graph Kn,n,n is
face two-colourable if and only if the supporting surface is orientable [1]. In such a
case, the faces of each colour class can be regarded as the triples of a transversal design
TD(3, n), of order n and block size 3. A TD(3, n) determines a Latin square of order n
by identifying the three groups of the design as the rows, the columns, and the entries
of the Latin square. When n = 1, the Latin square will be termed trivial. The two
Latin squares formed by such a triangular embedding are said to be biembedded in
the surface. Whenever such a biembedding exists, it represents a face two-colourable
embedding of Kn,n,n in a surface of minimum genus.

In this paper, we investigate the opposite case, namely the embeddings of Latin
squares in surfaces of maximum genus. To be precise, we seek a face two-colourable
embedding of Kn,n,n in a surface in which the faces in one of the two colour classes are
triangles and so determine a Latin square of order n, while there is just one face in
the second colour class and the interior of that face is homeomorphic to an open disc.
We call this an upper embedding of the Latin square. These types of embeddings have
already been investigated for Steiner triple systems in [2] where it was shown that for
n > 3, every Steiner triple system STS(n) has both an orientable and a non-orientable
embedding in which the triples of the STS(n) appear as triangular faces and there is
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Figure 1. Joining two white faces by adding a crosscap.

just one additional large face. Detailed results about the possible automorphisms of
such embeddings were also obtained.

Here, in results which parallel those for Steiner triple systems, we first prove that
every non-trivial Latin square has an upper embedding in a non-orientable surface.
For orientable surfaces, a necessary condition obtained from Euler’s formula (V +
F − E = 2 − 2g) is that the order of the Latin square is odd and we prove that this is
also sufficient. In Section 3, we investigate possible automorphisms of the orientable
embeddings and show that if n ≥ 3, these must always be orientation preserving. With
respect to the three sets of row points, column points, and entry points, it is shown that
the automorphism group and its action is one of two possibilities. Either the group is
cyclic with order dividing the order of the Latin square and the sets are preserved or
the group is the cyclic group of order 3 and permutes the three sets. Thus in general,
automorphisms of a Latin square are not respected by any upper embedding. This is
well illustrated by Example 3.9. The trivial case where n = 1 is exceptional because
there are just two faces both of which are triangles and the automorphism group is the
symmetric group S3.

2. Existence of upper embeddings. Consider an upper embedding of a Latin
square of order n. In the corresponding embedding of the complete tripartite graph
Kn,n,n, the number of vertices (V ) is 3n, the number of edges (E) is 3n2 and the number
of faces (F) is n2 + 1. So V + F − E = 1 + 3n − 2n2. For a non-orientable upper
embedding, the genus γ = (2n − 1)(n − 1), whilst for an orientable upper embedding,
the genus g = (2n − 1)(n − 1)/2 which requires that in this case n must be odd. We first
consider the non-orientable case and prove the following theorem.

THEOREM 2.1. Every non-trivial Latin square has an upper embedding in a non-
orientable surface.

Proof. Begin with any face two-colourable embedding of Kn,n,n in which the black
faces are triangles representing the Latin square. If there is just one white face, then
we have an upper embedding. Otherwise, there exists at least one black triangle that is
incident to two white faces. With the addition of a crosscap across the black triangle, we
join these two white faces together, reducing the number of faces by one and increasing
the non-orientable genus by one as shown in Figure 1. By repetition of this procedure,
we obtain a non-orientable upper embedding of the Latin square. �

For the remainder of this paper, we focus our attention on orientable surfaces. As
we showed earlier, orientable embeddings require the order of the Latin square to be
odd. As we will see and is to be expected, the proof for the existence of orientable upper
embeddings is much more involved compared to the non-orientable case.
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Figure 2. Adding a black triangle.

THEOREM 2.2. Every Latin square of odd order n has an upper embedding in an
orientable surface.

Proof. There are two parts to the proof. The first of these is to construct an initial
configuration of black triangles and one white face embedded on the sphere so that
every point occurs on the boundary of the white face. The second part is then to add
triangles, one at a time, increasing the genus by one at each step.

Denote the row points, the column points, and the entry points of the Latin
square L by ir, jc, ke, respectively. The black triangles of the embedding are then the
triples {ir, jc, ke}, where k = L(i, j). Choose a fixed row point xr and a fixed column
point yc. Take the triangle T containing both of these points together with a further
(n − 1)/2 triangles containing xr and a further (n − 1)/2 triangles containing yc such
that, together with T , these n triangles contain all n entry points. These triangles can
be represented on a sphere giving n black triangles and one white face containing all
entry points. Now take the remaining (n − 1)/2 row points and the remaining (n − 1)/2
column points and pair them arbitrarily. Attach the triangles containing these pairs
to the spherical embedding at the appropriate entry points. This procedure gives a
spherical embedding containing (3n − 1)/2 black triangles and one white face with
every row, column, and entry point occurring at least once on its boundary. Note also
that the black triangles can be oriented in such a way that the points on the boundary
follow the sequence ir jc ke . . . where the suffices r, c, and e are always followed,
respectively, by the suffices c, e, and r.

We now proceed to add the remaining (2n2 − 3n + 1)/2 triples of the Latin square.
Consider at any stage the boundary of the white face. We will use the fact that every
point of the Latin square appears on the boundary at least once. This assumption
is certainly true for the initial embedding described above. If the next triple to be
added is {ur, vc, we}, then we locate one occurrence of each of these points on the
boundary of the white face, add a handle to the white face, and paste on the triangle
{ur, vc, we}.

If the points ur, vc, we originally divided the boundary of the white face into three
sections A, B, and C, e.g. AvcBweCur, then it is easy to see that, after the addition
of the black triangle {ur, vc, we} there still remains only one white face with boundary
AvcweCurvcBweur (see Figure 2). This face has three more edges than at the previous
stage and every point of the Latin square still appears on the boundary. It is also clear
that since the interior of the white face was homeomorphic to an open disc prior to
the addition of the black triangle, then it will remain so after this addition. �
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EXAMPLE 2.3. Consider the following Latin square of order 5:

0 1 2 3 4
0 0 1 2 3 4
1 1 0 3 4 2
2 2 3 4 0 1
3 3 4 1 2 0
4 4 2 0 1 3

First, we take the initial configuration to be the triangles {0r, 0c, 0e}, {0r, 1c, 1e},
{0r, 2c, 2e}, {3r, 0c, 3e}, {4r, 0c, 4e}, {1r, 3c, 4e}, {2r, 4c, 1e}, and represent them on a
sphere as shown below:

�

0r

�

0e

�

0c

�

4r

�

4e

�

1c

�

1e

�

3r �

3e

�

2e

�

2c

�

3c

�

1r

�

2r

�

4c

Then the large face of the initial embedding is

0r 1c 1e 2r 4c 1e 0r 2c 2e 0r 0c 3e 3r 0c 4e 1r 3c 4e 4r 0c 0e

The second part is then to add the remaining 18 triples of the Latin square, one at a time.
We will just illustrate the addition of the first triple. Choose the triangle {0r, 3c, 3e}.
The underlined sections in the large face above are those that divide the boundary in
order to accommodate the addition of the new triangle.

The large face is now

0r 0e 0c 4r 4e 3c 3e 0c 0r 2e 2c 0r 1e 4c 2r 1e 1c 0r 3c 1r 4e 0c 3r 3e

By repetition of this technique, an upper embedding of the Latin square is obtained
whose large face is

4r 4e 2c 0e 1c 2e 3c 1e 2c 0r 1e 1r 2e 0c 0r 2e 4c 3e 0r 4c 1r 3e 1c 0r 3c 2r 4e 3c 3r 1e 1c 1r 4e

1c 2r 2e 4r 2c 3r 4e 0r 0e 4r 3c 3e 2c 2r 3e 0c 2r 1e 4r 4c 2r 0e 4c 4e 0c 3r 0e 0c 1e 4c 3r 2e 2c

1r 0e 3c 1r 0c 4r 1c 3r 3e

The rotation scheme (we assume that the reader is familiar with this concept, see,
for example, [3] or [5]) is

0r :0c0e 4e4c 3e3c 1c1e 2c2e 0c :0e0r 2e2r 3e3r 4e4r 1r1e 0e :0r0c 3r4c 2r3c 1r1c 2c4r

1r :1e0c 3c4e 1c0e 2c3e 4c2e 1c :0e1r 1e0r 3e2r 4e3r 4r2e 1e :0r1c 3r2c 3c4r 2r4c 0c1r

2r :0c2e 1c3e 2c4e 3c0e 4c1e 2c :4r0e 4e2r 3e1r 2e0r 1e3r 2e :0r2c 3r3c 1c4r 2r0c 1r4c

3r :0c3e 1c4e 2c1e 3c2e 4c0e 3c :0e2r 0r3e 4r1e 2e3r 4e1r 3e :3c0r 4c4r 3r0c 2r1c 1r2c

4r :0c4e 3e4c 1e3c 0e2c 2e1c 4c :0e3r 1e2r 4r3e 2e1r 0r4e 4e :4c0r 3r1c 1r3c 2r2c 4r0c

Of course, many other upper embeddings can be obtained by making different
choices to the order in which the triples are added.

https://doi.org/10.1017/S0017089517000234 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089517000234


MAXIMUM GENUS EMBEDDINGS OF LATIN SQUARES 499

3. Automorphisms. Throughout the remainder of this paper, we investigate
possible automorphisms of an orientable upper embedding of a Latin square. By such
an automorphism, we mean a permutation of the vertex set which is an automorphism
of Kn,n,n and preserves the faces of the embedding. Each of the three sets of row
points, column points, and entry points will be called a part. We prove a number of
propositions, the first of which is fairly easy.

PROPOSITION 3.1. Let φ be an automorphism of an orientable upper embedding of
a Latin square of order n. If φ is not the identity automorphism, then it can have fixed
points from only one part.

Proof. Suppose that φ has two fixed points, a and b, each from different parts. Since
φ must preserve the large face and the edge ab appears somewhere on the boundary of
this face, it must fix the points adjacent to the edge ab on this boundary. By repetition
of this argument, φ fixes every point and is the identity. �

Automorphisms may be either orientation preserving or orientation reversing. We
will first show that the latter do not exist.

PROPOSITION 3.2. Orientation-reversing automorphisms of an orientable upper
embedding of a Latin square of order n ≥ 3 do not exist.

Proof. Assume that such an automorphism does exist. Then it will act on the
boundary of the large face as a reflection across an axis. The number of edges on
the boundary of the large face is 3n2, which since n is odd, is also odd. Therefore,
this axis will pass through exactly one point, say 0r, and exactly one edge; thus, the
automorphism will be an involution having a single fixed point 0r. Now consider the
triangles containing the point 0r. There is an odd number of these and so one of
them, without loss of generality {0r, 0c, 0e}, must be fixed. Hence, the transposition
(0c 0e) is part of the involution. Consequently, since every automorphism of Kn,n,n
must preserve the tripartition, the automorphism will map a row point to a row point,
a column point to an entry point and an entry point to a column point. Therefore,
such an automorphism will be of the form

(0r) ((x1)r (x2)r) . . . ((xn−2)r (xn−1)r) (0c 0e) ((y1)c (z1)e) . . . ((yn−1)c (zn−1)e)

It further follows that the edge through which the axis passes is of the form {αc, βe}.
But if n ≥ 3, such an automorphism cannot exist. Assume that this automorphism

maps uc to ve and vice versa, where u �= α and v �= β. Then the edge ucve exists
somewhere on the boundary of the large face on one side of the axis. Since this
automorphism is a reflection, the edge veuc must also exist on the other side of the
axis. This means the same edge appears twice on the boundary of the large face, a
contradiction. �

So if n ≥ 3, all automorphisms are orientation-preserving and we now consider
these. Since the action of any such automorphism on the boundary of the large face is
a rotation, the group is cyclic and its order must divide 3n2, the number of edges in the
large face. Orientation-preserving automorphisms will be of three types:

(1) those that preserve all three parts,
(2) those that fix one part and interchange the other two,
(3) those that cyclically permute all three parts.

Consider first orientation-preserving automorphisms that preserve all three parts (the
other two types will be dealt with later). Let G be the group of these automorphisms.
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Then as observed above, G = �m and m | 3n2. However, since G preserves all three
parts, it follows that m | n2. But in fact, we can prove that m | n.

PROPOSITION 3.3. Let G = �m be the group of orientation and part-preserving
automorphisms of the orientable upper embedding of a Latin square of order n. Then
m | n.

Proof. Let n > 1 and denote the orientable upper embedding of the Latin square
by M. To obtain further restrictions on m, we will replace M with a related map on
which G will act freely and use the elementary theory of regular coverings.

Let T be the truncation of M. Truncation refers to the substitution of every vertex
v of the embedding by a cycle of order deg(v). This truncation has 3n yellow faces of
length 2n that arise by truncating each of the 3n vertices of the original map, n2 green
faces of length 6 that arise from the n2 triangular faces of M, and one white face of
length 6n2 arising from the large face of M. The cyclic group G clearly acts freely on
the vertex set of T . Since G preserves each part of Kn,n,n and no triangle of Kn,n,n has
two vertices from the same part, no two distinct vertices of a yellow face in T can be
mapped onto each other by the action of G on T .

Consider now the quotient map M′ = T/G whose vertices, edges, and faces are
G-orbits of the vertices, edges, and faces of T . The conclusion of the previous paragraph
implies that M′ has n2/m green hexagonal faces arising from the n2 green faces of T .
The action of G on the white face of T leaves one white face of length 6n2/m in M′.
The next step is to determine what happens to the 3n yellow faces of length 2n in T
when passing to the quotient M′. For each vertex v of Kn,n,n, let Gv be the stabilizer
of v in the action of G on vertices of Kn,n,n and let |Gv| = mv. Being a subgroup of a
cyclic group, each Gv must be cyclic, and the natural covering T → M′ maps a G-orbit
consisting of m/mv yellow faces in T onto a single yellow face in M′ of length 2n/mv.
As an aside, observe that mv must be a divisor of n, since Gv acts freely as a cyclic
group of order mv on the n triangular faces of the original map M incident with v.

By Theorem 2.2.2 of [3], we know that the regular covering T → M′ induced by
the free action of G can be reconstructed by means of a lift with the help of an ordinary
voltage assignment α on the darts of M′ in the group G. In the reconstruction process,
we will use elementary properties of regular coverings as listed in [3]. The net voltage
on each of the n2/m green faces of M′ must be zero, as each of them lifts onto m green
faces of T of the same length. For each vertex v of Kn,n,n, the yellow face of M′ of
length 2n/mv lifts onto m/mv yellow faces of T of length 2n. Therefore, the net voltage
on such a yellow face of M′ must be an element of G of order mv. Finally, the net
voltage on the white face of M′ must be an element of G of order m because this face
of length 6n2/m lifts onto the white face of T of length 6n2. Here and in what follows,
we assume that all the net voltages are calculated with respect to a fixed orientation of
the supporting surface of the map M′. Of course, the net voltages in our case do not
depend on choosing the initial point on a cycle because our voltage group G is Abelian.

Since the sum of the net voltages on all faces of M′ is zero, the above analysis
implies that the negative of the net voltage w on the white face is equal to the sum S of
the net voltages on all yellow faces of M′. The element w has order m in G, hence so
has S. Observe that all summands in S have orders mv where v ranges over a set O of
representatives of the orbits of G on the vertex set of Kn,n,n. But the elements of G ∼= �m

of order mv have precisely the form (m/mv)tv where gcd(mv, tv) = 1 and 1 ≤ tv < mv.
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It follows that S can be expressed in the form

S =
∑

v∈O

m
mv

tv in �m.

In the field of rationals, this means that S = rm + s where r and s are integers and
gcd(s, m) = 1. Let m = ac and n = bc where a, b, and c are positive integers and
gcd(a, b) = 1. Recalling that mv | n for each v ∈ O, we have

S =
∑

v∈O

m
mv

tv = m
n

∑

v∈O

n
mv

tv = a
b

j,

where j is an integer. Since a and b are relatively prime, it follows that j/b is an integer
and so S = rm + s is divisible by a. But also a | m. Hence, a | s but since s and m are
relatively prime this is possible only if a = 1. Consequently, m | n, as claimed. �

PROPOSITION 3.4. The cyclic group �m, where m | n, does not act freely on all three
parts of the embedding.

Proof. Suppose that �m does act freely on each part of the embedding. The quotient
of the embedding under the action of �m is Km

n/m,n/m,n/m where the superscript m denotes
that every edge has multiplicity m., i.e. embedded with n2/m triangles and one large
face of length 3n2/m. It follows from Theorem 2.2.2 of [3] that the original upper
embedding of the Latin square of order n can be reconstructed by lifting this quotient
embedding. To do so, we need a voltage assignment on Km

n/m,n/m,n/m in �m such that
the voltages on the triangles sum to zero while the voltages on the large face sum
to an element relatively prime to m. Since the large face consists of all the edges in
the embedding which also form the triangles, the voltage sum will always be zero.
Contradiction. �

However, the group can act freely on two of the parts. The following is an example.
In it, both m and n are equal to 3 and the cyclic group �n acts freely on two of the parts
and fixes the third.

EXAMPLE 3.5. Consider the cyclic Latin square of order 3.

0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

An upper embedding of the above Latin square has the following rotation scheme:

0r : 0c0e 1c1e 2c2e 0c : 0e0r 1e1r 2e2r 0e : 0r0c 1r2c 2r1c

1r : 0c1e 1c2e 2c0e 1c : 0e2r 1e0r 2e1r 1e : 0r1c 1r0c 2r2c

2r : 0c2e 1c0e 2c1e 2c : 0e1r 1e2r 2e0r 2e : 0r2c 2r0c 1r1c

The large face is

0e 0r 1c 2e 0r 0c 1e 2r 0c 0e 1r 0c 2e 1r 2c 1e 0r 2c 0e 2r 2c 2e 2r 1c 1e 1r 1c
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The action of the automorphism group isomorphic to �3 is

ie 
→ ie, ir 
→ (i + 1)r, ic 
→ (i + 2)c, 0 ≤ i ≤ 2.

We can generalize the above example to any cyclic Latin square of odd order n.
The rotation scheme and the large face of the upper embedding will be as follows:
ir : . . . jc(i + j)e (j + 1)c(i + j + 1)e . . .

jc : . . . ke(k − j)r (k + 1)e(k + 1 − j)r . . .

ke : . . . ir(k − i)c (i + 1)r(k − i − 1)c . . . , k �= −1
(−1)e : . . . ir(−i − 1)c (i + t)r(−i − 1 − t)c . . . , t �= 1, (t, n) = 1, (t − 1, n) = 1
Such a value of t always exists. For example, we can take t = 2.

The large face is

(−1)e tr (−t)c 1e (t + 2)r (−t)c 3e (t + 4)r (−t)c . . . (−3)e (t − 2)r (−t)c

(−1)e (2t − 1)r (−2t + 1)c 1e (2t + 1)r (−2t + 1)c 3e (2t + 3)r (−2t + 1)c . . . (−3)e (2t − 3)r (−2t + 1)c

(−1)e (3t − 2)r (−3t + 2)c 1e (3t)r (−3t + 2)c 3e (3t + 2)r (−3t + 2)c . . . (−3)e (3t − 4)r (−3t + 2)c

.

.

.
.
.
.

.

.

.
.
.
.

(−1)e 1r (−1)c 1e 3r (−1)c 3e 5r (−1)c . . . (−3)e (−1)r (−1)c

The action of the automorphism group isomorphic to �n is

ie 
→ ie, ir 
→ (i − t)r, ic 
→ (i + t), 0 ≤ i ≤ n − 1.

So to summarize the results so far, we have shown that the group G of orientation-
preserving and part-preserving automorphisms of an orientable upper embedding of
a Latin square of order n is cyclic �m where m | n. Further the case m = n is achieved.
The cyclic group �m cannot act freely on all three parts of the embedding but can
act freely on two of the three parts. In the construction given, the action of the group
�n can be described by the notation n1n11n and when n = p is prime, this is the only
possibility.

Now consider automorphisms of the other two types. We prove two further results.

PROPOSITION 3.6. Automorphisms which fix one part and interchange the other two
do not exist.

Proof. Let φ be such an automorphism. Then φ2 fixes all three parts. It follows
that φ has even order. But all automorphisms are of odd order, a contradiction. �

PROPOSITION 3.7. Automorphisms which cyclically permute all three parts have
order 3.

Proof. Let θ be such an automorphism. Then θ3 fixes all three parts. Suppose that
θ3 has an orbit of length i in one part and of length j in a second part where j < i.
If x is an element of the orbit of length j in the second part, then θ3j(x) = x. Further
θ3j(θ (x)) = θ (θ3j(x)) = θ (x). So θ3j stabilizes vertices in different parts. But θ3j is not
the identity because j < i. This proves that all orbits of θ3 have the same length, say m,
which must be the order of θ3. Thus, the group generated by θ3 acts freely on all three
parts which is a contradiction by Proposition 3.4, unless θ3 is the identity. Hence, any
automorphism which permutes the parts cyclically must have order 3. �

We assume, without loss of generality, that the automorphism θ which permutes
the parts cyclically is of the form

∏n−1
i=0 (ir ic ie) since any other automorphism will give
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a Latin square isotopic to the Latin square obtained by θ . Note that in a Latin square
with such an automorphism, if {xr, yc, ze} is a triple, then {xc, ye, zr} and {xe, yr, zc}
must also be triples. This is equivalent to a Latin square obtained from a quasi-group
having the semi-symmetric property, i.e. xy = z =⇒ yz = x =⇒ zx = y. An example
for n = 5 is the following.

EXAMPLE 3.8. Consider the Latin square of order 5.

0 1 2 3 4
0 0 3 4 1 2
1 3 2 1 0 4
2 4 1 3 2 0
3 1 0 2 4 3
4 2 4 0 3 1

An upper embedding of the above Latin square with an automorphism of order 3
which permutes the parts cyclically has the following rotation scheme:

0r :0c0e 4c2e 3c1e 2c4e 1c3e 0c :0e0r 4e2r 3e1r 2e4r 1e3r 0e :0r0c 4r2c 3r1c 2r4c 1r3c

1r :0c3e 4c4e 3c0e 1c2e 2c1e 1c :0e3r 4e4r 3e0r 1e2r 2e1r 1e :0r3c 4r4c 3r0c 1r2c 2r1c

2r :0c4e 4c0e 2c3e 3c2e 1c1e 2c :0e4r 4e0r 2e3r 3e2r 1e1r 2e :0r4c 4r0c 2r3c 3r2c 1r1c

3r :0c1e 4c3e 2c2e 1c0e 3c4e 3c :0e1r 4e3r 2e2r 1e0r 3e4r 3e :0r1c 4r3c 2r2c 1r0c 3r4c

4r :0c2e 4c1e 3c3e 2c0e 1c4e 4c :0e2r 4e1r 3e3r 2e0r 1e4r 4e :0r2c 4r1c 3r3c 2r0c 1r4c

The large face is
0e 0r 4c 1e 3r 4c 2e 4r 4c 0e 1r 1c 0e 2r 2c 1e 2r 0c 3e 3r 2c 3e 1r 4c 3e 0r 0c 4e 1r 3c 4e 2r 4c

4e 0r 1c 1e 0r 2c 2e 1r 2c 0e 3r 3c 2e 3r 1c 4e 3r 0c 0e 4r 1c 3e 4r 2c 4e 4r 0c 1e 1r 0c 2e 2r 1c

2e 0r 3c 3e 2r 3c 1e 4r 3c 0e 0r

Possibly more instructive and interesting is the example below. We need a further
definition. If the Latin square is also idempotent, i.e. xx = x, the quasi-group
corresponds to a Mendelsohn triple system, MTS(n). This is an ordered pair (V,B)
where V is a base set of cardinality n and B is a collection of cyclically ordered triples
(x, y, z) which have the property that every ordered pair of distinct elements of V
is contained in precisely one triple. Such systems exist if and only if v ≡ 0, 1 (mod
3), v �= 6, [4]. The quasi-group is defined by the operation xx = x and xy = z where
(x, y, z) is a cyclically ordered triple and is called a Mendelsohn quasigroup.

EXAMPLE 3.9. Let V = �7 and B = {(i, 1 + i, 3 + i), (i, 3 + i, 2 + i) : 0 ≤ i ≤ 6}.
Then (V,B) is an MTS(7). The Latin square obtained from the Mendelsohn quasi-
group has an upper embedding with an automorphism of order 3 which permutes the
parts cyclically, defined by the following rotation scheme:

0r :0c0e 6c4e 5c1e 4c5e 3c2e 2c6e 1c3e

1r :1c1e 0c5e 6c2e 5c6e 4c3e 3c0e 2c4e

2r :2c2e 1c6e 0c3e 6c0e 5c4e 4c1e 3c5e

3r :3c3e 2c0e 1c4e 0c1e 6c5e 5c2e 4c6e

4r :4c4e 3c1e 2c5e 1c2e 0c6e 6c3e 5c0e

5r :5c5e 4c2e 3c6e 2c3e 1c0e 0c4e 6c1e

6r :6c6e 1c5e 2c1e 4c0e 0c2e 5c3e 3c4e
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The rotations about the points ic and ie, 0 ≤ i ≤ 6, are obtained by applying the
automorphism. Note that the cyclic automorphism of order 7 of the Mendelsohn triple
system does not extend to the embedding. In fact, no orientable upper embedding of
a Latin square can have a non-trivial part-preserving automorphism as well as an
automorphism which permutes the parts cyclically. The reason for this is as follows.
First recall that, since the action of the automorphism group on the boundary of the
large face is a rotation, the automorphism group G of the upper embedding is cyclic.
Let α be an automorphism which permutes the parts cyclically. By Proposition 3.7,
α3 = i (the identity) and thus α and α2 are the only elements of order 3 in G. Now
let β be a non-trivial part preserving automorphism. Then αβ also permutes the parts
cyclically. So αβ = α2, a contradiction.

We summarize the results in this section by the theorem below.

THEOREM 3.10. Let φ be a non-trivial automorphism of an orientable upper
embedding of a Latin square of order n. Then φ is orientation-preserving and either
preserves all three parts of the vertex set partition or cyclically permutes them. In the
former case, the group G of all such automorphisms is equal to �m where m | n and does
not act freely on all three parts, though it can do so on two of the parts. In the latter case,
G = �3.
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