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Abstract

Recently, autonomous aerial systems have received unparalleled popularity and applications as varied as they are
innovative in the civil domain. The unmanned aerial vehicle (UAV) is now the subject of intensive research in both
aeronautical and automotive engineering.

This paper presents a new, robust gain-scheduled adaptive control strategy for a class of UAV with linear parameter
varying (LPV) models. The proposed controller synthesis involves a set of pre-tuned linear quadratic regulator
(LQR) combined with fractional-order PID controllers supervised with an adaptive switching law. The main inno-
vation in this work is the enhancement of the classical gain-scheduling adaptive control robustness for systems with
LPV models by combining a set of robust LQR + fractional-order PID compensators. The stability of the resulting
controller is demonstrated and its efficiency is validated using a numerical simulation example on a civilian UAV
system airspeed and altitude control to illustrate its practical efficiency and achieved robustness.

Nomenclature

AFCS autonomous flight control system

Cy pitching moment coefficient

C, axial force-body axis

C. normal force-body axis

FOPID fractional-order PID controller

GS gain-scheduling

h altitude

J; () cost function for the switching law
Jior performance index for LQR control
LPV linear parameter varying

LOR linear quadratic regulator

M moment along aircraft Y-axis

m UAV mass

PID proportional-integral-derivative controller
p angular velocity along aircraft X-axis
q angular velocity along aircraft Y-axis
N UAV mass

UAV unmanned aerial vehicle

r angular velocity along aircraft Z-axis
S wing area

Sprop area swept by the propeller
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SPSA simultaneous perturbation stochastic approximation
u a scalar and represents linear velocity along X,
u, vector of control signal
Vi airspeed
Greek Symbol
o angle-of-attack
8, elevator deflection angle
or throttle opening
Q) Gamma function
¢ roll angle
v yaw angle
w linear velocity along aircraft Z-axis
) air density
0 pitch angle

1.0 Introduction

Gain-scheduling (GS) technique is one standard option to resolve the control problem of nonlinear and
time-varying systems. This technique has been omnipresent in the literature of automatic theory since
the 1960s. Indeed, for many dynamic systems, the model varies over time, which prohibits the use of
classic control techniques [1-3]. Early attempts at control used adaptive control, which was popular at
the time [4]. However, the major drawback of this control technique is that it only ensures stability for
systems whose parameters vary relatively slowly. To overcome this defect, other researchers have turned
to robust control [5]; but many others preferred the LPV gain-scheduling (GS) command, which makes
it possible to process continuous or discontinuous variations in the parameters of the controlled process
model. Many applications are available in specialised literature [6, 7].

Besides, robust control is the control method that is able to counteract uncertainties in a process. It
can be used as an attempt to maintain a certain level of performance for the closed-loop LPV system
despite uncertainties and disturbances. One of the most popular robust control techniques is LQR control
[8, 9]. This robust control solution has been intensively applied to UAV systems [10, 11].

Moreover, applications of fractional calculus in various engineering fields have attracted a huge
research effort over the last years [12, 13]. Several recent works and results have shown the ability of
fractional order operators to better represent and simulate certain physical phenomena and to increase
the precision and speed in addition to the robustness of control systems [14, 15].

This is why many researchers have proposed their use in the supervision of industrial processes
[16, 17]. They take advantage of this advantageous property of fractional order systems, which is long
memory in addition to incomparable dynamic properties [18, 19]. This is how fractional control makes
it possible to obtain superior results in terms of temporal responses and robustness against measurement
noise and parametric disturbances [20, 21].

At the same time, many researchers are currently interested in UAVs regarding their control as well
as their configuration and aerodynamics. A particular type of UAV is flying wings, which have a bet-
ter aerodynamic coefficient. But this comes at the cost of making robust control design more difficult
because it is very sensitive to variations in control signals.

New methods [22-24] based on artificial intelligence were proposed to redesign of morphing
(i.e. varying arm length) UAV for improvement of the index consisting of directional stability and
maximum lift/drag (L/D) ratio. Whereas in Ref. (25) they used simultaneous perturbation stochastic
approximation (i.e. SPSA), deep neural network and PID controller according to morphing.

More recently some authors [26, 27] proposed to improve the UAV flight performance by simulta-
neously and stochastically redesigning its vertical tail and autonomous flight control system (AFCS).
Many other works focused on new control strategies for UAV manoeuvering and landing [28, 29].
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In this study, an application of a robust gain scheduled LPV LQR + fractional-order PID controller
(FOPID) control structure is proposed for a class of UAV with LPV models.

The structure of this paper is as follows. In Section 2, the UAV model is presented. In Section 3,
some fundamental definitions of fractional-order systems and FOPID control are introduced. Section 4
presents the LQR control configuration. In Section 5, the robust gain-scheduled control with the switch-
ing law based on a moving performance index is introduced. In Section 6, numerical simulations of the
application of the proposed solution for UAV system control is provided to demonstrate its effective-
ness, even in presence of additive random noises. At the end, some concluding comments are given in
Section 7.

2.0 Uav modelisation

UAVs are attracting great interest for their guidance and control, particularly in view of the control
techniques [7]. So their configuration and modeling is important for a more efficient design. In this
work we consider flying wings, which are more profitable in terms of aerodynamic coefficient.

A linearised equation of motion can be obtained based on the small-disturbance theory [30, 31].

The main idea is to linearise the model around a steady-state condition (trimmed flight). Assuming
that deviations from this equilibrium state are small, a linearised model is expected to provide useful
and fairly accurate representation of the nonlinear system.

In this theory, each variable in the model is assumed to have a nominal value (at trimmed flight,
indexed 0), plus a disturbance value; for instance, u is the nominal value for linear velocity along body
X, axis, and Au is the small perturbation.

The equation of motion of the plane is derived from the Newton’s Second Law of motion. The rela-
tionships between forces in the body frame (Fy, Fy, F;), moments (L, M, N) and aircraft linear (u, v, w)
and angular (p; q; r) velocities.

Fx=m @+ qw—rv)

Fy=m @+ ru—pw) M
Fz=m(+pv—qw)

L =pr - I\,}.’—f— qr (17 - I)) - Ixzpq

M=1Lg+rmpd—1L)+1.(p" =)

N=—I.p+Li+pq(l,— L)+ L.gr 2)

where m is the UAV mass, g is the gravitational acceleration and is ~ 9.8/s”.

Force and moment components can be decomposed in three sub-components of thrust (created by
aircraft engine), gravitational (due to the earth gravity) and aerodynamic (produced due to the governing
rules of aerodynamics) [34].

When expressed in the body frame, the gravitational force is a function of aircraft orientation in space
and depends on pitch (8) and roll (¢) angles. The gravity creates no moment since it acts through the
UAV center of gravity. Force components due to gravity expressed in body frame, can be computed as:

(FX)gmvity = —mg sin (9)

(FY)gravi[y =mg cos (9) sin (¢)

(FZ)gravity =mg cos (6) cos (¢) (3)
where 6 and ¢ are aircraft pitch and roll angles, respectively. Assume that the sum of aerodynamic

and thrust forces are X, Y and Z. Force components due to gravity expressed in body frame, can be
computed as:
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X —mgsin (0) =m (it + gw — rv)
Y + mgcos (0) sin (¢p) =m (v + ru — pw)
Z 4+ mgcos (0) cos (¢p) =m (W + pv — gw) 4)
Equation (4) represent the dynamics and kinematics of the UAV.
If we consider X (the force along the body X, axis) as described in Equation (4). By introducing

the small-disturbance notation into this equation and simplifying the result, following equation will be
obtained as,

AX —mg AB cosOy=m Au+mw, Agq (@)
Where AX is the change in the force along the X, direction (contribution of aerodynamic force and

thrust). It is possible to express AX in terms of perturbation variables using Taylor series [32].
Considering the longitudinal axis, the X force equation can be rewritten as

X
w=rv—qw— gsinf + — (6)
m

where X represents the combination of aerodynamic and propulsive forces (i.e. X = Fx,,,, + Fx,,,)-
Assuming that Ref. (33) p =p=r=8=v=0, Fy,, and Fy,, can be computed as:

2 2
plu+w)S /2 +w2S
Yoo = P+w)S [Co+ Coa+C, 0]+ 220 2
m m
1
Fxl)mp = szpmp((KmomraT)z - Vjir) (7)

where p is the air density, u and w are velocities along body x-axis and z-axis, respectively, Cy, is the
axial force coefficient, Cy, is the derivative of the axial force with respect to &, Cy;, is the derivative of
the axial force with respect to 8, and ¢ is the wing chord.

Substituting back Equation (7) into (6) with the assumption that ¢ =p =r = =v =0, we will get:

2 2
S
= —qw— gsing 4 P EW)S

Vut +w2S
[Co+ Cua+ € 80] +

Cx,Cq+
! 82— V2 8
+ 2 ,OSpmp((Kmomr T) Vair) ( )

This procedure should be repeated for all non-linear forces and moments. The results (longitudinal
terms) would be as follows (see Fig. 1) [34]:

W+ w?)s Vur+wrs o,
= —qw — gsing + L TS ( ) [Co+ Coa+C, 8]+ 200 2
2m ¢ 2m
1
+%10Spmp((kmmor8T)2) - Vj)
w+w?)s N2 +w?
W = —qu — gcosfcos¢p + '0(2—) [CZO +C,a+C,, 86] + %Czqéq
m m
1 1
qg= E’O (u2 + wz) cs [Cmo +Cp @+ Gy, 86] + ip«/ u* +w?esC,, cq
. y ¥
0 = gcos¢ — rsing = g )

In order to obtain an operational model, we will use the so-called small-disturbance method. It means
that the variables are replaced by their nominal values plus a small disturbance value, then by taking a
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Lift Force (L)
C;_
Axial Force(X,)
Cx,
h Drag Force(D)
Airstream " Axial Forc;’_(ji's) s .: Cp
CXS
Normal Force(Z),) Némmf Force(Z)
Cap Cys
Figure 1. UAV forces in stability and body axes.
linear approximation we obtain the following equations using the Jacobians:
rou  du  Ou O ]
du Jdw dq 00
aw  oaw  ow Iw
ar du ow dq 060 (10
dx ag g 9g dg
du ow dqg 00
36 30 90 30
L du ow dq 00
~du  Ou ]
a8, 347
aw  ow
du, ag  dg
a8, 0367
30 30
| 36, 347

Note that u, is a vector of control signal u. = [8, 87]7, where §, is the elevator deflection angle and
dr is the throttle opening, such that u is a scalar and represents linear velocity along X, w is the linear
velocity along aircraft Z-axis, 6 is the pitch angle and ¢ is the angular velocity along aircraft Y-axis.

The UAV system outputs are the airspeed V,,;, and the altitude /.

However, controlled outputs are airspeed AV, and aircraft’s height Ah.

Finally, longitudinal linearised model will be given by:

Au=X, Au+X, Aw+X,Aqg—gcosOAO+X;, AS,+ X5, AS+wyAgq
Aw=Z,Au+Z, Aw+Z,Ag—gsind A0 +Z;, As,+wyAgq
Ag=M,Au+M, Aw+X,Aq+M; A,

Ab=Agq

(12)
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Table 1. Longitudinal stability derivatives

Longitudinal Derivatives Formula
ps _ PSWexy PSprop Cproptt
X“ m [CXU + CX‘Y“ + C‘ste 86] 2m m
ups _ PSWexy PSpoCproptt
XW m [CXU + CX‘Y“ + Cxée 86] 2m m
P VaSCxq c
X, —wt "
X » ststg ¢
S o
PSprop CpropKs -
X;, oy oKy
ups _ pswezy
Zu “m [CZO + CZaOl + CZse (SE] I
ups _ pswezy
ZW m [CZO + Czﬂa + CZ&’ 8‘)] 2m
meSCZq(‘
Z, u+ ——-
2 .
Z pV SCZ/SE c
Se 2m
M “/)[M0+CMD,¢1+CM(56 Se] _ PScCutgw
u Ty 2Jy
M MPSI:CMO+CMH0!+CM5d 8«] _ PS:Cuy
w Iy 2Jy
pvscszq
M, e
7 pVZSCCMae
be 2

Remark: The procedure for obtaining this linearised model and its validation for the different output
variables as a function of the approximation error is detailed in the reference book [32].

2.1 State-space representation of the linearised model
Linearised equations are based on simple linear ordinary differential equations. The parameters are given
in Table 1, and the numerical values for longitudinal stability derivatives are presented in Table 2 [35].
With p, Cy, Cy, Cz, M, m, p, S+ and S, are air density, pitching moment coefficient, axial force-
body axis, normal force-body axis, moment along aircraft Y-axis, UAV mass, angular velocity along
aircraft X-axis, wing area and area swept by the propeller, respectively. We are now able to transform
them into a state space model with a number of ordinary first-order differential equations [9].
The description of the UAV longitudinal movement is described by a set of three equations:

Al X, X, X,+wy, —gcost |[ Au’l X; X,
A Zu ZW Zq — Wy —8 sin 60 Aw Zgﬂ 0 Aa(,
= + 13)
Aq Mu MW Mq — Wy 0 Aq M5y 0 A';T
A6 LO 0 1 0 JlLae] [0 0]
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Table 2. Numerical values for longitudinal stability derivatives

Variable X-Force Z-Force M-Moment
Derivative Derivative Derivative

u X, =—0.0543 Z,=-—2.7791 M, =—-0.3403

w X, =—0.5332 Z, = —10.3435 M, = —2.0302

S, X;, =2.4224 Z;, = —20.2054 M;, = —18.4384

o7 X5, =0.0224 Zs, = —0.0020 M;, =0

Table 3. Trim condition values

Variable Value
0 9,7 m/s
Vo 0 m/s
Wo 1,2 m/s
o 6, 9°
Vi 10 m/s
H, 150 m
6o 6,9°

Table 3 tabulates trim condition values. It is possible to compute small variations in each force
and moment element (AX, AY, AZ, AL, AM, AN) as an effect of variation in a particular variable
(u,w,8,...)[36]

In this equation, the zero index denotes the trimmed light condition (6, is the pitch angle for trim
condition, u, is the linear velocity along body X, axis etc.).

2.2 LPV model based on the angle-of-attack o

In order to obtain the LPV model set, we consider the scheduling variable here as the angle-of-attack
« as mentioned in Table 1. By taking five different values of the parameter o (which can be considered
as the centres of five intervals of variation for the angle-of-attack), we obtain five state-space models
reported in Table 4.

3.0 Fractional-order pid controller

Since the early days of fractional calculus theory, many have seen the value of this new tool in improving
and positively affecting all aspects of modern engineering. The mathematical definitions of fractional
order differentiation are numerous and diverse, the best known and used of which are those of Griinwald-
Letnikov, Riemann-Liouville and Caputo [37].

3.1 Definition of fractional integration
Riemann-Liouville definition for non-integer integral is the following:

1
D;f(t)=F—f;(t—i)”"f(é)d@) (14)
(v)
with the Gamma function presented as
L @) =/7y " edy, (15)

such that (a, ) e R? witha <tand (0O <v <1, v €N).
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Table 4. State-space models vs angle-of-attack o

Parameter o

State-space model

59.0304 11.6281 0 —7.9941 11.8420 0.0224
—60° A —123.7992 —24.4026 85 —5.6687 B — —16.7239 0
“=o "7 | —27.0104 —5.3389 0 0 $heT —18.5670 0
0 0 1 0 0 0
128.9026 24.6476 0 —7.9941 19.2166 0.0224
_ 75 A — —74.8118 —14.3128 8.5 —5.6687 B — —7.1163 0
“=r "7 | —29.3712  —5.3389 0 0 o —18.5670 0
0 0 1 0 00
155.7253  29.2486 0 —7.9941 20.4709  0.0224
709 A — —19.7026 —3.7076 8.5 —5.6687 B — 0.9287 0
“=r *7 | =30.9450 —5.8256 0O 0 *T2T 1 —18.5670 0
0 0 1 0 0 0
116.6704 18.9110 0 —7.9941 [ 12,1215 0.0224
— 1300 A — —234.6434 —38.0412 8.5 —5.6687 B —16.5224 0
“=1 7T —51.7983 —8.4054 0 0 »T3 T ~18.5670 0
0 0 1 0 i 0 0
264.7074 42.3325 0 —7.99417] [20.2976  0.0224
— e A — —84.6038 —13.5340 8.5 —5.6687 B, — —2.8159 0
“= *T | —54.9460 —8.7948 0 0 PP —18.567 0
0 0 1 0 | 0 0
329.1698 49.0684 0 —7.9941 18.7023  0.0224
—221.6692 —33.0466 85 —5.6687 —8.3752 0
o =20° A5 = . B5 =
—78.5534 —11.7154 0 0 —18.567 0
0010 0 0
3.2 Definition of fractional derivation
The fractional-order derivative of order i € R in the sense of Riemann—Liouville is given as:
L d” ! n—p—
rDyf () = T o= dr [y, =) (v) de (16)

where I" () is Euler’s gamma functionand n — 1 < u <n, n € R*.

It is well known that industrial controlled processes are habitually discretised, that justifies the
approximation of Equation (16). The literature proposes many numerical tools for fractional-order con-
tinuous and discrete differential equations [38]. In our work, we are concerning only with integrator and
derivative approximation.

3.3 Singularity functions

In this work, and in order to implement fractional-order models, we will use the so-called singularity
function method developed by Charef et al. [39].

3.3.1 Fractional-order integrator approximation

The transmittance representing the fractional-order integrator is approximated in the frequency domain
by an irrational transfer function as:
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1
Gi()==7 a7

such that 0 < < 1.
In an operational frequency band [w,, w,], it can be modelled by a fractional power pole (FPP) whose
transmittance is:

K;

T \~R
(1+j’_)

Suppose that for w € [w,, w,],with w >> w, therefore

K[ KICI)ZJ' 1
G®)=7—m=—"== 19)

s . sH sH
¢

were K; = ﬁ and w, is the —3mdB frequency corner of the FPP, which is computed based on the low

G (s) = (18)

frequency wy, as w, = v 10T — 1 were ¢ is the highest allowed gap between the slopes of the fractional-
order integrator of Equation (17) and the FPP of Equation (18) in the considered frequency operational
band (w;, wy,).

The FPP of Equation (18) and equally the integrator have to be modeled by means of a linear time-
invariant system and for that aim we have to approximate its transmittance by a rational one. This method
implies the approximation the —20u dB/dec slope on the Bode plot of the FPP by a set of alternative
slopes of —20 dB/dec and 0 dB/dec equivalent to alternative poles and zeros on the negative part of the
real axis of the complex plane such that py < zp <p; <z, <...<2zy_, < py; Hence, the approximation
is given by

G ()= =K,H"N:? (1) (20)

(o) T L)

Now by making use of a simple graphical technique that begins with the error specification y in
decibels and the frequency band w,,,, which can be 100w, the parameters a, b, py, zo can be computed
as [40]

a=10"00, p=10Tr
with:
Po= wc\/E, Zp = apo

The poles p; and the zeros z; of Equation (20) are in a form of geometric progression. We can then
obtain them based on the above parameters as

pi = (ab)'p,, for i=0,1,...,N

7z =(ab)ap,, for i=0,1,...,N—1 1)
with
fog (%)
N = Integer W +1{+1 (22)

It results that the fractional-order integrator is equivalent to a rational transfer function expressed as

1
G (s)= Pl (23)
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So G; (s) can be approximated as follow
[T (1 + —) al h;
G () =Ky T N (24)
[T (l + W) i=0 (1 + W)

3.3.2 Fractional-order derivative’s approximation
The fractional-order derivative equivalent Laplace-domain transmittance is expressed by the following
irrational transmittance:

Gp (s) =" (25)

where s = jw is the complex frequency and p is a positive real number such that 0 < u < 1.
In the considered operational frequency band of [w,, w,], this fractional-order operator can be
represented by a fractional power zero (FPZ) whose transmittance is the following,

G (s) =KD<1 + i) (26)
,

c

Suppose that for w € [w,, ], with @ >> @, therefore

Gy (s) :KD(l n i) 7
.

Were Kp = .
Following the preceding approach, the approximation of the FPP [39], the fractional-order derivative
can be approximated by a rational transmittance represented in the operational frequency band by

N s
Gy (s):s“:KD(lei)H%KDM 8)
@e H?]:o (1 + m)
with
a=10™=1,p= 107"
and:
Z0= wclo(ﬁ), Do = azo
The zeros p; and the poles z; of the rational function approximation are given as:
7z =(ab)'zy, pouri=0,1,...,N
pi = (ab)azy, pouri=0,1,...,N (29)
with
log ()
N = Integer W +1(+1 (30)

3.4 Fractional-order PID controller (FOPID)

Since the pioneering work of Podlubny [37] in 1999, many researchers and engineers have been attracted
to the fractional order PID controller for its augmented flexibility and performance enhancement
[41-43]. The FOPID controller used in this work is given by the following transfer function:

Cop (5) =K, (1 + (L) + (Tds)“) 31
T:s

where A, u are positive real numbers.
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4.0 Lqr controller

The well-known LQR is able to stabilise the feedback control closed-loop with optimal gains and offer
high-performance synthesis of control systems [44]. In our context, it is used with the aim of control-
ling the UAV altitude. MATLAB/Simulink is the simulation platform allowing the design and tuning
of the LQR regulator and the simulation to UAV identified model. LQR is based on the theory of opti-
mal control whose objective is to minimise a cost function by optimising a dynamic system, precisely,
minimising the deviation of the UAV altitude.

In fact, the main control objective is to achieve certain closed-loop poles that define some desired per-
formance measures (response time, overshoot level, etc.) by placing the closed-loop system eigenvalues
in a desired location using a feedback gain. Unfortunately, this statement is not so useful for practical
application. The reason is that such a level of performance might require a control signal that is too
large for a physical actuator to generate. Such a feedback gain would not be realisable from implementa-
tion point of view. In order to find a trade-off between performance and control signal magnitude, LQR
control design is a good solution to overcome such problems [45].

One of its main advantages is its easy design and increased state variables accuracy. This property
guarantees the stability of the control system [46, 47].

Let us consider an LTI system, expressed as

X=Ax+ Bu+ Gé (32)

where x is the state vector, u the control signal and § a disturbance.
Let a state variable feedback regulator be,

u=—Kx (33)

where K is the matrix of the state feedback gain.

In order to optimise it, one has to determine the control input u, which minimises the performance
index Jygr. This later represents the necessary performance characteristic as well as the controller input
constraint. The optimal controller has to minimise the following performance index [48],

Jior = J3 (¥ Ox + u'Ru) dt (34)
where K is given by;
K=R'BP (35)
and P is a matrix that satisfies the reduced-matrix Riccati equation,
AP+PA—PBR'BP+Q=0 (36)
Then the feedback regulator,
u=—(R'BP)x (37

Altitude and airspeed outputs are subtracted from the desired reference altitude and airspeed to
produce an error signal. Then, the control signals generated by the LQR and FOPID controllers are
combined at the input of the UAV system.

These final control signals are further passed through saturation blocks, which represent limitations
in aileron deflection angle (—12 deg < §, < 12 deg) and throttle opening (0 < 6, < 1).

5.0 Robust gain-scheduled control system design

Gain scheduling is a particularly appreciated control technique in industrial applications. This is due to
the possible application of intuitive approaches and its simple implementation. However, its principal
drawback is the lack of theoretical stability tools [49, 50].

Automation engineers often deal with systems whose model is unique and fixed or slowly varying over
time. But when tackling more complex systems, models can vary in a variety of other ways: configuration
changes, system faults, measurement and actuator noise, external disturbances and parameter variations.
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Robustly Stable Plant

£y U8, &l Unstable Plant ¥=[Var h]
+ —
+ (Aircraft Dynamics)

Performance Outputs Vairges
AVir
Ah [—

PID < I

Figure 2. Block diagram of the proposed controller.

In general, complex systems operate in multiple environments that may abruptly change from a con-
text to another as is often the case with aircraft and UAV. The system model depends on a variable
parameter, which allows the use of LPV systems theory leading to a set of linear models that become
active for certain values of this parameter [51].

If models are available for the different discretised parameters values, the corresponding regulators
may be designed apriori. While the system is operating, we have to identify the actual parameter value
in order to determine the adapted regulator.

Based on these two ideas, the proposed control strategy is to determine the best model for the current
measured or estimated parameter value at every moment and use the corresponding regulator.

For the switching, the problem is to determine when the current parameters values are not satisfactory
(that is, when to switch) and with which one we have to replace it (that is, switch to what). For the
adjustment, the problem is to determine the law with which the parameter value has to be adjusted at
every time.

In this work, linear control solutions are used to supervise the UAV’s longitudinal movements with
LPV representation for a set of its possible models. LQR method with the PID controller is used to
guarantee the stability of the system and a good tracking performance. This technique has been proposed
in several studies for processes with invariant models [52, 53].

The main objective of this mixed control is to take benefit from the LQR optimal setting that sta-
bilises the first control loop. Then, the fractional-order PID controller becomes easier to adjust with
better performance in tracking the reference input signals. Figure 2 represents the block diagram of the
proposed controller for longitudinal controller.

Figure 3 represents the proposed control method. The plant to be controlled has an input # and an
output y. The aim of this work is to force the tracking error e =y, — y to converge to zero, where y, is
the reference signal.

5.1 Design of the set of combined controllers

We suppose that the LPV model of the system can be represented by a set of v linear models to be iden-
tified in advance, indicated by M;,j = 1, ..v. For each model M; one has to design a combined controller
C; as represented in Fig. 2. This synthesis is realised in two steps:
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Figure 3. Gain-scheduled control algorithm.

1. First, we have to design an LQR controller as detailed in Equations (32) to (36). The closed-
loop model obtained by LQR control is (M,4r);. This step system should be stabilised by the first
controller for which the parameters are optimised using a meta-heuristic technique, here the PSO
technique.

2. In a second step, we will design a fractional-order PID controller for each LQR closed-loop
system in order to enhance the performance of the overall controlled system and guarantee its
stability and robustness. For each model (M, o), a controller (Cropip); is designed as in Equation
(30) and its parameters are optimised using the PSO technique

5.2 Moving time switching law

In control and measurement, a switching law typically dictates which number of control, from a given list
of controllers, is chosen to be used at a particular time instant, depending on particular given conditions.

In the present work, the decision when and to which controller should be the switching is based on
a cost function minimisation min; (J,- (t)) for each regulator C; at every instant. It implies the evaluation
of each model for each sample time. We propose the following cost function represented by a moving
time window of length T formulated as:

L=/ "¢ (38)

At every instant, the performance factors {Jj (t)} are compared allowing the switching decision, as
explained in the algorithm of Fig. 3.

Following the switch, the system is blocked for a T,,;,, > 0 length waiting period, and after that, the
regulator that indicates the minimum cost function is pointed out (switching target) to be applied to
the plant. This waiting period is motivated by preventing the system from too fast arbitrary switching
[7, 54].

5.3 Stability analysis

The following stability theorem states the ability of the proposed adaptive robust gain-scheduled
controller to stabilise the UAV system.
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Table 5. Different models of the LPV models of altitude and velocity of the UAV

UAV Altitude UAV Velocity

20,495 + 416, 15> — 25425 + 1,795¢04 _0,018265° +0,36365% + 50, 565 + 154, 7

H(s) = V(s) =
() s4 448, 5453 4+ 581, 252 + 30755 + 8812 © 54 448, 5453 + 581, 252 + 30755 + 8812
Hi(5) 16,925 4 451, 25 — 598s + 1, 853¢04 Vi) 0,01826s 4 0, 0245852 + 26, 54s + 55, 8
S) = S) =
! s 4 123,753 + 127852 + 4964s + 9094 ! s+ 123,753 + 127852 + 4964s + 9094
Hy(6) 11,0853 + 475, 552 4 10555 + 1, 495¢04 V2 0,01826s> — 0, 563452 + 23,185+ 5, 182
S)= S) =
: s 4160, 2 + 1278% + 54125 + 7341 2 s 4160, 2 + 127852 4 54125 + 7341
) 20,495 + 80452 — 34995 + 3,351e4 Va(s) 0,01826s> + 0, 604152 + 66, 645 + 294
S)= S) =
3 s* 490, 7953 + 105852 + 55935 + 1,971e4 3 s* 490, 7953 + 105852 + 55935 + 1,97 1ed
Hats) 14,045 4 851, 852 + 14225 + 3, 00404 Vas) 0,01826s> — 0, 310752 + 45, 87s + 56,22
S) = S) =
4 s+ 259,753 + 222252 + 98355 + 1, 496¢04 4 s* + 259,753 + 222252 + 98355 + 1, 496¢04
Hs(s) 17, 655% 4 12225 — 64, 81s + 4, 887e4 Vs(6) 0,01826s% 4 0, 55725 + 74, 155 4 188,2
S)= s) =
> s 4305, 353 + 281352 + 1, 317e04s + 2, 448¢4 3 s 4305, 353 + 281352 + 1, 317¢04s + 2, 4484

Theorem 1. The UAV with LPV model described by Equation (13) controlled using the gain-scheduled
adaptive controller based on LOR — FOPID controllers Equation (30) and Equation (36), with the
switching law presented in Fig. 3, is exponentially stable.

Proof. The proof is similar to the one in Ref. (7).

6.0 Application for uav airspeed and altitude control

In this section we will apply the proposed gain scheduled strategy to the control of the UAV Altitude
and velocity. Five different models are considered for modelling the LPV system. Both integer order and
fractional order controllers are considered for either the altitude or velocity of the plane, and the results
are given in the ideal case and in presence of random disturbances.

Consider a real LPV system given by its state space linearised model presented in Section 2.1 and
given in the form of Equation (31).

We suppose that the plant parameters will change periodically between five constant values of the
angle-of-attack «, such that: o = [6, 9° (plant) 7,5° 7,9° 13,2° 14° 20°].

Then we have five linear models representing the LPV plant whose different linear transmittances
are given in Table 5.

First of all, we apply LQR feedback controller for the five system’s models in (using state space
formula), we get stability of the system, like mentioned in Table 6.

Then, for each LQR closed-loop transfer function, we compute a fractional-order PID controller as
in Equation (30).

Table 7 gives the regulators of the UAV altitude. Wheras, Table 8 gives the regulators of the UAV
velocity.

6.1 Control with ideal conditions (without noises)

We begin the UAV control experiment by considering that the plant is in ideal conditions. This means
that we minimise external factors like wind, obstacles, additive actuators’ and sensors’ noises and signal
interference, which enables more precise navigation and manoeuvers.

6.1.1. Simulations of UAV altitude
In nominal flight conditions, the designed controllers must achieve stabilisation of the UAV altitude
around i & 150m. This is the normal flying altitude.
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Table 6. FOPID controllers set for UAV altitude

o (1) LQR gain
e 13,2607 2,1650 2,0336  9,6766
| 4,6696 1,1887 11,1080 —3,3272

o =6,9° (plant)

_7 5 b — 13,9835 12,2215 10,7903  6,1841
“=" "7 | 1,0148 0,2420 0,1145 —0,2807
_7 9 b= 15,7482 2,5059 0,6756 5,3712
“="0 71 0,9253  0,1506 0,0783 0,4114
— 13,00 = 19,5086 2,7137 11,2013  8,9341 ]
“= T | 3,7759  0,8524 0,5304 —2,9030 |
o= 14° = 26,3068 3,7558 0,6735 5,7547
- *7 1,5645  0,2627 0,0844 0,0815
—20° ke — 34,9991 4,7663 0,7157  6,2817 ]
“= T | 2,3904  0,4183 11,1090 —0,4224 |
Table 7. FOPID controllers set for UAV altitude
Integer order model fractional order model
Ci (s) =0.0092 + 22 1 0,00075s 2=0,81=0.6
G, (s) =0.1379 + 12 40, 028025 2=0,81=0.6
C; (s) =0.0701 + % +0,01768s A=0,8u=0.6
(oA (s)=0.1624+(*i£+0,04071s A=0,8 u=0.6
Cs (5) =0.06563 + 22952 40, 17415 2=0,81=0.6
Table 8. FOPID controllers set for UAV velocity
Integer-Order Model Fractional-Order Model
C, (s) =2.085 + @ +0,222s A=0,8u1=0.6
Cz(s)=13,79+%+2,8025 A=0,8u=0.6
C; (s) = 0.3485 + 235 4+ 0,000875s 2=0,81=0.6
C (5) = 1.5560 + %1% 40, 0010625 2=0,81=0.6
Cs (s) = 1.8690 + 220 40, 023s A=0,8u=0.6

In our experimental test we will apply gradual reference steps for the desired altitude A,,, to test the
reference tracking and closed-loop system performance.

The simulation results of the UAV altitude 4 control in ideal conditions (without additive noises)
using the proposed robust gain-scheduling controller are given in Fig. 4.

It can be observed from Fig. 4(a) that the altitude response tracks the reference signal with rapidity and
precision. The fractional order case does not present any overshoot, while in the integer case, there are
important peaks at the steps instants. The same remark is observable on the control signal in Fig. 4(b)
which is smoother with the fractional order controller which implies a reduction of the energy costs.
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Figure 4. UAV altitude response in ideal conditions with integer and fractional PID IDLQR controller:
(a) Output signal h (b) Control signal (c) Switching index.

Besides, one can see that the switching system is more active in the fractional case in Fig. 4(c), which
improves the precision of the control comparatively to the integer case where the controller stabilises
with the model 1 after a short time.

6.1.2. Simulations of UAV velocity
In nominal flight conditions, the designed controllers must achieve stabilisation of airspeed (velocity)
around V,;, &~ 10m/s. This is the normal cruise speed.

In our experimental test we will apply gradual reference steps for V,
and closed-loop system performance.

The simulation results of the UAV velocity (airspeed V) control in ideal conditions (without additive
noises) using the proposed robust gain-scheduling controller are given in Fig. 5.

to test the reference tracking

iFdes
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Figure 5. UAV airspeed response in ideal conditions with integer and fractional PID IDLQOR controller:

(a) Output signal V. (b) Control signal (c) Switching index.

It can be noticed again from Fig. 5(a) that the velocity response tracks the reference signal with
good temporal performance. The overshoot in the fractional-order response is very small and negligible
comparatively to the integer case. The same comment can be stated for the control signal in Fig. 5(b)
which is smoother with the fractional order controller which also implies a reduction of the energy costs.
Besides, the switching system is more dynamic in the fractional-order case in Fig. 5(c), which allows

better adaptation and tracking performance.

6.2 Case of UAV with sensors random noises

In this second experiment setting, the system is supposed to be subject to additive output random measure

noises.
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Figure 6. UAV altitude response presence of sensors random noises with integer and fractional
PID IDLQR controller: (a) Output signal h (b) Control signal (c) Switching index.

6.2.1 Simulations of UAV altitude (noisy case)
The simulation results of the UAV altitude control that is affected by random noises using the proposed
robust gain-scheduling controller are given in Fig. 6.

The altitude output signal in Fig. 6(a) shows a lower level of oscillations in the fractional-order
response with the absence of picks that are remarkable in the integer-order case. This fact is still more
visible for the control signals in Fig. 6(b). Same for the switching system, which is more active in the
fractional-order case as can be seen in Fig. 6(c),
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Figure 7. UAV airspeed response in ideal conditions with integer and fractional PID IDLQR controller:
(a) Output signal V. (b) Control signal (c) Switching index.

6.2.2 Simulations of UAV velocity (noisy case)
The simulation results of the UAV airspeed control affected with sensor’s random noises using the
proposed robust gain-scheduling controller are given in Fig. 7.

The airspeed output signal in Fig. 7(a) shows a similar level of oscillations in the fractional-order
response with the absence of high picks. The same remark can be given for the control signals in
Fig. 7(b). However, it is obvious that there only a few switches in the beginning of simulation for the
integer order controller, whereas many controllers and models are involved with the fractional order
response as could be seen in Fig. 7(c),
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7.0 Conclusion

In this paper, a new innovative adaptive control design based on gain-scheduled fractional-order
PID + LQR controllers for a class of LPV systems is presented. An adaptive switching law with a fixed
time-window based on the plant output performance index is used to manage the change between the
pre-designed controllers. The proposed robust adaptive control strategy is very convenient for the control
of UAV systems airspeed and altitude, as they are perfectly described by LPV models.

LQR control method is used to stabilise the linear models of the plant then fractional-order PID
controllers are designed for each closed-loop LQR system based on the PSO optimisation method.

The analysis of stability is performed and demonstrates that the controlled system tracks the reference
signal perfectly. This combined scheduled control has been applied with success to a real case study
involving the control of both the altitude and the airspeed of a UAV system with satisfactory results in
terms of time performance and robustness against measurement noises.

The strategy, which consists of a switching law between five predesigned combined LQR-FOPID
controllers depending on a variable parameter measure of the LPV plant model, proved its effectiveness
in tracking desired altitude and airspeed.

Furthermore, this fractional-order control method demonstrated a satisfactory performance in terms
of settling time, overshoots reduction and robustness against additive noises. The switching law is more
active in the case of fractional-order controller, which allows a better adaptability and ability to reduce
the tracking error.

Future research will focus on combining fractional-order modeling and fractional adaptive control
in order to enhance the closed-loop control performance and robustness versus disturbances and model
uncertainties.
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