LATTICE-ORDERED RINGS OF QUOTIENTS

F. W. ANDERSON

Introduction. R. E. Johnson (10), Utumi (18), and Findlay and Lambek
(7) have defined for each ring R a unique maximal “ring of right quotients”
Q. When R is a commutative integral domain (in this paper an integral domain
need not be commutative) or an Ore domain, then Q is the usual division ring
of quotients of R. Moreover, it is well known that in these special cases, if R
is totally ordered, then so is Q.

The main purpose of this paper is to study the ring of quotients Q, and in
particular its order properties, for certain lattice-ordered rings R. Since very
little is known about the structure of general lattice-ordered rings, we shall
restrict our attention to lattice-ordered rings which are subdirect sums of
totally ordered rings; these are the f-rings of Birkhoff and Pierce (4). For the
sake of simplicity, but at the expense of some generality, we shall also assume
that R has an identity.

As we shall show, the fact that R is an f-ring (even a totally ordered integral
domain) does not imply that Q is an f-ring extension of R. If Q is an f-ring
extension of R, then R is called a qf-ring. Two of our results are devoted to
characterizing the qf-rings. The more interesting of these states that if R has a
zero singular ideal (10), then R is a qf-ring if and only if for all a, b € R, if
aR M IR =0, then ¢ L b. Thus the qf-integral domains are precisely the
ordered Ore domains. In general, however, not every qf-ring, even with zero
singular ideal, is an Ore ring.

Since not every semi-prime f-ring with the maximum condition for right
l-ideals is a qf-ring, the natural f-ring analogue of Goldie’s theorem (8) for
the ring of quotients of a semi-prime noetherian ring is not possible. However,
in §6 we obtain an analogue for qf-rings.

If the singular ideal of a ring R is zero, then Q is a regular right self-injective
ring. Utumi (18) has characterized such rings in terms of cosets of principal
right ideals; in §7 we prove a new characterization of regular self-injective
f-rings.

1. Preliminaries. Unless explicitly stated otherwise all rings will be assumed
to possess an identity element.

We begin this section by recalling a few facts concerning generalized rings
of quotients. Further details can be found in (7, 10, 11, 12, and 18).
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If R is a ring, then there is a right R-module E, called the injective envelope
of R, characterized by the properties (6):

(1) Rpyis an essential submodule of Eg;

(2) Eg is injective.

Given a right ideal D of R and an R-homomorphism ¢:D — R, the injectivity
of E insures the existence of an extension ¢:R — E of ¢. The right ideal D is
dense in R in case each such ¢ has a unique extension ¢ € Homg(R, E). Then
one readily proves:

1.1. LEMMA. For a right ideal D of R the following conditions are equivalent:

(1) D is dense in R;

(2) for each h € Homg(E, E), D C ker k implies R C ker h;

3) {x € E;xD =0} =0.

Let A denote the set of all dense right ideals of R. Further easily proved
properties of A include:

(D.1) each D € A is essential in Ry;

(D.2) A is a dual ideal in the latiice of right ideals of R;

(D.3) ifa € Eand if D, D’ € A, then {x € D;ax € D'} € A;

(D4) if D € A and if I is a right ideal of R such that (I:x) € A for each
X €D, then I € A (if A4, B are subsets of a right R-module A, then
(4:B) = {x € R; Bx C 4}).

1.2. TurorEM (Utumi 18). The ring R has a unique, to within isomorphism
over R, ring extension Q satisfying:
(1) D, = {x € R; gx € R} s dense for each q € Q;
(2) for each D € A and each ¢ € Homg(D, R) there is a unique q € Q such
that
¢(x) =gx (v € D).

The unique ring extension Q of R assured by Utumi’s theorem is called the
maximal ring of right quotients of R (when no ambiguity is likely, we shall call
Q simply the ring of quotients of R). Several characterizations of Q are known;
cf. (12). Here it will suffice to observe that with the obvious ring structure,

{x € E; (R:x) € A}
is isomorphic to Q.

Next we review some material from the theory of lattice-ordered rings. A
detailed treatment can be found in the work of Birkhoff and Pierce (4). For
more on the structure of f-rings, see D. G. Johnson (9).

A partial ordering > defined on the underlying set of a ring R is compatible
with the ring structure in case for all x, y, 2 € R,

(1) x > yimpliesx + 2z > y + z;

(i) x > 0and y > 0 imply xy > 0.

If > is a compatible partial ordering on R, then the set P of positive elements
clearly satisfy:

PN (=P)=0; P+PCP; PPCP.
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Moreover, the correspondence associating with each compatible partial ordering
its positive set is one to one.

By a partially ordered ring is meant a pair consisting of a ring and a com-
patible partial order. A laitice ordered ring (a totally ordered ring) is a partially
ordered ring whose partial ordering is a lattice ordering (a total ordering).
An f-ring is a lattice-ordered ring R such that for all x, vy, 2 € R,

xAy=0andz>0 implyxz Ay=2xAy=0.

1.3. THEOREM (Birkhoff and Pierce 4). 4 lattice-ordered ring is an f-ring 1if
and only if it is isomorphic to a subdirect sum of totally ordered rings.

We now recall some notation. Let R be an f-ring and let ¢ € R. Then we
setat =a V0,a =—(@AO0),and |a| =a V (—a). It follows that

a =at —a,
ol = a* +a-,
at ANa =0.
Two facts that we shall frequently use are that for a, b € R with & > 0,
ath = (ab)t and a=b = (ab)~.

For a, b € R we write ¢ L b and say that a and b are orthogonal in case
la] A 6] = 0. If 4 C R, then

At ={a € 4;a > 0},
Ar ={x € R;x Laforalla € 4}.

Again let R be an f-ring. A right ideal I of R is an l-ideal in case for each
a € I and each x € R if |x| < |e|, then x € I. The set N(R) of all nilpotent
elements of R is an l-ideal of R called the l-radical of R.

1.4. Tueorem (Pierce 17). If R is an f-ring, then N(R) = 0 if and only if
R is a subdirect sum of totally ordered integral domains.

1.5. COROLLARY. An f-ring R has no non-zero nilpotent elements if and only
if the ring R is semi-prime.

1.6. COROLLARY. Let R be a semi-prime f-ring and let a, b € R. Then ab = 0
if and only if a L b.

2. Uniqueness of order. Let R be an f-ring and let Q be the ring of quotients
of R.

2.1. LEmmA. If D is a dense right ideal of the ring R, then D¥R is also dense in R.

Proof. Let x € E with xD*+ = {0} and let @ € R with xa € R. Set
C =1{d € D:a*d, a-d € D).
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Then by (D.2) and (D.3) we have C € A. For each d € C+
(xa)td = (xad)* = (xatd — xa—d)* =0

since atd, a~d € D*. Thus (xa)*C*t = 0. If ¢1, ¢» € C, then (c1 + ¢2)?, ¢1?,
cs? € C* so that

0 = (xa)*(c1 + ¢2)? = (xa)tcic2 + (xa)tcy cq.

In any totally ordered ring, this would force each term to be zero, so using
Theorem 1.3 we infer that (xa)*c¢; ¢z = 0 for each pair ¢1, ¢, € C. But C € A,
whence, by Lemma 1.1, we have (xa)* = 0. Similarly, (xa)~ = 0 and thus
xa = 0. Therefore since Ry is essential in E, we conclude that x = 0, so by
Lemma 1.1, DtR € A.

2.2. LEMMA. Let g € Q and D € A, If gD+ C R*, then ¢D, C R*.
Proof. Let d € D,* and set
C ={x € D;dx € D}.
Then by (D.3), C € A. Since d > 0, dCt & D+, whence
(g@)Ct C gD+ C R*.

Thus (¢d)=C* = 0. By Lemma 2.1, C*R € A, so by Lemma 1.1, (¢d)~ =0,
and therefore ¢D,+* & R*.

Let S be a subring of Q containing R. Then .S admits at least one compatible
partial order extending that of R, namely that obtained by taking St = R*.
Since the property of being the positive set for a compatible partial order is

one of finite character, there is at least one maximal partial order for .S such
that ST R = R+,

2.3. THEOREM. Let S be a subring of Q containing the f-ring R. Then there is a
unique maximal partial ordering for the ring S relative to which St M R = R+.
In fact, in this ordering

St = {s € S;sDs+ C R}

Proof. Set P = {s € S;sD;+ C R+}. It will clearly suffice to show that P is
the positive set for a compatible partial ordering on S. So first let s, —s € P.
Then sD,t € Rt M (—R*) = 0, so that sD,¥ = 0. Hence from Lemma 1.1
and Lemma 2.1 we infer that s = 0. Next let s, ¢ € P. Then

s+0D:N\DJ)t = (s +HDFNDH) S R
Therefore, by (D.2) and Lemma 2.2, s + ¢ € P. Finally, let
C = {x € Dz;tx € Ds}

Then by (D.3), C € A. Since we clearly have stCt C R+, it follows from
Lemma 2.2 that st € P.
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If S is a ring between R and Q, then the ordering for .S described in the last
theorem will be called the canonical ordering for S. In the remainder of the
paper, unless otherwise stated, we shall assume that each such S is equipped
with its canonical ordering.

2.4. THEOREM. Let S be a subring of Q containing the {-ring R. If S admits a
partial ordering relative to which it is an f-ring extension of R, then this partial
ordering is the canonical one.

Proof. Let P be the positive set for such an f-ring ordering on S and let S+
be the positive set for the canonical ordering. By the maximality of S* it will
suffice to show that St C P. So let s € S* and let

D =D, M Dg+ M Ds-.

(All lattice operations are taken relative to P.) If s ¢ P, then s~ 5 0; thus by
Lemmas 1.1 and 2.1, there is an @ € D* such that s—a > 0. As S is an f-ring
relative to P, we have (sta) L (s—a). Thus

sa = sta — s—a ¢ P.

Buts € Stand a € Dt so that sa € R, contrary to Rt € P. Thus S~ = P.

3. qf-rings. If the quotient ring Q is an f-ring in its canonical ordering,
then we call the f-ring R a qf-ring.

3.1. THEOREM. An {-ring R (with identity) is a qf-ring if and only if jor each
q € Q and each pair dv,ds € DT,

@) (gd)* A (gd2)~ = 0.

(11) dl VAN dz =0 /mehes (qd1)+ VA d2 = 0.

Remark: Not every f-ring R, without identity, can be embedded in an
f-ring with identity (9, Chapter III). Thus this result is less general than
possible. However, every left faithful gf-ring, without identity, is, by virtue

of (7, Proposition 6.2), embeddable in an {-ring with identity. Hence there is
no loss of generality in our assumption in §§4-8.

Proof. The necessity of the condition is clear from Theorem 1.3. Conversely,
assume the stated condition. We show first that the canonical ordering on Q
is a lattice ordering, and for this it will suffice to show that ¢ V 0 £ Q for
eachq € Q (3, p-215). Soletq € Q. Letd, ¢ D;fandr, € R i =1,...,n),
and suppose that

szz ri = 0.

By Theorem 1.3, R is a subdirect sum of totally ordered rings, and since the
assumed condition implies that the signs of the ¢gd; all agree co-ordinate-wise,

> ilgdy)*tr, = 0.
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Therefore there is an 4 € Homg(D,tR, R) such that
h(Xidiry) = 2. (gd)tr,
foralld, € D;ifandr; € R (1 =1,...,n). By Lemma 2.1, D,*R € A; so by
Utumi's theorem there is a ¢* € Q such that
g*x = h(x) (x € D/FR).
As ¢*D,/* C R*, it follows from Lemma 2.2 that ¢* > 0. Also for each d € D, *,
(@ — @d = (@)* — (¢d) = (gd)~ >0,

so that ¢* > ¢. Now if p € QF such that p > ¢, then pd > 0 and pd > ¢d for
alld € (D, N\ D,)*. Therefore

(P —q"d = pd — (gd)* > 0

for all d € (D, \D,* and so p > ¢*. Hence ¢* = ¢ V 0 and the canonical
ordering for Q is a lattice ordering.

Finally we show that Q is an f-ring. For this it will suffice (4, p. 59, Corollary
1) to prove that if s € QF, then multiplication by s is both left and right
distributive over joins. So let p, ¢ € Q and set

D = {x € R; px,qx, (p V q@)x € D,}.

Then by (D.2), (D.3), and Lemma 2.1, D*R € A. For each x € D+,
(g — p)*x € Dyt and so by condition (ii), s(¢g — p)*x L s(¢g — p)~x. There-
fore, s(g — p)tx = [s(g — p)x]*, whence

s(pV @Qx =s[p+ (g — p)Flx = spx + [s(g — p)x]*
= spx + (sg — sp)Tx = (sp V sq)x.
So by Lemma 1.1, s(p V ¢q) = sp V sq. For the other side, let
C={x€R;sx € D,N\D, N Dyy,}.
Again C*R € A and for each x € CH,
dV Qsx =[p+ (g — p)tlsx = psx + [(g — p)sx]*
= psx + [(g — p)sItx = (ps V gs)x.
So, as before, (p V ¢)s = ps V gs and Q is an f-ring.

It

3.2. COROLLARY. Every commutative f-ring with identity is a qf-ring.

Proof. Let ¢ € Q and let dy, d2 € D,*. Since R is a commutative f-ring, we
have for each d € D,

[(gd)* A (gd2)"ld = (gd)*d:s A (gd)=d: = 0.

As DR € A, this implies that (¢gdi)* A (¢gds)~ = 0. If d; A d; = 0, then for
each d ¢ Dt
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[(gd)* A do)d = (gd)*dy A dod = 0,
and as before (gdi)* A dg = 0.

Recall that an f-ring R is Archimedean in case for every pair a, b € R if
na < b for all integers #, then a = 0.

3.3. COROLLARY. If R 1s an Archimedean f-ring, then R is a qf-ring and Q
is Archimedean.

Proof. Since an Archimedean f-ring is commutative (4, Theorem 13), the
first statement follows from Corollary 3.2. Finally, if p, ¢ € Q with np < ¢ for
all n, then npd < ¢d for each d ¢ (D, N\ D,)* and each n. But since R is
Archimedean, this means that pd = 0 for all d € (D, M D,)*; hence p = 0.

3.4. THEOREM. Let R be a qf-ring. If e € R is a weak order unit, then e is also
a weak order unit of Q.

Proof. Let ¢ € Q with e A ¢ = 0. For each d € D,/* we have
(eANqd=eNqgd=0

since Q is an f-ring. Since e is a weak order unit in R, this means that gd = 0
foralld € D,*; thusg = 0.

3.5. COROLLARY. If R is a totally ordered qf-ring, them Q is totally ordered.

In general, strong order units in qf-rings are not strong order units in the
ring of quotients. For example, a hyper-real field is the ring of quotients of
the ring of its bounded elements.

4. qf-rings with zero singular ideal. An element x of the ring R is a
singular element of R if (0:x) is an essential right ideal. The set of all singular
elements of R form a two-sided ideal called the singular ideal of R (10). The
rings R with zero singular ideal are precisely those for which Q is regular (in
the sense of von Neumann).

4.1. LEMmA. Let R be a qf-ring. Then the singular ideal of R is zero if and only
if R is semi-prime; that is, if and only if R has no non-zgero nilpotent elements.

Proof. 1f the singular ideal of R is zero, then Q is a regular f-ring and thus a
subdirect sum of totally ordered division rings. Clearly then the subring R
has no non-zero nilpotent elements. Conversely, by (1.6), if R is semi-prime
and if x € R, then (0:x) = x+. Thus, asaxl x implies ax = 0, it is clear that
if (0:x) is essential in R; then x = 0.

The next example shows that in general the l-radical and the singular ideal
of an f-ring are not the same.

4.2. Example. Let S be the semigroup with identity e and zero element 0
on generators ¢ and ba with a®> = 0. Totally order S by
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e>...> (Ba)* > (ba)"tt>...>a>...>a(ba)" > a(ba)""1>...>0.

Finally, let R be the semigroup ring on S over the rational field and totally
order R lexicographically. The largest annihilator right ideal of R is the
inessential right ideal aR; thus R has zero singular ideal. However, the l-radical
of R is aR; hence R is not semi-prime. In particular, R is not a qf-ring.

Two further properties of a ring with zero singular ideal that we shall need
are, first, that A coincides with the set of essential right ideals and, second, that
Ok is injective (18).

4.3. THEOREM. Let R be an f-ring with zero singular ideal. Then R is a qf-ring
if and only if for each pair a, b € R*
aR M bR = 0 tmpliesa L b.

Proof. (Necessity) Assume Risa qf-ringand lete,d € Rt withaR M bR = 0.
Then there is an R-homomorphism %:aR ® bR — R defined by

hax + by) = ax — by (x,y € R).
Since Qg is injective, thereisa ¢ € Q such that
qlax + by) = ax — by (x, ¥ € R).

By hypothesis Q is an f-ring, so that (ga)* L (gb)~. But (ga)* = a and
(gb)= =b.

(Sufficiency) Assume the given condition for R, let ¢ € Q,andletd,,d, € D*.
If di Ad; =0, then clearly [(gdi)* A d2]? =0, whence (dg;)* A d» = 0.
Next set

s = (gdy)* and t = (gds)~.

By Theorem 3.1 it will suffice to show that s A ¢ = 0. We establish this via a
sequence of numbered steps.

(1) For each right ideal I of R, I + I+ € A:Forif J is a right ideal of R with
J M T =0, then by hypothesis J C I+. So if J N\ (I + I+) =0, then J C I+
and J M I+ = 0, whence J = 0. Thus I + I+ is essential in R so that as the
singular ideal is zero, I + I+ € A.

(2) For each d € D,, qd € d++. Since R is semi-prime, it follows from (1.6)
that d+ = (0:d) C (0:¢d) and (0:¢9d)+ = (gd)++. Thus

qd € (gd)++ = (0:qd)+ C d=++.

3) (ds R:d;) € (0:s A t). For let dix =dyy. As dy,d» > 0, we have
dilx| = dJ)y| so that (gdi)t|x| = (¢d.)*|y|. Therefore s|x| L ¢. This implies
that (s A t)|x| = 0 so that x € (0:s A ©).

(4) (dy R:dy)+ C (0:s A t). For let x € (ds R:d1)+; we may assume that
x > 0. Then d, x L d,x; for if not, our hypothesis implies the existence of
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#,v € R such that d;xu = dexv # 0, whence xu € (d: R:dy) M (d: R:dy)+
contrary to xu # 0. From (2) we infer that

(sx A tx) € (dix)rr M (dyx) L=
But as d; x L dsx, we have (d1 x)++ M (d; x)++ = 0, whence
(s Abx =sx ANix =0.
Finally (1), (3), and (4) together with Lemma 1.1 yield the desired fact that
sAt=0.

5. The classical case. Let R be a ring and let M be the set of all non
zero-divisors of R. An over-ring Q. of R is a classical ring of quotients of R in
case each element of M is invertible in Q. and

Q. = {ad~';a € Rand d € M}.

If R has a classical ring of quotients, then it is unique to within isomorphism
over R. The ring R is an Ore ring when for each ¢ € R and d € M,

(dR:a) N\ M # 0.

It is well known that the ring R has a classical ring of quotients if and only
if it is an Ore ring. Moreover, if R is an Ore ring, then Q, is a subring of Q

(12).
5.1. THEOREM. Let R be both an f-ring and an Ore ring. Then in its canonical
order Q. 1s an f-ring.
Proof. Since d=' = d(d?)~! for each d € M, it follows that
Q.= {ad"';a € Rand d € M+*}.
Set
P = {ad';a € Rtand d € M+}.

Then it is a routine matter to show that P is the positive set for a partial
ordering on Q, such that P M R = R*. To complete the proof it will suffice, in
view of Theorem 2.4, to show that Q. is an f-ring relative to the ordering
given by P. So let ad=! € Q,, where d > 0. Set (ad~')* = atd—'. Then

(adV)* — (ad™') = (a* — a)d ! =ad' € P,

so that (in the ordering given by P) (ed=1)* > ad~!, 0. Next let bc=! > ad-!, 0
where ¢ € M*. As R is an Ore ring, there exist #, £ € M such that ch = dk.
As ¢,d > 0 and ||, |k] € M, we may assume that %, £ > 0. Then

(bc=1) — (ad=1)* = (bh)(ch)~! — (atk)(dk)~! = (bh — a*k)(ch)™1,
and similarly

(bc™t) — (ad™t) = (bh — ak)(ch)~1.
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Since ¢! > ad~'in Q,, we have in R
bh — ak > 0.
Thus, in R,
bh — atk = (bh — ak) + a~k > 0,
whence (bh — atk)(ch)~! € P. That is, bc~! > (ad—1)*. Therefore
(ad~)* = (ad~!) V O

and Q. is an l-ring. Finally, to show that Q, is an f-ring, it will suffice to show
that absolute value is preserved under multiplication (4, §9). So let i,k € M
with dh = bk. Then

lad="[6c™| = (lald=") ([le™") = (lal|A]) (c|&])~
= lak||ck|~* = [(ad™") (bcM)].

Applying our results and Ore’s theorem (16) to totally ordered integral
domains, we obtain:

5.2. COROLLARY. Let R be a totally ordered integral domain (not necessarily
commutative). Then the following are equivalent:

(1) R 1s a qf-ring;

(2) R is an Ore ring;

(3) Q is a totally ordered division ring;

(4) Q is a division ring.
Moreover, when these conditions apply, Q = Q..

The fact that an f-ring with zero l-radical is a subdirect sum of totally
ordered integral domains suggests the possibility that such an f-ring R is a
qf-ring if and only if it is an Ore ring, and moreover that when R is a qf-ring,
Q = Q.. The following examples discount these.

5.3. Example. Let R be the sub-f-ring of QZ, the f-ring of all rational valued
functions on the integers, consisting of those functions that are constant off
finite sets. Then R is clearly a commutative f-ring with zero singular ideal.
Moreover, in this case Q = QZ; cf. (18, (2.1)). Also, it is clear that each non
zero-divisor of R is invertible, so Q. = R. Thus a qf-ring which is an Ore ring
need not have Q = Q..

5.4. Example. It is known that the group ring Q[F] over the rationals on
the free group F with two generators ¢ and b admits a total order, that it is not
an Ore ring, but that it can be embedded in a totally ordered division ring K;
cf. (15). Let R be the sub-f-ring of K% consisting of those functions that assume
only finitely many values outside of Q[F]. Then R is easily seen to be a qf-ring
with zero singular ideal (and Q = K%). However, R is not an Ore ring since
Q[F] is not. Thus, a semi-prime qf-ring need not be an Ore ring.
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Finally, we remark that we have been unable to determine whether or not
in general every semi-prime Ore f-ring is a gf-ring. In the next section, however,
we shall find one class of semi-prime f-rings for which the two properties are
equivalent.

6. Semi-prime f-rings with a maximum condition. An l-ideal I (left,
right, or two-sided) of an f-ring R is closed in case I = I++. For a semi-prime
f-ring an I-ideal I is closed if and only if it is a right annihilator ideal; moreover,
each closed l-ideal is two-sided; cf. (4, p. 63, Corollary 2).

6.1. THEOREM. Let R be a semi-prime f-ring satisfying the maximum condition
for closed 1-ideals. Then R is a qf-ring if and only if it is an Ore ring. Moreover,
if R is a qf-ring, then Q = Q..

Proof. By (1, Lemmas 1 and 4) R has a finite set of maximal closed l-ideals

{M,,..., M,}, each I, = M+ is a totally ordered closed l-ideal of R, the
sum D =1, + ...+ I, is direct, and D+ = 0. For each 7 =1,...,#, let
x; € I;benon-zero. Aseach [,istotally ordered, itisclear thatx;+ = [+ = M,,
and as the sum of the I;'s is direct, it is clear that if x = x; + ... + «x,, then

x+ = D+ = 0. Thus, since R is semi-prime, x is a non zero-divisor. If ¢ € R,
then as each I;is a two-sided ideal, ax; € ;. Therefore, we have that ax € D,
and since x+ = 0, that (ax)+ = a=.

Now suppose that R is a qf-ring and that e, d € R with d a non zero-divisor.
By Theorem 4.3 and the fact that each [, is totally ordered, there exist s;,¢#; € R
such that

ax;s; = dx; t; (it=1,...,n),

and such that ax;s; = 0 only if ax; = 0. As each I; has no non-zero zero-
divisors, we may assume that x;s; # 0 forallz =1,...,#n Thus

(x151+ +x,15,1)"' =D+ = O;
whence x;s; + ...+ %, s, is not a zero-divisor. Moreover, since
a(xlsl + .o +xn3n) = d(xltl + o +xntn)

R is an Ore ring.

The same basic approach, namely reducing to D by multiplying everything
in sight by «, is used in proving that if R is an Ore ring, then it is a qf-ring.
We omit the details.

Finally, if R is a qf-ring, then Theorem 4.3 implies that each I; has no
proper essential submodule or supermodule in R; thus R is finite dimensional
in the sense of (11) and so, by (11, Theorem 4.4), Q = Q..

Now it is an easy matter to prove an f-ring version of Goldie's theorem
(8, Theorem 4.4) for semi-prime rings with a maximum condition.
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6.2. THEOREM. Let R be a qf-ring. Then R is a semi-prime f-ring with the
maximum condition for closed 1-ideals if and only if Q is a direct sum of totally
ordered division rings.

Proof. For the necessity we first observe that by the previous theorem R is
an Ore ring. Next it follows from Theorem 4.3 that any independent sequence
of right ideals of the ring R is pairwise orthogonal. Therefore, R has no infinite
independent set of non-zero right ideals. So R satisfies Goldie’s r.q. conditions
(8, p. 206), and hence by (8, Theorem 4.4), Q = Q, is a semi-simple artinian
ring. But since R is a qf-ring, Q is an f-ring; hence Q must have the asserted
structure. In our case the converse is absolutely trivial since R is a sub-f-ring
of Q, and R inherits both the maximum condition for closed l-ideals and its
I-radical from Q.

It is known (8, Theorem 4.1) that a noetherian semi-prime ring, indeed any
ring with Goldie’s r.q. conditions, is an Ore ring. Thus, by Theorem 6.1, every
semi-prime f-ring with the maximum condition for right (ring) ideals is a
qf-ring. The following example shows, however, that the maximum condition
for right l-ideals does not force a semi-prime {-ring to be a gf-ring.

6.3. Example. The free group F on two generators a, b admits a total order
(14), whence the set

S={x€ F;x >e}

is a sub-semigroup, where ¢ is the identity of . We may assume thata, & € S.
The semigroup ring R of S over the rational field can be totally ordered
lexicograpbically in such a way that the natural mapping S — R preserves
the order of S. Then R is a totally ordered integral domain, and every non-zero
right (or left) l-ideal contains 1. In particular, R satisfies the maximum con-
dition for right l-ideals. However, R is not a qf-ring since aR M bR = 0.

7. Self-injective f-rings. A ring R is right self-injective in case the right
R-module Rpg is injective. If R has a zero singular ideal, then Q is right self-
injective (and regular). Utumi (18, Theorem 4) has proved that a regular ring
R is right self-injective if and only if every family {a, + e, R}.cq of cosets of
principal right ideals which has the finite intersection property has non-void
intersection. The main purpose of this section is to characterize self-injective
f-rings by means of a type of order completeness.

7.1. LEMMA. In a regular t-ring R every idempotent is central and every one-sided
ideal is two-sided.

Proof. A totally ordered regular ring is a division ring; thus a regular f-ring
is strongly regular. The result now follows from (2, Theorem 3.4).

7.2. COROLLARY. A semi-prime f-ring is right self-injective if and only if it
1s left self-injective.
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Proof. By Lemmas 4.1 and 7.1 together with the right- and left-hand versions
of Utumi's characterization of self-injectivity.

In view of this corollary we shall dispense, in what follows, with the qualifi-
cation ‘‘right” when speaking of self-injective f-rings.

If Risaregularring and if ¢ € R, then there is an x € R such thataxe = a;
we denote by e, the idempotent ax. By Lemma 7.1 if R is an f-ring, then also
e, = xa.

7.3. THEOREM. Let R be a regular f-ring. Then the following conditions are
equivalent:

(1) R is self-injective;

(2) for every pairwise orthogonal set S in R there is an x € R such that xe, = a
for all a € S;

(3) every pairwise orthogonal set of positive elements of R has a supremum in R.

Proof. (1) implies (2). Let S C R be pairwise orthogonal. Then
SR =@ Y ses €q R, so there is a ¢ € Homz(SR, R) such that ¢(e,) = a for all
a € S. As R is self-injective, it follows from (5, Theorem 1.3.2) that there is an
x € R satisfying the desired condition: xe, = a foralla € S.

(2) implies (3). Let S be a pairwise orthogonal set of positive elements. Then
there exists a set .S’ of pairwise orthogonal idempotents maximal with respect
toS L 5. Set

T'=5VU/fa+e;ac Sy

Then 7" is a maximal orthogonal set in R*, and by (2) there is an x € R such
that xe, = t for all ¢ € 7T". So for each @ € S and each j € S’ we have

xe, = a + e;and xe; = ¢; = j.

We claim that x — 1 is the supremum of S. For first let ¢ € S. Then for all
b € S,and forall j € 5,

(@ —x+ 1)te, = (aeb_b_eb+eb)+=0y
(@ —x+ Dte; = (ae; —e; +e)t =0.

So (@ — x + 1)* € T+, whence by the maximality of 7, (¢ — x + 1)* = O or
x — 1 > a. Thus x — 1 is an upper bound for S. Next suppose y > a for all
a € S. Then y > 0 and for each a € S, ye, > ae, = a. So for each ¢ < S and
each j € 5,

(x -1 y)+3a = (xea — €g — yea)+ = (0, + € — €y — yea)+ =0,

(x =1 —y)fe; = (e; —e; — ye))*t = 0.

Thus (x — 1 — y)* € T+ and, as before, y > x — 1. Hence x — 1 is the
supremum of S.

(3) implies (1). By (5, Theorem 1.3.2) it will suffice to show that if [ is a
(right) ideal of R and if ¢ € Hompy(Z, R), then there is an x € R such that

¢(a) = xa (@ €1I).
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Let {e.}«ce be a maximal set of orthogonal idempotents in I and for each ¢ € Q
set

Xe = ¢ (ea) .

As X4 €y = %, and xee5 = 0 for all o % B8 in Q@ we infer that {x,*}aee and
{xa"}aeo are pairwise orthogonal sets in R*. Let their suprema be s and ¢,
respectively, and set x = s — ¢. Since x,* L x5~ for all o, 8 € Q, we have
s At =0 (3, p. 231), whence x* = s and x~ = {. To complete the proof it
will clearly suffice to show that for each idempotent e € I,

¢(e) = xe.
If f € R is an idempotent orthogonal to all the e,, then f € I+, whence
(¢(e) — xe)f = ¢(ef) — xef = 0.
Thus (¢(e) — xe)I+ = 0. Now for each « € @ we have (13, Theorem 25.1)
Xty = Xtey, — X" €q = XoT — Xo~ = Xa-
Therefore, for each « € Q,
(p(e) — xe)ea = p(ea)e — Xeae = Xa& — Xg€ = 0.

Then by the maximality of {e,}.cc we have (¢(e) — xe)I = 0. As R is regular,
it follows from Theorem 4.3 that R is a qf-ring. So from statement (1) in the
proof of that theorem and the fact that I 4+ I+ annihilates ¢(e) — xe, we
conclude that ¢(e) = xe, and the proof is complete.

8. Left qf-rings. The maximal left ring of quotients L of a ring R is defined,
in the obvious way, as the opposite ring of the right ring of quotients of the
opposite ring of R. In general, L and Q are not isomorphic, and, in fact, a
right self-injective ring need not be left self-injective (18, §5).

In Corollary 7.2 we saw that for regular f-rings, left and right self-injectivity
are equivalent. This suggests that for f-rings we may be able to find even
stronger results relating L and Q. As yet, however, our information is skimpy.
We do not know, for example, whether every right qf-ring is a left qf-ring, or
for R both a right and left qf-ring whether L = Q. With respect to this last
problem we do have one positive result.

8.1. THEOREM. If R is a semi-prime right and left qf-ring, then its maximal
ring of right quotients is also a maximal ring of left quotients.

Proof. Let Q be the f-ring of right quotients of R. Since Q is left self-injective
(Corollary 7.2), it will suffice to show that g(Q is an essential extension of gR.
So let ¢ € Q be non-zero. As Q is regular, there is a ¢’ € Q such that ¢¢’q = q.
By Lemma 7.1 g¢’ = ¢q is a central idempotent. Now Rp is essential in Qg;
so there exist @,d € Rsuch thatgd = a 5 0. Since Qisan {-ring, |a| A |d| # 0;
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so since R is a left qf-ring, the left-hand version of Theorem 4.3 implies that
hd = ka # 0 for some h, k € R. Let d’ € Q such that dd’d = d; then

dkq = dd'dkq = dkqd'd = dkgdd’ = dkad’ = dhdd’ = dd'dh = dh # 0.
Thus, Rg M R # 0 and zR is essential in zQ.
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