
GOCOMMUTATIVE HOPF ALGEBRAS 

RICHARD G. LARSON 

1. I n t r o d u c t i o n . A coalgebra over the field F is a vector space A over F, 

with maps 8: A —•» A ® A and e: A —* F such t h a t 

(1) (1 ® 5)5 = (ô ® 1)0 

and 

(2) (1 ® e)5 = (e ® 1)5 = 1. 

T h e notion of coalgebra is dual to the notion of algebra with unit , with <5 as 
coproduct (equation (1) says t h a t 5 is associative) and e as the uni t m a p 
(equation (2) is jus t the s t a t ement t h a t e is a uni t for the coproduct ô). If A 
is also an algebra with uni t and ô and e are algebra homomorphisms, A is a 
Hopf algebra. 

An example of Hopf algebra is the group algebra T(G, F) of a semigroup G 
with unit . In this case 5 and e are defined by ô(g) = g <S> g and e(g) = 1 for 
g (z G. Another example is the universal enveloping algebra U(L) of a Lie 
algebra L. Here 5 and e are defined by 5(x) = 1 ® x + x ® 1 and c(x) = 0 
for x (z L. Both of these examples are cocommutat ive , t ha t is, they satisfy 
Ô = TO where T : , 4 ( g ) , 4 - > , 4 ( g > , 4 i s defined by T{a ® b) = b ® a. 

Note t ha t il A is a coalgebra, the dual vector space A* has a na tura l algebra 
s t ructure . In this paper we characterize the types of Hopf algebras described 
in the examples given above in terms of the s t ructure of the dual algebra. 
Specifically, if F is algebraically closed, a cocommutat ive Hopf algebra is the 
group algebra of a semigroup with uni t if and only if its dual algebra is semi-
simple. If F has characteristic 0, a cocommutat ive Hopf algebra is the universal 
enveloping algebra of a Lie algebra if and only if its dual algebra is local. 
T h e n we prove t h a t a cocommutat ive Hopf algebra over an algebraically 
closed field can be wri t ten as the direct sum of sub-coalgebras with local dual 
algebras. This enables us to give a proof of a theorem discovered by B. Kos t an t 
which gives conditions for a cocommutat ive Hopf algebra over an algebraically 
closed field to be the product (in the sense of Definition 3.1) of a Hopf algebra 
with a local dual algebra by a group algebra. Such a Hopf algebra is called 
invertible. Finally we give conditions for a cocommutat ive Hopf algebra over 
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an algebraically closed field to be embeddable in an invertible cocommutative 
Hopf algebra. 

If A is an algebra with unit, it will be convenient to denote by //: A ® A —> A 
the product in A and by 7/: F —> A the map sending a £ F into al £ A. 

2. Coalgebras and topological algebras. In this section we show that 
the dual of a coalgebra is a topological algebra satisfying certain conditions. 
This allows us to prove some useful facts about coalgebras in later sections. 

If L is a vector space over the field F, denote by L* the space of all linear 
transformations from L to F. If M is a subset of L, denote by Mvew the set of 
all elements of L* which vanish on M. We shall identify L with its image under 
the natural injection L —> L**. 

DEFINITION 2.1. Let L be a vector space over the field F. The finite topology for 
L* is the topology such that {x + 5 ,perpj, where S ranges over the finite subsets of 
L, is a base for the neighbourhood system of the point x in L*. 

If the field F is given the discrete topology, this definition makes L* into a 
complete Hausdorfï topological vector space. 

The following two lemmas are immediate consequences of (3, Propositions 
IV. 6.1,2). 

LEMMA 2.2. Let M be a linear subspace of L*. Then 

CI (If) = (ilfperp H L)perp. 

LEMMA 2.3. Let M be a closed linear subspace of L* of finite codimension. If N 
is a linear subspace of L* containing M, then N is closed. 

By a topological algebra we mean an algebra over the topological field F 
whose underlying vector space is a Hausdorfï topological vector space, and 
whose multiplication is continuous. Throughout this paper we shall assume 
that the field F is given the discrete topology. 

The following lemma is a list of trivial but useful facts. 

LEMMA 2.4. If A is a coalgebra over the field F, A* with the finite topology is a 
complete topological algebra. If B is a sub-coalgebra of A, jBperp is a closed ideal in 
A*. If I is an ideal in ^4*, 7perp C\ A is a sub-coalgebra of A. 

PROPOSITION 2.5. Let A be a coalgebra over the field F. If V is a finite-dimen­
sional subspace of A, there exists a finite-dimensional sub-coalgebra B containing V. 

Proof. Since the span of a set of sub-coalgebras is a sub-coalgebra, it is enough 
to show that any element a G A is contained in a finite-dimensional sub-
coalgebra. 

Let B be the minimal sub-coalgebra of A containing a. Let {bt\i G 1} be a 
basis of B and let V i be the element of JB* defined by (bu V t) = 1 and 
(fit, b'i) = 0 if j ^ i. If (a,B*bfiB*) = 0, then by Lemma 2.4 

( W ^ * ) p e r p n 5 
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is a proper sub-coalgebra of B containing a, contradicting the minimality of B. 
Therefore for each i G I there exist xt and yt in B* such that (a, Xfb/ yt) j* 0. 
Let 

(5 ® 1)5 (a) = X «kmn bk ® bm ® bn. 

Since 

L «kin (6*, * *) (6n, yÙ = fa, ^ z &'* 3> i) ^ 0 

for each i G J, there are k, n (J I such that akin ^ 0. Therefore, since only 
finitely many of the akmn ^ 0, B is finite dimensional. This completes the proof 
of the proposition. 

The following proposition is an immediate consequence of Lemma 2.4 and 
Proposition 2.5. 

PROPOSITION 2.6. Let A be a cocommutative coalgebra. Then A* with the finite 
topology is a complete commutative topological algebra with a base for the neigh­
bourhood system of 0 consisting of closed ideals of finite codimension. 

PROPOSITION 2.7. Let R be a complete commutative topological algebra with a 
base for the neighbourhood system of 0 consisting of closed ideals of finite codi­
mension. Then the radical J (JR.) of R is the intersection of the closed maximal 
ideals of R. 

Proof. Denote the intersection of the closed maximal ideals of R by T. Then 
L(R) Q T, since J(R) is the intersection of all maximal ideals of R. 

We wish to show that if t G T, then 1 lies in the ideal C\(R(1 + t)). If not, 
there exists a closed ideal of U of finite codimension w^hich is a neighbourhood 
of 0 such that (1 + U) C\ C\(R(\ + t)) = 0. Therefore, 

1 (Z U + C\(R(1 + t)). 

Let K' be a maximal ideal in R/U containing (C\(R(l + /)) + U)/U and K 
the complete inverse image of Kr in R. By Lemma 2.3, K is a closed maximal 
ideal containing Cl(i^(l + t)). But t G T Ç K, so 1 G K, which is a con­
tradiction. 

To complete the proof of the proposition, we show that every element t G T 
is quasi-regular, which implies that T Q J(R). By the above discussion 
Cl(i^(l + t)) = R. Therefore there exists a net {rn\n G D} in R such that 
limrw(l + /) = 1. A straightforward calculation shows that {rn\n G D] is a 
Cauchy net. By the completeness of R there exists r G R such that lim rn = r. 
I t follows that r = (1 + ^)_1 . Therefore, t is quasi-regular. This completes 
the proof of the proposition. 

If X is a set, denote by Fx the algebra of all functions from X to F with the 
topology of pointwise convergence. If x G X, denote by ex the characteristic 
function of the set {x}. If R is an algebra, denote by pR the natural projection 
R-*R/J(R). 
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PROPOSITION 2.8. Let R be a complete commutative topological algebra with a 
base for the neighbourhood system of 0 consisting of closed ideals of finite codi-
mension. Assume there is a set X and a continuous algebra isomorphism 
<t>: Fx —» R/J(R). Then there exists {fx Ç R\x £ X} such that pR{f%) = <i>(ex), 
f*2 = fx, fxfy = 0 if x j£ y, and 

lim (fxl + . . . + fXn) = 1 

where {xi, . . . , xn) ranges over all finite subsets of X. 

Proof. I t is easily seen that if s G J(R), lim zn = 0. This implies that any 
power series in z with coefficients in F converges to an element of R. Therefore, 
the proof of (3, Proposition 111.8.3) shows that there exist fx £ R such that 
pRifx) = <t>(ex) and fx

2 = fx. Since fxfy is an idempotent in J(R), fxfy = 0. 
To show that 

\im(fxl + ...+fxn) = 1, 

it is enough to show that for every closed ideal U of finite codimension which is 
a neighbourhood of 0, there exists a finite set Y = {xi, . . . , xn} Q X such that 

i - (/xi+ . . . + / J e u 

and fz e U for z £ Y. We claim that 

Y = {x eX\ex g ^ ^ ( t / ) ) } 

is the desired set. It is finite because it is linearly independent modulo 
<t>~1 (pR{U)). It is easily verified that 

4>~1{PB(U)) = ! / € F*\f(Y) = 0 } . 

But this implies that 

1 - (fxl + ...+fXn) 

and fz,zQ F, are idempotents in U + J{R). It follows that they are in U. 
This completes the proof of the proposition. 

3. The radical of the dual algebra. Given a cocommutative Hopf 
algebra A, the radical of the dual algebra J(A*) plays a central role in deter­
mining the structure of A. If F is algebraically closed, J (A*) = 0 if and only if 
A is the group algebra of a semigroup. If F has characteristic 0, J (A*) is a 
maximal ideal in A* if and only if A is the universal enveloping algebra of a 
Lie algebra. 

LEMMA 3.1. Let A be a Hopf algebra over the field F. Then 

G (A) = {a Ç A\a j* 0 and 5(a) = a <g> a} 

is linearly independent^ is closed under multiplication, and contains 1. 
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We may characterize G (A) as follows: if A is a Hopf algebra, T(G(A), F) 
is the maximal sub-Hopf algebra of A which is the group algebra of some 
semigroup. 

The following theorem was first proved (unpublished) by D. K. Harrison 
for finite-dimensional Hopf algebras. 

THEOREM 3.2. Let A be a cocommutative Hopf algebra over the algebraically 
closed field F. Then A* is a semisimple algebra if and only if A is the group 
algebra of a semigroup with identity. 

Proof. The following lemma implies that if A* is semisimple, A = T(G(A)} F). 
The converse of the theorem is trivial. 

LEMMA 3.3. J (A*) is closed in the finite topology and 

T(G(A),F) = J(A*yeT»r\A. 

Proof. J (A*) is closed since it is the intersection of closed ideals by Proposi­
tions 2.6 and 2.7. Each g G G (A) induces a homomorphism of A* onto F with 
a closed kernel. Since J (A*) is contained in the kernel of this homomorphism, 
g 6 J(A*)veTD. Therefore, 

T(G(A),F) QJ(A*Yerv>nA. 
To show^ that 

T(G(A),F) 2 J(A*yev»r\A, 

it is enough to show that i£perp P\ A C T(G(A), F) for every closed maximal 
ideal K in A*. Since K is closed and maximal, i£perp C\ A is a minimal sub-
coalgebra of A. Therefore i£perp P\ A is finite dimensional by Proposition 2.5. 
Since dim A*/K = dim i£perp P\ A is finite and F is algebraically closed, 
dim A*/K = 1. Let g 6 i£perp Pi A be such that e(g) = 1. It is easily checked 
that ô(g) = g 0 g, so 

XperP f^A = FgQ T{G{A), F). 

This completes the proofs of the lemma and the theorem. 

DEFINITION 3.4. The Hopf algebra over the field F is colocal if J (A*) is a 
maximal ideal in A*. 

THEOREM 3.5. Let A be a cocommutative Hopf algebra over the field F of charac­
teristic 0. Then A is colocal if and only if A is the universal enveloping algebra of 
a Lie algebra. 

Proof. It is trivial to show that if A is the universal enveloping algebra of a 
Lie algebra, A is colocal. To show the converse, by (5, 5.18) it is enough to 
show that if A is colocal, A is generated as an algebra by 

P(A) = {a e A\ 5(a) = 1 0 a + a ® 1}. 

Define the length of a G A as follows: 

1(a) = mm{n > 0| (a, J (A*)71*1) = 0}. 
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Note that 1(a) = 1 if and only if a £ P(A). We show by induction on length 
that every element of A can be written as a linear combination of products of 
elements of P(A). Assume that every element whose length is less than n can 
be written as such a linear combination, and that 1(a) — n. Let B be the mini­
mal sub-coalgebra of A containing a. Let {alt . . . , ak} be a basis of P(B), and 
{xi, . . . , xk) be elements of B* such that (au Xj) = ôtj. Let 

b = a - £ Oi! . . . e*!)-1^, x^ . . . xk
ek)a^ . . . ak

ek 

where the sum is taken over all ^-tuples of non-negative integers (eu . . . , ek) 
such that ei + . . . + ek = n. We claim 1(b) < n. Since 1(b) < n, it is enough 
to show that (b, Z\ . . . zn) = 0 for zt £ 7(^4*). Writing /3^ = (a;-, zf), we have 

(3) (a, 2i . . . Zn) = X) ^ in • • • ftunO, ^n • • • % , ) , 

and 

(4) ( Z («i! • • • ek\)~^(a, x^ . . . xk^)a^ . . . ak
e\ zx . . . *„) 

= L (A, *l61 • • • ^/A) L jSl̂ i • • • Pnjn 

where the sum on the left-hand side and the first sum on the right-hand side 
are taken over all ^-tuples (eu . . . , ek) with ex + . . . + ek = n, and for each 
y^-tuple (eu . . . , ek), the second sum on the right-hand side is taken over all 
distinct orderings (ji, . . . ,jn) of 1 taken e\ times, . . . , k taken ek times. Since 
the right-hand sides of equations (3) and (4) are equal, (b, %\ . . . zn) = 0. By 
induction b is a linear combination of products of elements of P(A). But a is 
the sum of b and a linear combination of products of elements of P(B). This 
completes the proof of the theorem. 

Remarks. If the characteristic of F is p ^ 0, a slight modification of this proof 
shows that A is the w-algebra of a restricted Lie algebra (2, §V.7) if and only if 
(1, x) = 0 implies xv = 0 for every x G A*. 

The Referee has pointed out that the functor G defined in Lemma 3.1 is 
coadjoint (4, §8) to the functor T from the category of semigroups with 
identity to the category of cocommutative Hopf algebras over F, and similarly 
(if the characteristic of F is 0) the functor P defined in the proof of Theorem 
3.5 is coadjoint to the functor U. 

4. Cocommutative Hopf algebras. We now prove a theorem which is 
the basis for most of the structure theory developed in later sections of this 
paper. 

THEOREM 4.1. Let A be a cocommutative Hopf algebra over the algebraically 
closed field F. Then there exists a set of colocal sub-coalgebras {Ag\ g Ç G (A)} 
such that g € A9, 4̂ = 2 © Ag, and AgAh Q Agh. 

Proof. Since 
j(A*) = CI (J(A*)) = T(G(A),F)»^ 
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by Lemma 3.3, we have 

A*/J(A*) = T(G(A), F)* = FG<A\ 

I t is easily checked that the isomorphism FG{A) —» A*/J(A*) is continuous. 
Therefore by Proposition 2.8 there exists a family of orthogonal idempotents 
{/, £A*\ge G (A)} such t h a t / , + J (A*) = eg and 

Km tf„+ . . . + / , « ) = 1. 

Define 

Ag = c i (E^A^*) p e r pn^. 

It is not very hard to see that g G AQ. Ag is a colocal coalgebra because 
A*=ftA*. 

We wish to show that £ Ag = A. If not, there exists x ^ O such that 
iHAg,x) = 0. But then 

for every g, so /^ x = 0 for every g. This implies that x = 0, which is a con­
tradiction. 

We now show that the sum E Ag is direct. Suppose E a, = 0, with ag G ^4 .̂ 
If ah 9^ 0, there exists xh — fh xh such that (ah, xh) = 1. But 

0 = (E ^ , *a) = fan, **)• 

We have proved that A = 2 © Ag. 
If a G A g, define 

lg(a) = min{» > 0| (a, J ^ , * ) ^ 1 ) = 0}. 

Note that lg(a) = 0 if and only if a = ag for some a £ F. Suppose a G AQ 

and /ff(a) = n. Then it is easily shown that we can write 8(a) = E a* ® #'*» 
wrhere ^(aj) < n or lg(a

f
t) < n for each i. 

We now show that if a G A g and 6 G Ah, then aè G -4^. The proof is by 
induction on lg(a) + h(b). If lg(a) + lh(b) = 0, then a = ag and b = f3h where 
a, /3 G -F. Therefore aô = a/3g& G ^4^. Let w > 0, and assume that c £ Ag, 
d G Ah, lg(c) + lh(d) < n implies cd G Agh. Suppose lg(a) + lh(b) = n. If 
ab (£ Agh, then 8(ab) d A ® Agh + Agh ® A. But by the above discussion, 
we can write 8(a) = E a% ® af i&nà8(b) = E bj ® 6^-with/^ (a z) + Za(^) < w 
or lg(a'i) + h{bfj) < n for each pair (i,j)- By induction 

à(ab) = E a, bj ® a't Vj £ A ® Agh + Agh ® A. 

Therefore, ab G Agh. This completes the proof of the theorem. 

Remark. It can be shown that the coalgebras Ag are filtered. That is, there 
exists a filtration 

Fg = P ^ C F ^ C . . . 
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in AQ, with 

U F"Ag = Ag, h(F«Ag) Ç £*+ ,_ ^ 4 , ® ^ „ 

and 

5. Invertible Hopf algebras. If G (A) is a group, we can reduce the problem 
of finding the structure of A to finding the structure of G (A), finding the struc­
ture of the colocal Hopf algebra Ai, and finding the way the inner auto­
morphisms induced by elements of G (A ) act on A i. 

DEFINITION 5.1. Let G be a semigroup with identity, B a Hopf algebra, and 
</>: G —> Aut(^) a homomorphism of semigroups with identity. Then 

T(G, F)+ ® B 

is the Hopf algebra with underlying vector space Y(G, F) ® B and maps 

ju(gi ®bi®g2® b2) = gi g2 ® b1^
9*)b2, 

à(g ® b) = (1 ® T <g> l)(g ® g ® 0(b)), 

77(a) = a l ® 1, e(g ® b) = e(b). 

Note that the inner automorphism of T(G, F)^ ® B induced by g ® 1 
restricted to 1 ® B is given by 1 ® 4>(g). 

DEFINITION 5.2. Let A be a Hopf algebra over the field F. A is invertible if for 
every g G G (A) there exists a G A such that ga = ag = 1. 

THEOREM 5.3. Let A be a cocommutative Hopf algebra over the algebraically 
closed field F. If A is invertible, then A = T(G(A), F)^ ® A\, where #(g) is the 
inner automorphism of A induced by g restricted to the sub-Hopf algebra A±. 
Conversely, if A = T(G, F)^ ® R for a group G, a cocommutative colocal Hopf 
algebra R, and a group homomorphism </>: G —» Aut(7?), then A is invertible. 

Proof. Let g G G (A), and suppose ag = ga = 1. It is easily checked that 
a e G(A). Therefore, G (A) is a group. Map T(G(A), F)* ® A± -> A by 
g ® b —> gb, where g G G (A), b G Ai. It is immediate from Definition 5.1 and 
the fact that G (A) is a group that this map is a Hopf algebra homomorphism. 
Since 

gAiQAç = gig-'Aç) QgA1} 

we have A = 2 ® Ag = 2 © &4i. Therefore, the map is an isomorphism. 
The converse is trivial. 

I t is possible to define a semigroup with identity (or a group) in terms of 
maps in Ens (the category of sets). The maps in the definition are the product 
m\ S X S —> S and the identity h: {0} —> S (and the inverse c: S —> S for the 
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definition of a group). The only constructions needed in the definition are the 
product and {0} (a terminal object in Ens) . Therefore, we could define a 
semigroup with identity (or a group) in any category with products and a 
terminal object. The category C of cocommutative coalgebras over the field 
F is such a category, with ® as product and F as a terminal object. 

A semigroup with identity in C is just a cocommutative Hopf algebra. 
A group in C is a cocommutative Hopf algebra A with a map 7: A —» A which 
is a coalgebra homomorphism satisfying 

M(1 ® 7)ô = M(7 ® 1)5 = 7?e. 

I t can be shown that this implies that 7 is an algebra anti-automorphism of 

period 2. 

DEFINITION 5.4. Let A be a cocommutative Hopf algebra over the field F. A 
conjugation in A is a map 7: A —> A which is a coalgebra automorphism and an 
algebra anti-automorphism of period 2 satisfying 

M(1 ® 7)5 = M(7 ® 1)5 = *7€-

The preceding discussion implies that the Hopf algebra A is a group in C 
if and only if it has a conjugation. The following theorem says that A has a 
conjugation if and only if the sub-Hopf algebra T(G(A), F) has one. 

THEOREM 5.5. Let A be a cocommutative Hopf algebra over the algebraically 
closed field F. Then A is invertible if and only if A has a conjugation. 

Proof. Assume A is invertible. By Theorem 5.3, 

A = T(G(A),F% ®AL 
Define 

FnAx = ( / ( i ^ ^ n i i . 

I t is easily checked that FnAi is a coalgebra filtration. The argument in (5, 
§8) with grading replaced by filtration shows that we can define a conjugation 
71 in A1. I t is easily verified (using the fact that 71 commutes with all auto­
morphisms of Ai) that the map 7: A —> A defined by 

y{g® r) = g-1 ® 7i(r* ( '-1}) 

for g Ç G (A) and r £ Ai is a conjugation in A. 
The converse is trivial. This completes the proof of the theorem. 

Remark. Theorem 5.3 was first proved (unpublished) by B. Kostant, who 
showed that a cocommutative Hopf algebra A over the algebraically closed 
field F has a conjugation if and only if it is the product of a cocommutative 
filtered Hopf algebra by a group algebra. 

6. An embedding theorem. In the last section a cocommutative invertible 
Hopf algebra (or, equivalently, a cocommutative Hopf algebra with a con­
jugation) over an algebraically closed field was characterized as the product of a 
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colocal cocommutat ive Hopf algebra by a group algebra. In this section we 
prove tha t a cocommutat ive Hopf algebra satisfying conditions less restrictive 
than invertibility can be embedded in the product of a colocal cocommutat ive 
Hopf algebra by the group algebra of a semi-group. A generalization of Ore's 
theorem to Hopf algebras follows from this. 

D E F I N I T I O N 6.1. Let A be a Hopf algebra. A is G-cancellative if for every a G A 
and every g G G {A), ga = 0 or ag = 0 implies a = 0. A is G-right reversible if 
for every a G A and every g G G (A), there exist b G A and h G G (A) such that 
ha = bg. 

T H E O R E M 6.2. Let A be a cocommutative Hopf algebra over the algebraically 
closed field F. A is G-cancellative and G-right reversible if and only if G (A) is a 
cancellative right reversible semigroup and there exist a colocal cocommutative 
Hopf algebra R and a semigroup homomorphism <j>: G (A) --» Au t (R) such that 

A C T(G(A),F)i ® R 

and the following conditions are satisfied: 

(a) if ]C g ® rg 6 A with g G G (A) and rQ G R, then g ® r0 £ A\ 
(b) if r G R there exists g G G (A) such that g ® r G A. 

Proof. I t is immediate from the fact t ha t A is G-cancellative t ha t G (A) is 
cancellative. Given g, h G G (A), there exist a £ A and k G G (A) such t ha t 
ag = kh. Since A is G-cancellative, a G G (A). This proves t ha t G (A) is r ight 
reversible. 

Let L be the subspace of A spanned by all elements of the form a — ga, 
where a G A and g G G (A). Define R = A/L. A simple computat ion shows t h a t 
R is a quot ient coalgebra of A. Denote by pQ the restriction of the projection 
A —* Rto the sub-coalgebra AQ. The maps pQ are homomorphisms of augmented 
coalgebras. 

T o derive some properties of the maps p0, we now make G (A) into a category. 
Let hom(g, h) have exactly one element if there exists (a necessarily unique) 
l G G (A) with Ig = h, and be empty otherwise. We have a functor from G (A) 
to the category of vector spaces taking the object g into AQ, and taking the 
map in hom(g, h) into the map sending a £ Ag into la G Ah, where h — lg. 
R is the direct limit of this functor in the sense of (4, §8). Since the category 
G (A) has the property t ha t for any g, h objects m G (A) there exists an object k 
such t ha t hom(g, k) and hom(h, k) are non-empty (the semigroup G (A) is 
r ight reversible) and the functor carries maps in G (A) into monomorphisms 
(A is G-cancellative), the classical a rgument for direct limit on a directed set 
shows t h a t the maps pQ\ AQ —> R are injections and t ha t R = \J Im pQ. This 
last fact implies t ha t R is a colocal coalgebra. 

Now we define a multiplication on the colocal cocommutat ive coalgebra R 
to make it a Hopf algebra. Let r, 5 G R, and let a G AQ, b G A h be such t h a t 
r = pg(a) and 5 = ph(b). There exist c G Ak and / G G (A) such t h a t ch = la. 

https://doi.org/10.4153/CJM-1967-026-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-026-x


360 RICHARD G. LARSON 

Define rs = pkh(cb). A series of straightforward arguments shows that this 
product is well defined, associative, has an identity, and that 5: R —> R ® R 
is an algebra homomorphism. 

If h £ G (A) and pg(a) = r G R, let r*<*> = pgh(ah). Another series of 
straightforward arguments shows that 4>{h) is a well-defined endomorphism of 
the Hopf algebra R. It is surjective because A is G-right reversible, and injective 
because the maps pg\ Ag-+R are injective and A is G-cancellative. We thus 
have a semigroup homomorphism </>: G —> Aut(i^). 

Define a map i: A —» T(G(A), F)^ ® R as follows: if a 6 Ag, let 
i(a) = g ® Pg(a)y a n d extend i to all of A by linearity. I t is immediate that i 
is an isomorphism of A into the Hopf algebra T(G(A), F)^ ® R. Condition 
(a) in the statement of the theorem is obvious, and condition (b) is satisfied 
because R = U Im pg. 

The converse is trivial. This completes the proof of the theorem. 

COROLLARY 6.3. Let A be a cocommutative Hopf algebra over the algebraically 
closed field F. A is G-cancellative and G-right reversible if and only if there exists a 
cocommutative invertible Hopf algebra B containing A such that for every b G B 
there exist a Ç A and g G G (A) with b = g"}a. 

Proof. By Ore's Theorem (1, Theorem 1.25) there is a group G containing 
G (A) with G = {G{A))~lG(A). The homomorphism 0: G (A) -> Aut(R) 
extends to a homomorphism G-* Aut(R) (which we also call $). Let 
B — T(G, F)^ ® R. A simple calculation shows that every b G B is of the form 
g~1a for some g G G (A) and a G A. The converse is immediate. This completes 
the proof of the corollary. 
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