COCOMMUTATIVE HOPF ALGEBRAS
RICHARD G. LARSON

1. Introduction. A coalgebra over the field F is a vector space 4 over F,
with maps 6: 4 > 4 ® 4 and e: 4 — F such that

(1) (1Q®8)s=(Q1)s
and
() 1®es=(e®1)5 = 1.

The notion of coalgebra is dual to the notion of algebra with unit, with § as
coproduct (equation (1) says that & is associative) and e as the unit map
(equation (2) is just the statement that e is a unit for the coproduct §). If 4
is also an algebra with unit and 6 and e are algebra homomorphisms, 4 is a
Hopf algebra.

An example of Hopf algebra is the group algebra I'(G, F) of a semigroup G
with unit. In this case § and e are defined by 6(g) = g ® gand €(g) = 1 for
g € G. Another example is the universal enveloping algebra U(L) of a Lie
algebra L. Here 6 and € are defined by 6(x) =1 ® x + x ® 1 and e(x) = 0
for x € L. Both of these examples are cocommutative, that is, they satisfy
6 =T16where7: 4 @ A—>A ® A isdefined by 7(¢ ® b)) = b ® a.

Note that if 4 is a coalgebra, the dual vector space A* has a natural algebra
structure. In this paper we characterize the types of Hopf algebras described
in the examples given above in terms of the structure of the dual algebra.
Specifically, if F is algebraically closed, a cocommutative Hopf algebra is the
group algebra of a semigroup with unit if and only if its dual algebra is semi-
simple. If F has characteristic 0, a cocommutative Hopf algebra is the universal
enveloping algebra of a Lie algebra if and only if its dual algebra is local.
Then we prove that a cocommutative Hopf algebra over an algebraically
closed field can be written as the direct sum of sub-coalgebras with local dual
algebras. This enables us to give a proof of a theorem discovered by B. Kostant
which gives conditions for a cocommutative Hopf algebra over an algebraically
closed field to be the product (in the sense of Definition 3.1) of a Hopf algebra
with a local dual algebra by a group algebra. Such a Hopf algebra is called
invertible. Finally we give conditions for a cocommutative Hopf algebra over
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an algebraically closed field to be embeddable in an invertible cocommutative
Hopf algebra.

If 4 is an algebra with unit, it will be convenient to denoteby u: 4 ® 4 — 4
the product in 4 and by 5: F — A4 the map sending « € Fintoal € 4.

2. Coalgebras and topological algebras. In this section we show that
the dual of a coalgebra is a topological algebra satisfying certain conditions.
This allows us to prove some useful facts about coalgebras in later sections.

If L is a vector space over the field F, denote by L* the space of all linear
transformations from L to F. If M is a subset of L, denote by MP®™ the set of
all elements of L* which vanish on M. We shall identify L with its image under
the natural injection L — L**,

DEFINITION 2.1. Let L be a vector space over the field F. The finite topology for
L* is the topology such that {x 4 SP™}, where .S ranges over the finite subsets of
L, is a base for the neighbourhood system of the point x in L*.

If the field F is given the discrete topology, this definition makes L* into a
complete Hausdorff topological vector space.

The following two lemmas are immediate consequences of (3, Propositions
IV. 6.1, 2).

LeEMMA 2.2. Let M be a linear subspace of L*. Then
CI(M) = (Mpew M\ L)rerp,

LeEMMA 2.3. Let M be a closed linear subspace of L* of finite codimension. If N
s a linear subspace of L* containing M, then N is closed.

By a topological algebra we mean an algebra over the topological field F
whose underlying vector space is a Hausdorff topological vector space, and
whose multiplication is continuous. Throughout this paper we shall assume
that the field 7 is given the discrete topology.

The following lemma is a list of trivial but useful facts.

LeEMMA 2.4. If A 15 a coalgebra over the field F, A* with the finite topology is a
complete topological algebra. If B is a sub-coalgebra of A, B**™ is a closed ideal in
A*. If I is an ideal in A*, IP*™ M\ A is a sub-coalgebra of A.

ProPOSITION 2.5. Let A be a coalgebra over the field F. If V is a finite-dimen-
stonal subspace of 4, there exists a finite-dimensional sub-coalgebra B containing V.

Proof. Since the span of a set of sub-coalgebras is a sub-coalgebra, it is enough
to show that any element a € 4 is contained in a finite-dimensional sub-
coalgebra.

Let B be the minimal sub-coalgebra of 4 containing a. Let {b;|¢ € I} be a
basis of B and let b’; be the element of B* defined by (b, %;) =1 and
(b,,0';) =0ifj == 4. If (a, B*'; B*) = 0, then by Lemma 2.4

(B, B¥)"™ N B
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is a proper sub-coalgebra of B containing @, contradicting the minimality of B.
Therefore for each 7 € I there exist x; and y; in B* such that (¢, x; b,/ y;) # 0.
Let

(6 ® 1)5(a) = X otnn b ® b ® D
Since

2 oain (Ony %4) (buy ¥0) = (@, % 0"39:) # 0

for each ¢ € I, there are k, #n € I such that oy, # 0. Therefore, since only
finitely many of the ogmy, # 0, B is finite dimensional. This completes the proof
of the proposition.

The following proposition is an immediate consequence of Lemma 2.4 and
Proposition 2.5.

PrOPOSITION 2.6. Let A be a cocommutative coalgebra. Then A* with the finite
topology 1s a complete commutative topological algebra with a base for the neigh-
bourhood system of O consisting of closed ideals of finite codimension.

PRroPOSITION 2.7. Let R be a complete commutative topological algebra with a
base for the neighbourhood system of O consisting of closed ideals of finite codi-

mension. Then the radical J(R) of R 1s the intersection of the closed maximal
ideals of R.

Proof. Denote the intersection of the closed maximal ideals of R by 7'. Then
J(R) C T, since J(R) is the intersection of all maximal ideals of R.

We wish to show that if ¢ € T, then 1 lies in the ideal CI(R(1 + £)). If not,
there exists a closed ideal of U of finite codimension which is a neighbourhood
of 0 such that (1 + U) N CI(R(1 4+ ¢)) = @. Therefore,

1¢ U4+ CIRA 4+ 1)).

Let K’ be a maximal ideal in R/U containing (CI(R(1 + ¢)) + U)/U and K
the complete inverse image of K’ in R. By Lemma 2.3, K is a closed maximal
ideal containing CI(R(1 +¢)). But t ¢ T C K, so 1 € K, which is a con-
tradiction.

To complete the proof of the proposition, we show that every element ¢ € 7
is quasi-regular, which implies that 7°C J(R). By the above discussion
CI(R(1 4+ t)) = R. Therefore there exists a net {r,|n € D} in R such that
limr,(1 4 ¢) = 1. A straightforward calculation shows that {r,|n € D} is a
Cauchy net. By the completeness of R there exists » € R such that lim 7, = 7.
It follows that » = (1 + ¢)~%. Therefore, ¢ is quasi-regular. This completes
the proof of the proposition.

If X is a set, denote by F¥ the algebra of all functions from X to F with the
topology of pointwise convergence. If x € X, denote by e, the characteristic

function of the set {x}. If R is an algebra, denote by pj the natural projection
R — R/J(R).
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PRroPOSITION 2.8. Let R be a complete commutative topological algebra with a
base for the neighbourhood system of O consisting of closed ideals of finite codi-

mension. Assume there is a set X and a continuous algebra isomorphism
¢: FX — R/J(R). Then there exists {fy € Rlx € X} such that pr(f.) = ¢(e,),
fo2 = fo fofy =0 of x #£ vy, and

lim (fﬂ + ... ‘I‘fzn) =1
where {x1, . . ., x,} ranges over all finite subsets of X.
Proof. 1t is easily seen that if z € J(R), lim 2" = 0. This implies that any
power series in z with coefficients in F converges to an element of R. Therefore,
the proof of (3, Proposition I11.8.3) shows that there exist f, € R such that

pr(fz) = ¢(e;) and f,2 = f,. Since f, f, is an idempotent in J(R), f,f, = O.
To show that

lim (f:n + ... +f1n) =1,

it is enough to show that for every closed ideal U of finite codimension which is
a neighbourhood of 0, there exists a finite set ¥ = {x, ..., x,} € X such that

1_(fzx+~-+f.rn)€ U
and f, € U for z ¢ V. We claim that
V= {x € Xle. ¢ 71 (pr(U))}

is the desired set. It is finite because it is linearly independent modulo
¢ 1 (pr(U)). It is easily verified that

o7 (pr(U)) = {f € FX[f(Y) = 0}.
But this implies that
L= (ot s+ fa)
and f,, z ¢ Y, are idempotents in U + J(R). It follows that they are in U.

This completes the proof of the proposition.

3. The radical of the dual algebra. Given a cocommutative Hopf
algebra 4, the radical of the dual algebra J(A4*) plays a central role in deter-
mining the structure of A. If F is algebraically closed, J(4*) = 0 if and only if
A is the group algebra of a semigroup. If F has characteristic 0, J(4%) is a
maximal ideal in A* if and only if 4 is the universal enveloping algebra of a
Lie algebra.

LeEMMA 3.1. Let A be a Hopf algebra over the field F. Then
GA) ={a € Ala#0and é(a) = a Q a}

is linearly independent, is closed under multiplication, and contains 1.
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We may characterize G(4) as follows: if 4 is a Hopf algebra, T'(G(4), F)
is the maximal sub-Hopf algebra of 4 which is the group algebra of some
semigroup.

The following theorem was first proved (unpublished) by D. K. Harrison
for finite-dimensional Hopf algebras.

THEOREM 3.2. Let A be a cocommutative Hopf algebra over the algebraically
closed field F. Then A* is a semisimple algebra if and only if A s the group
algebra of a semigroup with identity.

Proof. The following lemma implies that if 4* is semisimple, A = I'(G(4), F).
The converse of the theorem is trivial.

LeMMA 3.3. J(4*) s closed in the finite topology and
T'(G(A), F) = JA*)Pe™® N 4.

Proof. J(A*) is closed since it is the intersection of closed ideals by Proposi-
tions 2.6 and 2.7. Each g € G(4) induces a homomorphism of 4* onto I with
a closed kernel. Since J(4%*) is contained in the kernel of this homomorphism,
g € J(4*)pe™. Therefore,

T(G(A), F) S JA*)Pe® N 4.

To show that

T(G(A4), F) D JA*)Pe™ N A4,
it is enough to show that KP*™ M 4 C TI'(G(4), F) for every closed maximal
ideal K in A*. Since K is closed and maximal, K**™ M\ 4 is a minimal sub-
coalgebra of A. Therefore K?¢™ M 4 is finite dimensional by Proposition 2.5.
Since dim 4*/K = dim K**® M\ 4 is finite and F is algebraically closed,
dim 4*/K = 1. Let g € KP*™ M 4 be such that ¢(g) = 1. It is easily checked
that 6(g) = ¢ ® g, so

Krer M\ 4 = Fg C T(G(A), F).

This completes the proofs of the lemma and the theorem.

DEFINITION 3.4. The Hopf algebra over the field F 1is colocal if J(A*) is a
maximal 1deal in A*.

THEOREM 3.5. Let A be a cocommutative Hopf algebra over the field F of charac-
teristic 0. Then A 1is colocal if and only if A is the universal enveloping algebra of
a Lie algebra.

Proof. It is trivial to show that if 4 is the universal enveloping algebra of a
Lie algebra, 4 is colocal. To show the converse, by (5, 5.18) it is enough to
show that if 4 is colocal, 4 is generated as an algebra by

PA)={a € Alé(e)=1Qa+a®1}.
Define the length of @ € 4 as follows:
I(@) = min{n > 0| (a, J(4*)"t1) = 0}.

https://doi.org/10.4153/CJM-1967-026-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1967-026-x

COCOMMUTATIVE HOPF ALGEBRAS 355

Note that I(a) = 1 if and only if @ € P(4). We show by induction on length
that every element of 4 can be written as a linear combination of products of
elements of P(4). Assume that every element whose length is less than # can
be written as such a linear combination, and that /(¢) = %. Let B be the mini-

mal sub-coalgebra of 4 containing a. Let {a,, . .., a;} be a basis of P(B), and
{x1, ..., x} be elements of B* such that (a;, x;) = &;;. Let

b=a— Y (a!...e!)a, %1% ... %)% . .. ap
where the sum is taken over all k-tuples of non-negative integers (ey, . . ., ¢)

such that e; + ... + ¢, = n. We claim /(d) < n. Since I(8) < #, it is enough
to show that (b, 21...32,) = 0 for z;, € J(4*). Writing 8;; = (a;, 2;), we have

3) (@, 21...2) = Z Bijs o« Brgn(@y Xgy « « . X5),

ji=1
and
4) X (e ..o e)™Ha, 21 .. LX) @ . L @, 3. .. 3y)
=3 (@, 1% ... x°%) 2 Buji - - - Buin

where the sum on the left-hand side and the first sum on the right-hand side

are taken over all k-tuples (es, ..., e) with e; + ... + ¢ = n, and for each
k-tuple (ey, ..., e), the second sum on the right-hand side is taken over all
distinct orderings (ji, ..., J,) of 1 taken e times, ..., k taken ¢ times. Since

the right-hand sides of equations (3) and (4) are equal, (b, 2;...2,) = 0. By
induction b is a linear combination of products of elements of P(4). But a is
the sum of b and a linear combination of products of elements of P (B). This
completes the proof of the theorem.

Remarks. If the characteristic of Fis p # 0, a slight modification of this proof
shows that 4 is the u-algebra of a restricted Lie algebra (2, §V.7) if and only if
(1, x) = 0 implies ” = 0 for every x € A*.

The Referee has pointed out that the functor G defined in Lemma 3.1 is
coadjoint (4, §8) to the functor T from the category of semigroups with
identity to the category of cocommutative Hopf algebras over F, and similarly
(if the characteristic of F is 0) the functor P defined in the proof of Theorem
3.5 is coadjoint to the functor U.

4, Cocommutative Hopf algebras. We now prove a theorem which is
the basis for most of the structure theory developed in later sections of this
paper.

THEOREM 4.1. Let A be a cocommutative Hopf algebra over the algebraically
closed field F. Then there exists a set of colocal sub-coalgebras {4, g € G(4)}
such that g € Ay A = Z @ 4, and 4,4, C A

Proof. Since
J(A4*) = C1(J(4*)) = T(G(4), F)rer
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by Lemma 3.3, we have
A*/J(A*) = T(G(4), F)*¥ = F&@,

It is easily checked that the isomorphism F&#4 — 4*/J(A4*) is continuous.
Therefore by Proposition 2.8 there exists a family of orthogonal idempotents
{f, € A* g € G(A4)} such that f, + J(4*) = ¢, and

m (fo, + ... + fo) = 1.
Define
Ay = Cl(Znrg fr A¥)PeP M AL

It is not very hard to see that g € 4, A, is a colocal coalgebra because
Ak =1, A%

We wish to show that > 4, = 4. If not, there exists x # 0 such that
(X 4,4 x) = 0. But then

X € AP = g fr A*

for every g, so f,x = 0 for every g. This implies that x = 0, which is a con-
tradiction.

We now show that the sum 3} A4, is direct. Suppose > a, = 0, with a, € 4,.
If ay ## 0, there exists x5, = f, x, such that (a x;) = 1. But

0 = (X agxn) = (an, xn).

We have proved that A = £ @ 4,.
If a € 4, define

ly(a) = min{n > 0| (a, J(4,*)"+") = 0}.

Note that /,(a¢) = 0 if and only if ¢ = ag for some o € F. Suppose a € 4,
and /,(a) = n. Then it is easily shown that we can write 6(a) = > a; ® o'y,
where /,(a;) < n or [,(a’;) < n for each 1.

We now show that if @ € 4, and & € A4,, then e¢b € 4,. The proof is by
induction on [,(a) + 1,(d). If I,(a) + 1,() = 0, then a = ag and b = 8, where
a, B € F. Therefore ab = afgh € A, Let m > 0, and assume that ¢ € 4,
d € Ay, 1,(c) + (@) < n implies cd € A, Suppose [,(a) + 1,(0) = n. If
ab ¢ Ay then 8(ad) ¢ A @ Ay + A, @ A. But by the above discussion,
wecanwrited(a) = > a; ® ¢’;and §(b) = X b; @ b ;with,(a,) + LL(b,) <n
or I,(a’;) + I,(b';) < n for each pair (7, 7). By induction

6(ab) = Z a; bj ® ali b,j e A ® Aah —|" Agh ® A.
Therefore, ab € A, This completes the proof of the theorem.

Remark. It can be shown that the coalgebras 4, are filtered. That is, there
exists a filtration

Fg=FA,C Fi4,C ...
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in 4,, with
U R4, = A, 8(F*4y) © iy 4, ® F'4,,

and
(]"‘kAg) (FlAh) < Fk+lAgh.

5. Invertible Hopf algebras. If G(A4) is a group, we can reduce the problem
of finding the structure of 4 to finding the structure of G (4), finding the struc-
ture of the colocal Hopf algebra A4,, and finding the way the inner auto-
morphisms induced by elements of G(4) act on 4.

DEeFINITION 5.1. Let G be a semigroup with identity, B a Hopf algebra, and
¢: G — Aut(B) a homomorphism of semigroups with identity. Then

TG, Fy®B
1s the Hopf algebra with underlying vector space T'(G, F) @ B and maps
p(gs ® b1 @ go ® by) = g1 g2 @ by1#W2by,
(g®0)=10T®1)(g® ¢ b)),
7(a) = al @ 1, e(g @ b) = €(b).

Note that the inner automorphism of I'(G, F)s ® B induced by g ® 1
restricted to 1 ® B is given by 1 ® ¢(g).

DEFINITION 5.2. Let A be a Hopf algebra over the field F. A s invertible if for
every g € G(A) there exists o € A such that ga = ag = 1.

THEOREM 5.3. Let A be a cocommutative Hopf algebra over the algebraically
closed field F. If A is invertible, then A = T'(G(4), F)s ® A1, where ¢(g) is the
inner automorphism of A induced by g restricted to the sub-Hopf algebra A;.
Conversely, if A = T'(G, F)g ® R for a group G, a cocommutative colocal Hopf
algebra R, and a group homomorphism ¢: G — Aut(R), then A is invertible.

Proof. Let g € G(A4), and suppose ag = ga = 1. It is easily checked that
a € G(A). Therefore, G(4) is a group. Map T'(G(4), F)g @ A1 — A4 by
g Q® b— gb, where g € G(4), b € A;. It is immediate from Definition 5.1 and
the fact that G(4) is a group that this map is a Hopf algebra homomorphism.
Since

g1 S A, = g(g4,) C g4y,

we have 4 = 3 @ 4, = 2 @ gA:. Therefore, the map is an isomorphism.
The converse is trivial.

It is possible to define a semigroup with identity (or a group) in terms of
maps in Ens (the category of sets). The maps in the definition are the product
m: S X S— S and the identity %: {#} — S (and the inverse ¢: .S — S for the
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definition of a group). The only constructions needed in the definition are the
product and {#} (a terminal object in Ens). Therefore, we could define a
semigroup with identity (or a group) in any category with products and a
terminal object. The category C of cocommutative coalgebras over the field
Fis such a category, with ® as product and F as a terminal object.

A semigroup with identity in G is just a cocommutative Hopf algebra.
A group in Cis a cocommutative Hopf algebra 4 with a map y: 4 — 4 which
is a coalgebra homomorphism satisfying

w1 @ 7)) = uly ® 1)8 = ne.

It can be shown that this implies that v is an algebra anti-automorphism of
period 2.

DEFINITION 5.4. Let A be a cocommutative Hopf algebra over the field I. A
conjugation in A 1is a map v: A — A which is a coalgebra automorphism and an
algebra anti-automorphism of period 2 satisfying

p(1 ® )6 = uly ® 1)8 = ne.
The preceding discussion implies that the Hopf algebra 4 is a group in G

if and only if it has a conjugation. The following theorem says that 4 has a
conjugation if and only if the sub-Hopf algebra I'(G(4), F) has one.

THEOREM 5.5. Let A be a cocommutative Hopf algebra over the algebraically
closed field F. Then A 1is invertible if and only if A has a conjugation.

Proof. Assume 4 is invertible. By Theorem 5.3,

A=T(GA), Fs ® A..
Define
Py = (A2 ) O A,

It is easily checked that F"4, is a coalgebra filtration. The argument in (5,
§8) with grading replaced by filtration shows that we can define a conjugation
1 in A, It is easily verified (using the fact that y; commutes with all auto-
morphisms of 4,) that the map v: 4 — 4 defined by

Yg®r) =g ®1(rvh)
for g € G(4) and r € 4, is a conjugation in 4.

The converse is trivial. This completes the proof of the theorem.

Remark. Theorem 5.3 was first proved (unpublished) by B. Kostant, who
showed that a cocommutative Hopf algebra 4 over the algebraically closed
field F has a conjugation if and only if it is the product of a cocommutative
filtered Hopf algebra by a group algebra.

6. An embedding theorem. In the last section a cocommutative invertible

Hopf algebra (or, equivalently, a cocommutative Hopf algebra with a con-
jugation) over an algebraically closed field was characterized as the product of a
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colocal cocommutative Hopf algebra by a group algebra. In this section we
prove that a cocommutative Hopf algebra satisfying conditions less restrictive
than invertibility can be embedded in the product of a colocal cocommutative
Hopf algebra by the group algebra of a semi-group. A generalization of Ore’s
theorem to Hopf algebras follows from this.

DEFINITION 6.1. Let A be a Hopf algebra. A is G-cancellative if for every a € A
and every g € G(4), ga = 0 or ag = 0 implies « = 0. A is G-right reversible if
for every a € A and every g € G(A), there exist b € A and h € G(4) such that
ha = bg.

THEOREM 6.2. Let A be a cocommutative Hopf algebra over the algebraically
closed field F. A is G-cancellative and G-right reversible if and only if G(4) is a
cancellative right reversible semigroup and there exist a colocal cocommutative
Hopf algebra R and a semigroup homomorphism ¢: G(A) — Aut (R) such that

A CT(GA), Fle @ R

and the following conditions are satisfied:
@ 2 eg@r, € Awithg € GA) and r, € R, then g @ r, € 4
(b) if r € R there exists g € G(A) such that g @ r € A.

Proof. It is immediate from the fact that 4 is G-cancellative that G(4) is
cancellative. Given g, & € G(4), there exist ¢ € A and £ € G(4) such that
ag = kh. Since 4 is G-cancellative, ¢ € G(4). This proves that G(A4) is right
reversible.

Let L be the subspace of 4 spanned by all elements of the form a« — ga,
wherea € Aand g € G(A). Define R = A/L. A simple computation shows that
R is a quotient coalgebra of A. Denote by p, the restriction of the projection
A — R to the sub-coalgebra 4,. The maps p, are homomorphisms of augmented
coalgebras.

To derive some properties of the maps p,, we now make G (4) into a category.
Let hom(g, ) have exactly one element if there exists (a necessarily unique)
! € G(4) with lg = &, and be empty otherwise. We have a functor from G(4)
to the category of vector spaces taking the object g into 4,, and taking the
map in hom(g, %) into the map sending @ € 4, into la € A;, where b = Ig.
R is the direct limit of this functor in the sense of (4, §8). Since the category
G (A) has the property that for any g, & objects in G(A) there exists an object k
such that hom(g, k) and hom (%, k) are non-empty (the semigroup G(4) is
right reversible) and the functor carries maps in G(4) into monomorphisms
(4 is G-cancellative), the classical argument for direct limit on a directed set
shows that the maps p,: 4, — R are injections and that R = \U Im p,. This
last fact implies that R is a colocal coalgebra.

Now we define a multiplication on the colocal cocommutative coalgebra R
to make it a Hopf algebra. Let 7, s € R, and let @ € 4, b € A, be such that
7 = p,(a) and s = p;(b). There exist ¢ € 4, and I € G(4) such that ch = la.
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Define rs = py(ch). A series of straightforward arguments shows that this
product is well defined, associative, has an identity, and that é: R — R @ R
is an algebra homomorphism.

If h¢€G(A) and p,(a) =7 € R, let r*® = p,.(ah). Another series of
straightforward arguments shows that ¢ (%) is a well-defined endomorphism of
the Hopf algebra R. It is surjective because 4 is G-right reversible, and injective
because the maps p,: 4, — R are injective and 4 is G-cancellative. We thus
have a semigroup homomorphism ¢: G — Aut(R).

Define a map : 4 —> I'(G(4), F)s ® R as follows: if a € ., let
i(a) = g ® p,(a), and extend 7 to all of 4 by linearity. It is immediate that ¢
is an isomorphism of 4 into the Hopf algebra T'(G(4), F)s ® R. Condition
(a) in the statement of the theorem is obvious, and condition (b) is satisfied
because R = \U Im p,.

The converse is trivial. This completes the proof of the theorem.

COROLLARY 6.3. Let A be a cocommutative Hopf algebra over the algebraically
closed field F. A is G-cancellative and G-right reversible if and only if there exists a
cocommutative invertible Hopf algebra B containing A such that for every b € B
there exist a € A and g € G(A) with b = g'a.

Proof. By Ore’s Theorem (1, Theorem 1.25) there is a group G containing
G(4) with G = (G(4))'G(A). The homomorphism ¢: G(4) — Aut(R)
extends to a homomorphism G — Aut(R) (which we also call ¢). Let
B = T'(G, F)s ® R. A simple calculation shows that every b € B is of the form
g la forsome g € G(4) and @ € 4. The converse is immediate. This completes
the proof of the corollary.
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