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Bayesian model selection for multiple QTLs mapping
combining linkage disequilibrium and linkage
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Summary

Linkage disequilibrium (LD) mapping is able to localize quantitative trait loci (QTL) within a rather small
region (e.g. 2 cM), which is much narrower than linkage analysis (LA, usually 20 cM). The multilocus LD
method utilizes haplotype information around putative mutation and takes historical recombination events
into account, and thus provides a powerful method for further fine mapping. However, sometimes there are
more than one QTLs in the region being studied. In this study, the Bayesian model selection implemented via
the Markov chain Monte Carlo (MCMC) method is developed for fine mapping of multiple QTLs using hap-
lotype information in a small region. The method combines LD as well as linkage information. A series of
simulation experiments were conducted to investigate the behavior of the method. The results showed that
this new multiple QTLs method was more efficient in separating closely linked QTLs than single-marker as-
sociation studies.

1. Introduction observed, which herein provides opportunities to
narrow the credible interval of QTLs location.

LD mapping was initially used to search genes that
affect human disease. The simplest method is to plot
the LD values against marker position. The location
with the highest LD value is estimated as the gene
location (e.g. Devlin & Risch, 1995). These methods
require a population that consists of patients with
disease as well as healthy individuals. Luo et al
(2000) conceived a LD method for gene mapping.
They infer the LD coefficient, D’, and allele frequency
of QTLs and test D’ against zero. Wu et al. (2001,
2002) modified their method by combining LD and
linkage information simultaneously for fine mapping.
Lou et al. (2005) extended the method to disequili-
brium association studies using multiple markers.

Hastbacka et al. (1992) developed another kind of

Linkage analysis (LA) and linkage has been an import-
ant tool for quantitative trait loci (QTLs) mapping
over the past two decades (Lander & Bostein, 1989;
Zeng, 1994; Sillanpaa & Arjas, 1998; Xu, 2003; Yi
et al., 2005), which utilizes recombination information
from parents to offspring. Usually it is able to success-
fully localize QTLs within several centi-Morgan (cM)
regions with a moderate sample size, but it fails to
further fine map QTLs in this region because the
recombination event is rather limited in pedigree.
Compared with LA, historical recombination could
be used by linkage disequilibrium (LD) analysis,
so that more recombination events are able to be
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disequilibrium mapping method; they assumed that
a disease allele was produced on one chromosome
100 years ago and that it then spread through the
population. The discovered population then under-
goes exponential growth. Kaplan & Weil (1995)
further refined this method by employing a Poisson
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branching process to mimic the population growth.
These methods make good use of evolution in-
formation, so that the inference of the disequili-
brium become less variable compared with methods
using population information only (Meuwissen &
Goddard, 2000). However, these methods are specifi-
cally designed for a disease population. For animal
and plant geneticists, quantitative phenotype is well
studied as it is economically interesting. A disequili-
brium mapping method for QTLs was developed by
Meuwissen & Goddard (2000), who assumed a causa-
tive mutation occurred 100 years ago on one chromo-
some and has a large effect on phenotypic variation
(other genetic variation is assumed to have a negligible
effect on phenotypic variation). After population evol-
ution, the causative mutation remains in the present
population. A gene-dropping method was developed
by Meuwissen & Goddard (2000) to characterize the
identity by descent (IBD) probability between haplo-
types, which simulates a historical population (given
the effective population size) since causative mutation
occurred. Then the haplotype bearing the causative
mutation decays according to the distance from the
mutation due to recombination; therefore, if two hap-
lotypes have a higher identity by state (IBS), they have
a higher IBD at the causative mutation. After simu-
lation, the IBD probabilities between two haplotypes
can be estimated as the frequency of such haplotype
pairs that are IBD at the causative mutation divided
by the number of such haplotype pairs. After the
construction of an IBD probability matrix between
pair-wise haplotypes of individuals, the variance com-
ponent model is employed to estimate the variance of
the mutation. A LA combined with LD method was
proposed by Meuwissen & Goddard (2001) to simul-
taneously utilize the linkage and LD information
(LDLA). In a pedigree population, the LD-based
IBD matrix between founders in pedigree (the indivi-
duals who have no record of parents) can be derived
using estimated historical recombination information
(a coalescent method was introduced that is faster
than the gene-dropping method), and the IBD prob-
abilities between offspring, and between offspring
and parent can be derived using linkage information
between parents and offspring. The LDLA method
was also studied and extended by some researchers
(Lund et al., 2003; Grapes et al., 2004; Goddard &
Meuwissen, 2005; Zhao et al., 2007).

Recently, some studies have been carried out to fine
map multiple QTLs (Lee & van der Werf, 2006). Lee
& van der Werf (2006) developed a reversible jump
MCMC method (RIMCMC) to search multiple
QTLs simultaneously. They claimed that multiple
QTLs mapping could more effectively separate close
linked QTLs than the single QTL method. A stochas-
tic search variable selection (SSVS) method was ap-
plied by Meuwissen & Goddard (2004) to estimate
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multiple QTLs and multiple trait effects. Uleberg &
Meuwissen (2007) applied BayesB (Meuwissen et al.,
2001) to localize multiple QTLs simultaneously.
Bayesian model selection with a variance compo-
nent model has been developed to map multiple
QTLs in LA (Fang et al., 2009, 2011), in which a
huge number of random QTLs effects are intergrated
out and the number of model parameters is reduced
dramatically, so that it has excellent mixing character.
In this research, we applied the Bayesian model
selection to fine map multiple QTLs combined LD
and LA information simultaneously. A series of
simulation experiments were conducted to test the
efficiency of the Bayesian model selection for fine

mapping.

2. Materials and methods
(1) Data simulation

A small chromosome region of 2 cM was simulated. A
total of 20 SNP markers were evenly spaced on this
small region. Two QTLs were simulated at position
0-5 and 1-5 cM, respectively. Each marker had two
alleles in the founder population with equal frequency,
and each QTL allele had a unique number (the fre-
quency of each allele is 1/2N.). The pedigree was
built on a founder population that was created 100
generations ago (7) with an effective population size
(Ne) of 100 (50 males and 50 females). In the following
80 generations, 50 males and 50 females were ran-
domly sampled and each mating resulted in two off-
spring. At each generation, the marker and QTL
alleles were transmitted to the offspring according to
Haldane’s recombination rule without mutation. At
generation 81, 10 males and 50 females were randomly
selected and mated with each other to generate two
offspring for each mating, so that overall 1000 (10 x
50 x 2) individuals were generated in this generation.
The selection and mating pattern was carried out for
20 generations. The pedigree was recorded at the
100th and 101st generation. Marker genotypes and
phenotypic values were available at the 101st gener-
ation. In the last generation, one of the QTL alleles
that still existed with a frequency (z) of >0-1 and
<0-9 was randomly sampled as the mutation allele
with effect ¢, while all other QTL alleles were assumed
to be the wild-type. The QTL allele effect was deter-
mined from o§:2q27r(1—7r), where QTLs variances
of two simulated QTLs, 63, were set as 0-08 and
0-05, respectively. The polygenic variance was 0-4
and the residual variance was 0-47. Therefore the
heritabilities of two QTLs were 0-08 and 0-05, respect-
ively. The overall mean was set as zero. The pheno-
typic value for each individual was generated by
summing overall mean, QTLs effects and residual
effect.
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(i1) Multiple QTLs mapping
(a) Model

Let y be an n X 1 phenotypic vector, here n is the num-
ber of phenotypic observations, then the multiple
QTLs model can be expressed as:

y=Xp+ Z]L.zl

where, f is a vector of covariate effects, which includes
the effects of fixed factors; X; is the corresponding de-
sign matrix; y; is the binary variable indicating the cor-
responding QTL effect is present (y;=1) or absent
(y;=0) from model; a; is jth QTL effect, which is
assumed to be random and follows normal distri-
bution, a,»~N(0,0,af), where sz is the QTL variance
and 0, is the IBD matrix; L is the maximum QTLs
number; g is the polygenic effect and assumed to fol-
low normal distribution, g ~ N(O,Aaﬁ), where A4 is the
additive relationship matrix and o% is the polygenic
additive variance; e is the vector of random error
with the distribution e ~ N(0,Ic2), where I is the n X n
identity matrix and o7 is the residual variance. We as-
sume QTLs effect and polygenic effect have no domi-
nant effects. Then the variance component model can
be expressed as:

Ve g +e (D

L
V= Zyj@ja]2 + Ao’ + 102 (2)
j=1

Var(y) =

(iii) IBD matrices construction
(a) IBD probabilities between two gametes

For the unrelated founder haplotypes (the correspond-
ing individuals that had no parental records), the
IBD probabilities between them are calculated using
the method of Meuwissen & Goddard (2001), who
inferred unknown historical recombination with
coalescent theory. For individuals with parental
records, the IBD probabilities were inferred using
linkage information (see Meuwissen & Goddard
(2001) for more details).

(b) Genotypic IBD matrices

To reduce the dimension of IBD matrices, the gametic
IBD probability is transformed into genotypic prob-
ability using the equation:

0 = 3 [pr(Q = 021G) + pr(0} = Y1)
+pr(Q)" = O716) +pr(Q}" = 0}'1G)],

where pr(QP=0M|G) denotes the probability of the
paternal allele (P) of an individual i being IBD to
the maternal allele (M) of an individual 7/, conditional
on the marker information G; other terms have a simi-
lar explanation.

3)
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(iv) Prior and likelihood

The prior distribution of QTLs variance is assumed
to follow scaled inverted Chi-squared distribution
(Fang et al, 2009); the prior probability of the
model indicator y; follows Bernoulli distribution, i.e.,
p(y;=1)=1y/L, where [, is the prior QTL number
and L is the maximum QTL number. In our study,
the expected QTL number was /y =1, and the maxi-
mum QTL number was L =3, which results in the
prior inclusion probability p(y;=1)=1I/L=0.25.
QTL position, 4;, follows uniform distribution across
all possible positions (the middle of each marker inter-
val). The likelihood of variance component model can
be expressed as:

f o exp[( — XV 'y — Xip)]. @)

1
- «/E| V1/2|

(v) Posterior exploration

Given likelihood and prior distribution, the con-
ditional posterior distribution can be inferred easily.
If the prior distribution is conjugate, the posterior dis-
tribution can be derived directly, so one can sample it
easily with Gibbs sampler; otherwise, the conditional
posterior distribution could be simulated with the
M-H algorithm.

(a) Updating model indicator variable

The model indicator variable {y;}/=; is sampled from
Gibbs sampler. The conditional posterior probability
distribution is:

po; =11y, -+

Py =DS Ol =1) -
ZKE(O,I)p(yj =K) ‘f(yb’j =)

(b) Updating QTL position

The Metropolis—-Hastings (M—H) algorithm (Metropolis
et al., 1953; Hastings, 1970) is used to update QTL
position ;. The new QTL position /1( ) is proposed
around the old one /1(0) /1( )= /1(0) + 0, where ¢ is the
tuning parameter that is sampled uniformly from a
small interval. When one position is proposed, the
IBD probability matrix at position j, @* is calculated

using eqn 3. Then, if y;= 1, the new p0s1t10n /1 is ac-
cepted with the probabﬂlty
_S019,0,, ,,é) 0%, 4, X) ©

Sl 0.4, 0

otherwise, r =1, because the new IBD matrix @;‘
would not contribute to likelihood when y;=0.

s A, X)
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Fig. 1. The BF profiles for different marker density average over 50 replications. BF, Bayes Factor.

(c) Updating QTL variance and polygenic variance

QTL variance, polygenic variance and residual vari-
ance can be updated with any convenient M-H al-
gorithm, but we update them using a random
walk M-H algorithm (RWM-H) developed by us
(Fang et al, 2009). The method generates a
new proposal variance from scale inverted
Chi-squared distribution conditional on the old vari-
ance, which would increase the mixing speed of
Markov chain.

(vi) Bayes Factor to measure the importance of QTL

The Bayes Factor (BF) combines the posterior and prior
information, which gives a reasonable way to measure
the importance of a QTL. For each position 1;, BF

POSt(/lj) 1-— PI‘(/IJ)
~ 1—Post(}) Pr(y)
where Post(4)) and Pr(;) denote the posterior and
prior probabilities of position A, respectively (see

can be expressed as: BF
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Yi et al. (2005) for more details). Then the point esti-
mate of the QTL position is at the peak of the BF
profiles.

3. Results
(1) Effect of marker density

To study the effect of marker density, the marker
number in a region was set as 10, 20 and 40 (marker
density is 10, 20 and 40/cM), respectively, so that the
distance between markers is 0-2, 0-1 and 0-05 cM, re-
spectively. For each marker density, the simulated
experiments were replicated 50 times. The average
BF values over 50 experiments were summarized
separately for each marker densities, the profiles
are depicted in Fig. 1. It can be seen that the average
positions are very close to the true positions; further-
more, with the increase of marker density, the BF
values increase. The estimated standard deviation
of the QTL positions are given in Table 1, it
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Table 1. The average estimates of QTL parameter over 50 replications with different marker density

QTLI

QTL2

2 2
O 4 O,

Marker density Position (cM) Variance

Position (cM)

Variance

10/cM 0-52 (0-150) 0-075 (0-032)
20/cM 0-511 (0-126)  0-081 (0-031)
40/cM 0498 (0-054) 0076 (0-034)

1-491 (0-183)
1.497 (0-145)
1-502 (0-073)

0-044 (0-022)
0-042 (0-017)
0-046 (0-016)

0-417 (0-125)
0461 (0-142)
0-478 (0-135)

0-536 (0-122)
0555 (0-132)
0-530 (0-111)

The standard deviations are given in parenthesis. The true positions for QTL1 and QTL2 are 0-5 and 1-5; and the true

variances
for QTL1 and QTL2 are 0-08 and 0-05, respectively.
QTL, quantitative trait locus.

Single QTL analysis

6 T T
0.0 0.5 1.0 1.5 2.0
Position(cM)

Fig. 2. The LOD profile of single QTL method over 50
replications. LOD, log10 likelihood ratio; QTL,
quantitative trait locus.

becomes smaller (more precise) when marker density
increases.

(i1) Comparison with single QTL analysis

We also used single QTL analysis (based on a
variance-component maximum-likelihood method)
to study the simulated dataset with marker density
fixed at 20/cM. The average logl0O likelihood ratio
(LOD) profiles across 50 replications are shown in
Fig. 2. It can be seen that the single QTL analysis gen-
erates two peaks around the simulated QTL positions,
but the signals of the two simulated QTLs are not
separated clearly. In fact, in 18 out of 50 replications
the signals of the two simulated QTLs were combined
together and could not be distinguished, but a
Bayesian method could separate them in all experi-
ments, and usually generated two clear peaks at two
simulated QTLs. We also summarized the estimated
standard deviation of QTL position, and they were
0-38 and 0-41 cM for two simulated QTLs, respect-
ively, which was much bigger than those from the
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Bayesian method (0-126 and 0-135 cM, respectively,
see also Table 1).

(ii1) Effect of effective population size

The calculation of gametic IBD probability requires
two population parameters, the past effective size N,
and mutation generation 7, which are unknown and
usually set before hand (Meuwissen & Goddard,
2000; Lee & van der Werf, 2006). T was set as equal
to N, here, so that a similar population equilibrium
would be achieved (Lee & van der Werf, 2006). N,
was set as 10, 100, 400 and 2000. The average BF
profiles over 50 replications are depicted in Fig. 3,
which shows that the estimated QTLs positions are
very close to the simulated positions for all N,. It can
also be seen that the profiles are similar, which suggests
that the method is not very sensitive to N, and 7.

(iv) Performance on single QTL situation

We simulated a single QTL at position 1-1 cM with a
marker density of 20/cM. The profiles of BF and LOD
over 50 replications with Bayesian method and maxi-
mum likelihood analysis are plotted in Fig. 4. The
peaks are very close to the true positions for both
methods. The standard deviations of the two methods
are 0-112 and 0-128 cM, respectively, and they do not
show a large difference.

4. Discussion

A Bayesian model selection method is developed for
fine-scale multiple QTLs mapping combining LD
and linkage. The method performs model selection
by introducing a model indicator for each QTL effect,
which keeps model dimension fixed. The results show
that the key feature of the proposed method is that it
allows for easy separation of closely linked QTLs.
With the single QTL method, approximately one out
of three experiments fail to separate the simulated
QTLs, but all the replications separated them with
the proposed multiple QTLs method. Another
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advantage of the multiple QTLs method is that it can
also give a more precise estimation for QTL position
than the single QTL method.

The proposed method utilizes the historical recom-
bination information together with linkage infor-
mation across pedigree to fine-scale QTL mapping.
The historical recombination information will result
in a larger amount of recombination events even for
a small chromosome region, which can be inferred
from the surrounding markers and provides powerful
information for separating QTLs. We used the
Meuwissen & Goddard (2001) method to construct a
LDLA-based IBD matrix. There are two parameters
to be set beforehand, the effective population size,
N., and the time since mutation occurred, 7. Our
results show that when N, and T vary from 10 to
2000, the results have no clear difference. But this con-
clusion is different from those of Lee & van der Werf
(2006), who report that different values of N, and T
will result in different powers, which is probably due
to the large sample size that we used.

Although the Bayesian method shows striking per-
formance in separating close linked QTLs, its compu-
tational time takes too long to finish one experiment
(approximately 30 hours). Most of time is used to cal-
culate the likelihood (or the inverse of matrix). Since
the sample size used in simulation is not very large
(2000 individuals), we directly calculated the inverse
of the LDLA-based IBD matrix here. However,
when the sample size is too large, the calculation of
the inverse will be quickly forbidden. In this situation,
some special techniques should be adopted. Mathew
et al. (2012) proposed a method to calculate likeli-
hood, which does not need the inverse of a vari-
ance—covariance matrix V. They firstly factorize V'
using Cholesky decomposition, V= LL' (where L is
the lower triangular), and then calculate the quadratic
form with y'V~'y =(L"'p)(L™"y), where L'y is cal-
culated by solving Z from the equation LZ=y.
Furthermore, they also provide an approach to calcu-
late the determinant of V' with Cholesky decompo-
sition by log(det(¥)) = 2", log(L;). Their method
avoids calculating the inverse of ¥, so it would be use-
ful in our method when the sample size is large.

For convenience, we constructed an IBD matrix
using the method of Meuwissen & Goddard (2001),
which does not take the mutation of the marker into
account. A novel IBD calculation method is proposed
by Meuwissen & Goddard (2007), who take the SNP
mutation into account, which would be more realistic
in practice. There are also many methods for con-
structing a LD-based IBD matrix (e.g. Hill &
Hernandez-Sanchez, 2007), each has its own advan-
tages, but all can easily be applied in our Bayesian
model selection framework.

We have studied the Bayesian method on a continu-
ous trait. It is not difficult for this method to be
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extended to a binary or categorical trait, and an
additional step is required to sample the underlying
liabilities in MCMC iterations.
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