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Abstract

The Kirchhoff elastic rod is one of the mathematical models of equilibrium configurations of thin elastic
rods, and is defined to be a solution of the Euler–Lagrange equations associated to the energy with the
effect of bending and twisting. In this paper, we consider Kirchhoff elastic rods in a space form. In
particular, we give the existence and uniqueness of global solutions of the initial-value problem for the
Euler–Lagrange equations. This implies that an arbitrary Kirchhoff elastic rod of finite length extends to
that of infinite length.
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1. Introduction

The elastica and the Kirchhoff elastic rod (or simply Kirchhoff rod) are both classical
mathematical models of equilibrium configurations of thin elastic rods. The elastica is
probably the simplest model, and is characterised as a critical curve of the energy of
bending only. The Kirchhoff rod is a more complicated model, and is characterised as
a critical framed curve of the energy with the effects of both bending and twisting.

Kirchhoff rods were originally considered in three-dimensional Euclidean space,
but they extend naturally to an arbitrary higher-dimensional Riemannian manifold
(see, for example, [18–20]). That is, we generalise the energy by replacing ordinary
differentiation by covariant differentiation, and define a Kirchhoff rod as a solution
of the Euler–Lagrange equations associated to the generalised energy (see [20,
Section 2]).

In this paper, we consider the initial-value problem for the Euler–Lagrange
equations, which are a pair of nonlinear ordinary differential equations of fourth and
first orders. In particular, when the ambient space is a space form, that is, a complete
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connected Riemannian manifold of constant sectional curvature, we prove that there
exists a unique global solution of this initial-value problem (Theorem 2.1). Here, a
global solution stands for a solution defined on the whole of R. Since a Kirchhoff

rod is, by definition, arclength-parametrised, this result implies that a Kirchhoff rod of
finite length extends to that of infinite length.

We note that in general, solution curves of a variational problem do not necessarily
extend to global solutions. For instance, there exist biminimal curves in the Euclidean
plane [33] or in a general two-dimensional space form [14] whose curvatures blow up
in finite time. Here, a unit-speed curve is called biminimal if it is a critical point of the
bienergy functional for normal variations [14, 33]. These results imply that there exist
biminimal curves which cannot extend to global solutions.

Since the time of Euler in the 1730s, many authors have been studying various
models of thin elastic rods. The Kirchhoff rod is the simplest model in which bending
and twisting both play a role. In the case where the ambient space is the Euclidean
space Rn, especially R2 or R3, there is a rich literature on more general models of
thin elastic rods. To give one example, Antman [1] proved existence and regularity
theorems for solutions to boundary-value problems for a very general class of energies
and boundary conditions; for more results, see [2, 34] and references therein. Also,
various researchers have been extensively studying Kirchhoff rods in R3. For instance,
it is known that by taking cylindrical coordinates, the centrelines of all Kirchhoff rods
are explicitly expressed by Jacobi sn functions and elliptic integrals [31, 38, 39]; see
also [3, 11, 15, 24, 35], for example.

Meanwhile, elasticae or their generalisations in Riemannian manifolds, except
Euclidean space, have been investigated since the 1980s (see, for example,
[4–7, 9, 12, 13, 16, 26–29, 32, 36, 37]). To give an example of the results on global
solutions, Popiel and Noakes [37, Theorem 3.1] proved that when the ambient space
is a compact Lie group with a bi-invariant Riemannian metric, there exists a unique
global solution of the initial-value problem for the equation of the elastica.

Kirchhoff rods in three-dimensional simply connected space forms R3, S 3, H3 are
investigated in [17, 18, 20, 21, 30], for example. It is known that the Frenet curvature
and torsion of the centrelines of all Kirchhoff rods in R3 [31, 38, 39] or in S 3, H3

[20] are explicitly expressed in terms of Jacobi sn function. By using these explicit
formulas, it follows immediately that a Kirchhoff rod of finite length in R3, S 3, H3

extends to that of infinite length. Moreover, even in the case of S 3, H3, it is known
that by taking similar coordinates to the cylindrical coordinates in R3, the centrelines
themselves of all Kirchhoff rods are expressed explicitly by Jacobi sn functions and
elliptic integrals [21].

On the other hand, there are not so many studies on Kirchhoff rods in space forms
of dimension n ≥ 4. In [23], the present author constructed examples of Kirchhoff

rods whose centrelines are fully immersed in Rn, S n, Hn (n ≥ 4). In the case of n ≥ 4,
however, explicit formulas of the higher-order Frenet curvatures, or other kinds of
curvatures of all Kirchhoff rods are not known. Thus, unlike the case of n = 3, it is not
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clear if an arbitrary Kirchhoff rod of finite length extends to that of infinite length. In
this paper, we answer this question in the affirmative.

The outline of the proof of the main theorem (Theorem 2.1) is as follows. The
point is to use the natural curvatures of an arclength-parametrised curve, which are
different from the ordinary Frenet curvatures (see, for example, [8, 31]). We reduce
the Euler–Lagrange equations to the equation for natural curvature vector, which is
an Rn−1-valued second-order ordinary differential equation. Then we construct a first
integral of the equation, and derive an estimate for solutions of the equation. By using
this estimate, we show the existence of a global solution of the initial-value problem
for the Euler–Lagrange equations.

The rest of the paper is organised as follows. In Section 2 we define a Kirchhoff

rod, formulate the initial-value problem for the Euler–Lagrange equations and give
the precise statement of our main theorem (Theorem 2.1). In Section 3 we recall
the notions and properties of the natural frame and natural curvatures of an arclength-
parametrised curve. In Section 4 we construct a first integral of the equation for natural
curvature vector (Proposition 4.1). In Section 5 we derive an estimate for solutions of
the equation (Lemma 5.1), and prove the main theorem.

This paper is the complete version of the announcement [22] in Japanese.

2. Preliminaries and results

In this section, we first define a Kirchhoff rod in a Riemannian manifold. Then
we formulate the initial-value problem for the Euler–Lagrange equations, and give the
precise statement of our main theorem (Theorem 2.1).

Unless otherwise specified, all manifolds, curves, vector fields etc. are assumed to
be of class C∞. Let M be an n-dimensional (n ≥ 2) complete connected Riemannian
manifold with metric 〈∗, ∗〉. We denote by TM the tangent bundle of M , by ∇ the
Levi-Civita connection in TM and by R the Riemannian curvature tensor. Here,
we use the sign convention of R corresponding to that of [25], that is, R(X, Y)Z =

∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z.
Let γ = γ(t) : [t1, t2]→M be a unit-speed, that is, arclength-parametrised curve in

M , and T (t) = γ′(t) the tangent vector to γ. The twisting of an elastic rod cannot
be represented by a curve γ only. (Note that the Frenet torsion τ or the higher-
order Frenet curvatures of γ are not directly related to the twisting of the elastic
rod.) To describe how the elastic rod is twisted, we utilise an orthonormal frame
field M = (M1, M2, . . . , Mn−1) in the normal bundle T⊥M along γ. We call such a
pair {γ, M} a unit-speed curve with adapted orthonormal frame, and γ the centreline
of {γ, M}.

Now, let ν be a fixed positive constant, which is determined by the material of a
given rod. We define the energy T as follows:

T({γ, M}) =

∫ t2

t1

|∇T T |2 dt + ν

n−1∑
i=1

∫ t2

t1

|∇⊥T Mi|
2 dt,
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where ∇⊥ denotes the normal connection in T⊥M , so that ∇⊥T Mi = ∇T Mi −

〈∇T Mi, T 〉T . The first term of T({γ, M}) expresses the energy of bending, and
the second term that of twisting. We call {γ, M} a Kirchhoff rod if {γ, M} is a
critical point of T with respect to the variations of unit-speed curves with adapted
orthonormal frames which preserve the end points γ(t1), γ(t2) and the orthonormal
frames (T (t1), M(t1)), (T (t2), M(t2)) at the end points. More precisely, a Kirchhoff rod
is defined to be a solution of the associated Euler–Lagrange equations:

∇T (2(∇T )2T + (3|∇T T |2 − µ + ν|a|2)T ) − 4ν
n−1∑
i, j=1

〈(∇T )2T , Mi〉a jiM j

+ 2R(∇T T, T )T + 2ν
n−1∑
i, j=1

a jiR(M j, Mi)T = 0,

(2.1)

(∇⊥T M1, . . . , ∇
⊥
T Mn−1) = (M1, . . . , Mn−1)a, (2.2)

where µ ∈ R and a = (a ji)1≤ j,i≤n−1 ∈ o(n − 1). Here, o(n − 1) stands for the Lie algebra
of all skew-symmetric matrices of size n − 1. Also, |a| stands for the Euclidean norm of
the (n − 1) × (n − 1) matrix a. The system of (2.1) and (2.2) is equivalent to the system
of (2.1) and (2.2) in [20]. For the derivation of these equations, see [20, Section 2].

D. Let {γ, M} be a unit-speed curve with adapted orthonormal frame in M .
We call {γ, M} a Kirchhoff rod if there exist µ ∈ R and a ∈ o(n − 1) such that (2.1)
and (2.2) hold. The matrix a is uniquely determined, and is called the twist matrix of
{γ, M}.

We note that the matrix a in (2.2) is independent of t. Therefore, we see that
if {γ, M} is a Kirchhoff rod, then the integrand of the second term of T({γ, M}) is
independent of t. Physically, this means that the twist of an elastic rod in equilibrium
is uniformly distributed along the centreline.

We formulate the initial-value problem for the Euler–Lagrange equations (2.1)
and (2.2). Suppose that {γ, M} is a Kirchhoff rod in M . Since γ is unit-speed,
the three vectors T , ∇T T and (∇T )2T along γ must satisfy some conditions. (The
argument is similar to the case of elasticae; see [37].) First, |T | = 1 holds. Next,
differentiating |T |2 = 1 yields 〈∇T T, T 〉 = 0. Differentiating this identity further, it
follows that 〈(∇T )2T, T 〉 = −|∇T T |2. Thus, the initial-value problem is formulated as
follows.

P. Let t0, µ ∈ R, a ∈ o(n − 1) and x ∈M . Suppose that V1, V2, V3 ∈ TxM and
L1, . . . , Ln−1 ∈ TxM are such that

|V1| = 1, 〈V2, V1〉 = 0, 〈V3, V1〉 = −|V2|
2,

〈Li, V1〉 = 0 (1 ≤ i ≤ n − 1), 〈Li, L j〉 = δi j (1 ≤ i, j ≤ n − 1).
(2.3)
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Find a unit-speed curve with adapted orthonormal frame {γ(t), M(t)} in M defined on
an interval containing t0 which satisfies (2.1), (2.2) and the following initial conditions:

γ(t0) = x, T (t0) = V1, ∇T T |t=t0 = V2, (∇T )2T |t=t0 = V3,
M|t=t0 = (M1, . . . , Mn−1)|t=t0 = (L1, . . . , Ln−1).

(2.4)

In the case where M is a space form, we prove that there exists a unique global
solution of this initial-value problem. To be precise, the following main theorem holds.

T 2.1. Suppose that M is a space form. Let t0, µ ∈ R, a ∈ o(n − 1), x ∈M and
let V1, V2, V3, L1, . . . , Ln−1 ∈ TxM satisfy condition (2.3). Then there exists a unique
unit-speed curve with adapted orthonormal frame {γ, M} in M defined on the whole
of R satisfying (2.1), (2.2) and initial conditions (2.4).

3. Natural frames and curvatures

In this section, we recall the definitions and some properties of the natural frame
and natural curvatures of a unit-speed curve (see, for example, [8, 31]).

Let M be an n-dimensional (n ≥ 2) complete Riemannian manifold, and let
I = (t1, t2), where −∞ ≤ t1 < t2 ≤∞. Let γ : I→M be a unit-speed curve. An
orthonormal frame field (T, P1, . . . , Pn−1) along γ is said to be a natural frame along γ
if ∇⊥T Pi = 0 holds on I for i = 1, . . . , n − 1. For a given γ, there exists a natural frame
along γ. Indeed, we take an orthonormal frame P0 = (P0

1, . . . , P0
n−1) of the normal

vector space at a point γ(t0) on the curve γ, and let Pi = Pi(t), i = 1, . . . , n − 1, be the
normal vector field along γ obtained by parallel translating P0

i along γ with respect to
the normal connection ∇⊥. Then (T, P1, . . . , Pn−1) is a natural frame along γ.

For a natural frame (T, P1, . . . , Pn−1) along γ, we set ki = 〈∇T T, Pi〉, i =

1, . . . , n − 1, and k = t(k1, . . . , kn−1). Then it follows that

(∇T T, ∇T P1, . . . , ∇T Pn−1) = (T, P1, . . . , Pn−1)
(
0 −tk
k 0

)
. (3.1)

These functions k1, . . . , kn−1 are said to be the natural curvatures of γ with respect
to the natural frame (T, P1, . . . , Pn−1). Also, the map k : I→ Rn−1 is said to be the
natural curvature vector of γ with respect to the natural frame (T, P1, . . . , Pn−1).

For a given unit-speed curve γ, the natural frame and the natural curvature vector
are determined only up to an action by the orthogonal group O(n − 1). To be precise,
if (T, P1, . . . , Pn−1) is a natural frame along γ, then the totality of natural frames along
γ consists of frames of the form (T, (P1, . . . , Pn−1)ϕ), where ϕ ∈ O(n − 1). Also, the
natural curvature vector of γ with respect to the natural frame (T, (P1, . . . , Pn−1)ϕ)
becomes ϕ−1k.

Compared to the Frenet frame, the natural frame has the advantage that it can be
defined even on a point where ∇T T = 0.

In the same way as in the case of the Frenet frame, the following proposition holds,
whose proof is omitted. Two curves γ1, γ2 : I→M are called congruent if there exists
an isometry Φ of M such that γ2 = Φ ◦ γ1.
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P 3.1. The following statements hold.

(i) For any k : I→ Rn−1, there exists a unit-speed curve γ : I→M such that the
natural curvature vector of γ with respect to a natural frame corresponds
to k. In more detail, the following holds. Let k : I→ Rn−1 be any map.
Let t0 ∈ I and let (T 0, P0

1, . . . , P0
n−1) be an orthonormal frame of the tangent

space TxM at a point x ∈M . Then there exists a unique unit-speed curve
with adapted orthonormal frame {γ, (P1, . . . , Pn−1)} satisfying the following:
(γ′, P1, . . . , Pn−1) is a natural frame along γ, and the natural curvature vector
of γ with respect to (γ′, P1, . . . , Pn−1) corresponds to k, and γ(t0) = x and
(γ′(t0), P1(t0), . . . , Pn−1(t0)) = (T 0, P0

1, . . . , P0
n−1).

(ii) Suppose that M = Rn, S n, Hn of constant sectional curvature. Let γ, γ̃ : I→M
be two unit-speed curves. We denote by k (respectively, k̃) the natural curvature
vector of γ (respectively, γ̃) with respect to a natural frame. Then γ and γ̃ are
congruent if and only if k̃ = ϕk holds for some ϕ ∈ O(n − 1).

4. First integrals

In this section, we first reduce the Euler–Lagrange equations (2.1) and (2.2) in a
space form to the equation for natural curvature vector, and construct a first integral of
this equation.

Throughout the rest of the paper, we assume that M is a space form. We denote by
G ∈ R the constant sectional curvature. Then (2.1) and (2.2) are reduced to

∇T (2(∇T )2T + (3|∇T T |2 − µ + 2G + ν|a|2)T )

− 4ν
n−1∑
i, j=1

〈(∇T )2T, Mi〉a jiM j = 0,
(4.1)

(∇⊥T M1, . . . , ∇
⊥
T Mn−1) = (M1, . . . , Mn−1)a. (4.2)

We seek the condition for a unit-speed curve with adapted orthonormal frame to
satisfy (4.1) and (4.2) in terms of the natural frame and natural curvature vector.

Let {γ, M} be a unit-speed curve with adapted orthonormal frame in M defined on
I = (t1, t2), where −∞ ≤ t1 < t2 ≤∞. Let (T, P1, . . . , Pn−1) be a natural frame along
γ, and k : I→ Rn−1 the natural curvature vector of γ with respect to the natural frame
(T, P1, . . . , Pn−1). We fix a point t0 ∈ I. Then there exists a unique ϕ ∈ O(n − 1) such
that

(M1(t0), . . . , Mn−1(t0)) = (P1(t0), . . . , Pn−1(t0))ϕ.

Let µ ∈ R and a ∈ o(n − 1). We show that {γ, M} satisfies (4.1) and (4.2) if and only
if the following two equations hold:

2k′′ − 4νϕaϕ−1k′ + (|k|2 − µ + 2G + ν|a|2)k = 0, (4.3)

(M1, . . . , Mn−1) = (P1, . . . , Pn−1)ϕ exp((t − t0)a). (4.4)
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Suppose that (4.1) and (4.2) hold. Since (M1, . . . , Mn−1) is expressed as

(M1, . . . , Mn−1) = (P1, . . . , Pn−1)ξ

for some map ξ : I→ O(n − 1), it follows that

(∇⊥T M1, . . . , ∇
⊥
T Mn−1) = (M1, . . . , Mn−1)ξ−1ξ′.

Comparing this expression with (4.2) yields a = ξ−1ξ′. Thus, by ξ(t0) = ϕ,

ξ(t) = ϕ exp((t − t0)a),

and hence (4.4) holds.
Next, it follows from (3.1) that

∇T T = (P1, . . . , Pn−1)k, (∇T )2T = −|k|2T + (P1, . . . , Pn−1)k′,

(∇T )3T = −3〈k′, k〉T + (P1, . . . , Pn−1)(k′′ − |k|2k),
(4.5)

where 〈∗, ∗〉 (respectively, |∗|) stands for the Euclidean inner product (respectively,
norm) of Rn−1. Also,

n−1∑
i, j=1

〈(∇T )2T, Mi〉a jiM j =

n−1∑
i, j=1

〈(M1, . . . , Mn−1)ξ−1k′, Mi〉a jiM j

= (M1, . . . , Mn−1)aξ−1k′ = (P1, . . . , Pn−1)ϕaϕ−1k′.

Therefore, the left-hand side of (4.1) is written as

(P1, . . . , Pn−1)(2k′′ − 4νϕaϕ−1k′ + (|k|2 − µ + 2G + ν|a|2)k),

and hence (4.3) holds.
Conversely, it is easily verified that if (4.3) and (4.4) hold, then {γ, M} satisfies (4.1)

and (4.2).
We now construct a first integral of (4.3).

P 4.1. Let µ ∈ R, a ∈ o(n − 1), ϕ ∈ O(n − 1) and I = (t1, t2), where −∞ ≤ t1 <
t2 ≤∞. If k : I→ Rn−1 is a solution of (4.3), then

|k′|2 + 1
4 |k|

4 + 1
2 (−µ + 2G + ν|a|2)|k|2

is constant on I.

P. Taking the inner product of (4.3) with k′ yields

2〈k′′, k′〉 − 4ν〈ϕaϕ−1k′, k′〉 + (|k|2 − µ + 2G + ν|a|2)〈k, k′〉 = 0.

Since ϕaϕ−1 is skew-symmetric, the second term of the left-hand side vanishes. Also,
by 2〈k′′, k′〉 = (|k′|2)′ and 〈k′, k〉 = (|k|2)′/2, it follows that

(|k′|2)′ + 1
2 (|k|2 − µ + 2G + ν|a|2)(|k|2)′ = 0.

Hence
(|k′|2 + 1

4 |k|
4 + 1

2 (−µ + 2G + ν|a|2)|k|2)′ = 0,

which completes the proof. �
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5. Proof of main theorem

In this section, by using the first integral obtained in Proposition 4.1, we derive an
estimate for solutions of (4.3) (Lemma 5.1), and prove the main theorem.

L 5.1. Suppose that µ ∈ R, a ∈ o(n − 1), ϕ ∈ O(n − 1) and I = (t1, t2), where
−∞ ≤ t1 < t2 ≤∞. If k : I→ Rn−1 is a solution of (4.3), then there exists a positive
constant C independent of t such that |k(t)|2 + |k′(t)|2 ≤C for all t ∈ I.

P. By Proposition 4.1, there exists C1 ∈ R such that

|k′|2 + 1
4 |k|

4 + 1
2 (−µ + 2G + ν|a|2)|k|2 = C1

for all t ∈ I. Thus,
|k′|2 = Q(|k|2), (5.1)

where
Q(y) = − 1

4 y2 − 1
2 (−µ + 2G + ν|a|2)y + C1.

Since the quadratic coefficient of Q(y) is negative, there exists a positive constant C2

such that Q(y) ≤C2 for all y ∈ R. Therefore, by (5.1), |k′|2 ≤C2 for all t ∈ I.
Also, since the set of all y ∈ R such that Q(y) ≥ 0 is bounded, it follows from (5.1)

that |k(t)|2 is bounded on I. That is, there exists a positive constant C3 such that
|k(t)|2 ≤C3 for all t ∈ I. Hence |k(t)|2 + |k′(t)|2 ≤C2 + C3 for all t ∈ I, which completes
the proof of the lemma. �

We now give the proof of the main theorem.

P  T 2.1. We reduce the initial-value problem (4.1), (4.2) and (2.4) for
{γ, M} to that for k.

By (2.3), there exist unique vectors q, p ∈ Rn−1 such that

V2 = (L1, . . . , Ln−1)q, V3 = −|V2|
2V1 + (L1, . . . , Ln−1)p. (5.2)

We consider the following initial-value problem for k: find a solution k(t) =
t(k1(t), . . . , kn−1(t)) of the equation

2k′′ − 4νak′ + (|k|2 − µ + 2G + ν|a|2)k = 0 (5.3)

satisfying the initial conditions

k(t0) = q, k′(t0) = p. (5.4)

For this problem, the following claim holds.

Claim. There exists a unique global solution k : R→ Rn−1 of the initial-value problem
(5.3) and (5.4).
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Assuming this claim for the moment, we complete the proof. Using the k of this
claim, we define {γ, M} on the whole of R as follows. By Proposition 3.1(i), there
exists a unique unit-speed curve with adapted orthonormal frame {γ, (P1, . . . , Pn−1)}
defined on R satisfying the following: (T (=γ′), P1, . . . , Pn−1) is a natural frame along
γ and the natural curvature vector of γ with respect to (T, P1, . . . , Pn−1) corresponds
to k, and

γ(t0) = x, (T, P1, . . . , Pn−1)|t=t0 = (V1, L1, . . . , Ln−1).

Also, we set (M1, . . . , Mn−1) = (P1, . . . , Pn−1) exp((t − t0)a). Then, since (4.3) and
(4.4) with ϕ = e hold, this {γ, M} satisfies (4.1) and (4.2). Here, e stands for the
identity matrix of size n − 1. Also, it follows from (5.2), (5.4) and the first and second
identities of (4.5) that {γ, M} satisfies the initial conditions (2.4). Hence the proof of
the existence part of Theorem 2.1 is complete.

Next we show the uniqueness. Suppose that a unit-speed curve with adapted
orthonormal frame {̃γ, M̃} defined on R also satisfies (4.1), (4.2) and (2.4).
Set T̃ = γ̃′ and let (T̃ , P̃1, . . . , P̃n−1) be the natural frame along γ̃ satisfying
(T̃ , P̃1, . . . , P̃n−1)|t=t0 = (V1, L1, . . . , Ln−1), and let k̃ be the natural curvature vector
of γ̃ with respect to (T̃ , P̃1, . . . , P̃n−1). Since {̃γ, M̃} is a solution of the initial-
value problem (4.1), (4.2) and (2.4), k̃ : R→ Rn−1 is a solution of the initial-
value problem (5.3) and (5.4). Thus, by the uniqueness part of the above claim,
k = k̃ holds. Therefore, it follows from the uniqueness part of Proposition 3.1(i)
that {γ, (P1, . . . , Pn−1)} = {̃γ, (P̃1, . . . , P̃n−1)}. So, M = (P1, . . . , Pn−1) exp((t − t0)a) =

(P̃1, . . . , P̃n−1) exp((t − t0)a) = M̃. Hence {γ, M} = {̃γ, M̃}, which completes the proof
of Theorem 2.1.

We prove the claim. It is sufficient to prove that there exists a unique global
solution

(
k
k̂

)
= t(k1, . . . , kn−1, k̂1, . . . , k̂n−1) : R→ R2(n−1) of the following initial-value

problem:

d
dt

(
k
k̂

)
=

(
k̂

2νak̂ − 1
2 (|k|2 − µ + 2G + ν|a|2)k

)
, (5.5)(

k(t0)
k̂(t0)

)
=

(
q
p

)
. (5.6)

The right-hand side of (5.5) satisfies a Lipschitz condition with respect to t(k, k̂) on
any compact set of R2(n−1). Thus, by an argument similar to that in [10, Section 2 of
Ch. 1], we see that a solution t(k, k̂) : R→ R2(n−1) of the initial-value problem (5.5),
(5.6) is unique.

Next we show the existence of a global solution of the initial-value problem
(5.5), (5.6). It follows from the vector equation version of the Picard–Lindelöf
theorem [10, Theorem 3.1 of Ch. 1] that there exist ε > 0 and a unique solution
t(k, k̂) : (t0 − ε, t0 + ε)→ R2(n−1) of (5.5) satisfying the initial condition (5.6).

We show that this local solution t(k, k̂) on (t0 − ε, t0 + ε) can be continued to a
solution on (t0 − ε,∞). In order to obtain a contradiction, we suppose that t(k, k̂)
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cannot be continued to a solution on (t0 − ε,∞). Then there exists a real number
tm (≥t0 + ε) satisfying the following: t(k, k̂) has a continuation to (t0 − ε, tm), but
cannot be continued beyond tm. Then, by Lemma 5.1, there exists a positive constant
C independent of t such that∣∣∣∣∣∣

(
k(t)
k̂(t)

)∣∣∣∣∣∣2 ≤C for all t ∈ (t0 − ε, tm).

Therefore, it follows from an argument similar to that in [10, Section 4 of Ch. 1]
that the limit value limt→tm−0

( k(t)
k̂(t)

)
∈ R2(n−1) exists and t(k, k̂) can be continued to the

right of tm. This contradicts the assumption. Hence the local solution t(k, k̂) can be
continued to (t0 − ε,∞).

Similarly, it follows that the local solution t(k, k̂) can be continued to (−∞, t0 + ε).
Consequently, t(k, k̂) can be continued to the whole of R. Hence there exists a global
solution k : R→ Rn−1 of the initial-value problem (5.3) and (5.4). The proof of the
claim is complete. �
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