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for `-groups

Hershy Kisilevsky and Jack Sonn

Abstract

Let ` be a prime number. It is not known whether every finite `-group of rank n > 1
can be realized as a Galois group over Q with no more than n ramified primes. We
prove that this can be done for the (minimal) family of finite `-groups which contains
all the cyclic groups of `-power order and is closed under direct products, (regular)
wreath products and rank-preserving homomorphic images. This family contains the
Sylow `-subgroups of the symmetric groups and of the classical groups over finite fields
of characteristic not `. On the other hand, it does not contain all finite `-groups.

1. Introduction

Let K be a global field and L/K a finite Galois extension with Galois group G=G(L/K). Let p

be a finite prime of K. If p ramifies in L and P is a prime of L dividing p, then the inertia group
T (P/p) is a non-trivial subgroup of G. If T is the subgroup of G generated by all T (P/p), then the
fixed field of T is an unramified extension of K. If K = Q, then by Minkowski’s theorem there are
no non-trivial unramified algebraic extensions of Q, so T =G. Suppose, in addition, that L/Q is
tamely ramified, i.e. for every prime p ramified in L/Q, all the T (P/p) are cyclic of order prime
to p. It follows, in particular, that if for each ramified p we fix an inertia group T (P/p) = 〈gp〉,
then the normal subgroup of G generated by the gp is all of G.

We are interested in the case where G=G(L/Q) is an `-group, with ` being a prime. Here
L/Q is tamely ramified if and only if all the primes p that ramify in L are prime to |G|. Let
Ḡ=G/Φ(G) be the quotient of G by its Frattini subgroup Φ(G). Then the normal subgroup
of G generated by the gp is all of G if and only if the images ḡp in Ḡ generate Ḡ, and this is
true if and only if (by Burnside’s basis theorem) the gp generate G. It follows that rank(G), the
minimal number of generators of G, is less than or equal to the number of primes p that ramify
in L or, equivalently, that the number of primes that ramify in L is at least rank(G).

It is an open problem as to whether or not every finite `-group G can be realized as the
Galois group of a tamely ramified extension of Q with exactly rank(G) ramified primes (see,
e.g., [Pla04]). We call this the minimal ramification problem. Using Dirichlet’s theorem on primes
in arithmetic progressions, it is easy to show that this problem has an affirmative answer for
abelian `-groups G. It has been remarked in [Ser92] that for odd `, the Scholz–Reichardt method
for realizing `-groups over Q yields realizations of an `-group of order `n with no more than n
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ramified primes. However, n= rank(G) only ifG is elementary abelian. In [Pla04], Plans improved
this bound by showing that the Scholz–Reichardt method yields a bound equal to the sum of
the ranks of the factors of the lower central series of G (without the bottom factor). Thus the
minimal ramification problem has an affirmative solution for odd-order `-groups G of nilpotency
class 2. Nomura (see [Nom08]) refined Plans’ result and proved that the minimal ramification
problem has an affirmative solution for 3-groups of order less than or equal to 35.

In this paper we produce (for every `, including `= 2) a new family of `-groups for which
the minimal ramification problem has an affirmative solution. To be precise, given a prime `,
let G(`) be the minimal family of `-groups that contains the cyclic `-groups and which is closed
under direct products, (regular) wreath products and rank-preserving homomorphic images.
Then every group G in G(`) is tamely realizable over Q with exactly rank(G) ramified (finite)
primes. The family G(`) contains all direct products of iterated wreath products of cyclic groups
of `-power order and, in particular, all Sylow `-subgroups of the symmetric groups [Kal48] and of
the classical groups over finite fields of characteristic prime to ` (see [Wei55]). On the other hand,
as we shall see, it does not contain all finite `-groups.

2. `-groups as Galois groups with minimal ramification

LetG andH be finite (abstract) groups. We define the (regular) wreath product H oG ofH withG
to be the semidirect product H |G| oG, where H |G| is the direct product of |G| copies of H, with
G acting on H |G| by permuting the copies of H like the regular (Cayley) representation of G.
Define the nth iterated wreath product Gon of G by Go1 :=G and Gon :=Go(n−1) oG for n > 1.

Proposition 1 (Ribes and Wong [RW91]). Let G and H be finite `-groups of ranks m and n,
respectively. Then rank(H oG) =m+ n.

Proof. Let G have minimal generating set {g1, . . . , gm} and let H have minimal generating
set {h1, . . . , hn}. Then it is clear that H oG is generated by {g1, . . . , gm, h1, . . . , hn}, so
rank(H oG) 6m+ n. Now, if rank(H oG)<m+ n, then, by Burnside’s basis theorem, a proper
subset of {g1, . . . , gm, h1, . . . , hn} would generate H oG. But if a gi is dropped from this
generating set, the resulting subgroup is of the form H oG1 with G1 a proper subgroup of G,
so H oG1 is a proper subgroup of H oG. Similarly, if an hi is dropped from this generating set,
the resulting subgroup is of the form H1 oG with H1 a proper subgroup of H, so H1 oG is a
proper subgroup of H oG. 2

We will say that an extension of global fields L/K contains no non-trivial unramified
subextension, or that L contains no non-trivial unramified subextension of K, if whenever
K ⊆ E ⊆ L are field extensions with E/K unramified, we have E =K.

Fix an arbitrary global field k and a prime ` 6= char(k). Define a family Fmin := Fmin
k,` of

(isomorphism classes of) finite `-groups as follows: G ∈ Fmin if and only if given any finite set S
of primes of k and any finite separable extension K/k, there exists a finite Galois extension L/K
with G(L/K)∼=G such that the set of primes {p1, . . . , pn} of K that ramify in L satisfy the
following five conditions.

(1) n= rank(G), the minimal number of generators of G.

(2) The primes p1, . . . , pn of k below {p1, . . . , pn} are distinct.

(3) {p1, . . . , pn} ∩ S = ∅.
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(4) p1, . . . , pn split completely in K.

(5) L contains no non-trivial unramified subextension of K.

The main result of this paper is the next theorem.

Theorem 1. The family Fmin has the following properties.

(a) Fmin contains all cyclic groups of `-power order.

(b) If G, H ∈ Fmin, then G×H ∈ Fmin.

(c) If G ∈ Fmin and N is a normal subgroup of G contained in the Frattini subgroup Φ(G) of
G, then G/N ∈ Fmin.

(d) If G, H ∈ Fmin, then H oG ∈ Fmin.

Before proving the theorem, we note the following immediate consequence when k =K = Q.

Corollary 1. Let G(`) be the minimal family of `-groups satisfying conditions (a)–(d) of
Theorem 1, i.e. G(`) contains all cyclic groups of `-power order and is closed under direct
products, (regular) wreath products and rank-preserving homomorphic images. Then all G ∈ G(`)
of rank n are tamely realizable over Q with exactly n ramified primes.

We will use the following lemma in the proof of Theorem 1.

Lemma 1. Suppose that K1 and K2 are Galois extensions of K with Gal(Ki/K) =Gi, for
i= 1, 2, such that K2/K contains no non-trivial unramified subextensions. Suppose also that
the extensions K1/K and K2/K are ramified at disjoint sets of primes of K. Then K1 ∩K2 =K
(and hence G= Gal(K1 ·K2/K)∼=G1 ×G2), and for any unramified subextension K ⊆ E ⊆
K1 ·K2 we have K ⊆ E ⊆K1. In particular, if K1/K also contains no non-trivial unramified
subextensions, then K1 ·K2/K contains no non-trivial unramified subextensions.

Proof. Let {p1, . . . , ps} be the primes of K ramified in K1 and let {q1, . . . , qt} be the primes of K
ramified in K2. Then, by assumption, {p1, . . . , ps} ∩ {q1, . . . , qt}= ∅. Since K1 ∩K2 ⊆K1, we
see that K1 ∩K2/K is ramified only at primes in {p1, . . . , ps}, and similarly K1 ∩K2 ⊆K2

implies that K1 ∩K2/K is ramified only at primes in {q1, . . . , qt}. Therefore K1 ∩K2/K
is unramified, and since K2/K contains no non-trivial unramified subextension, we see
that K1 ∩K2 =K and so Gal(K1 ·K2/K)∼=G1 ×G2. Let TQ ⊆G= Gal(K1 ·K2/K) be the
subgroup generated by the inertia groups T (Qi/qi) where Qi runs over all primes of K1 ·K2

dividing some prime qi ∈ {q1, . . . , qt}. Since K1/K is unramified at the primes {q1, . . . , qt},
we see that K ⊆K1 ⊆ (K1 ·K2)TQ . But since G∼=G1 ×G2, we have that the restriction map
res : Gal(K1 ·K2/K1)−→G2 is an isomorphism. Also, since K2/K contains no non-trivial
unramified subextension, it follows that res(TQ ) =G2, and therefore TQ = Gal(K1 ·K2/K1) and
K1 = (K1 ·K2)TQ . Suppose that K ⊆ E ⊆K1 ·K2 with E/K unramified. Then E is contained
in the subfield of K1 ·K2 fixed by TQ . But then E is fixed by TQ and therefore E ⊆K1. If K1/K
contains no non-trivial unramified subextension, we must have E =K. 2

We will also need a lemma from [KS06].
Let K be a global field, p a finite prime of K, Ip the group of fractional ideals prime to p, Pp

the group of principal fractional ideals in Ip , and Pp ,1 the group of principal fractional ideals
in Pp generated by elements congruent to 1 mod p. Then ClK = Ip /Pp is the class group of K,
ClK,p = Ip /Pp ,1 is the ray class group with conductor p, and P p = Pp /Pp ,1 is the principal ray
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with conductor p. We have a short exact sequence

1−→ P p −→ ClK,p −→ ClK −→ 1. (∗)

For prime ` 6= char(K), we consider the following exact sequence of `-primary components:

1−→ P
(`)
p −→ Cl(`)K,p −→ Cl(`)K −→ 1. (∗`)

We are interested in primes p for which the sequence (∗`) splits. Let a1, . . . , as ∈ IK be
such that their images ai in Cl(`)K form a basis of the finite abelian `-group Cl(`)K . Let `mi

be the order of ai, with i= 1, . . . , s. Then a`mi

i = (ai) ∈ PK for i= 1, . . . , s. Write K ′ for
K(ζ`m , `m√

ε, `mi
√
ai, 1 6 i 6 s), the field extension obtained by adjoining a primitive `mth root of

unity ζ`m , the `mth roots of all units ε of K, and the `mith roots of the elements ai ∈K, where
m > max{1, m1, . . . , ms}.

Lemma 2 (Splitting lemma [KS06, Lemma 2.1]). For the sequence (∗`) to split, it is sufficient
that p splits completely in K ′.

For the proof of this lemma, see [KS06].

Proof of Theorem 1. Let K and S be given.
(a) Let p /∈ S be a prime of k which splits completely in K ′, where K ′ is the field defined in

the splitting lemma for K. Let p be a prime of K dividing p. Then, by the splitting lemma, the
`-ray class field Rp of K belonging to the ray class group Cl(`)K,p has Galois group isomorphic to

Cl(`)K × P
(`)
p . Since the `-Hilbert class field H

(`)
K belongs to Cl(`)K , we see that Rp =H

(`)
K · L′ with

H
(`)
K ∩ L′ =K and that Gal(L′/K)∼= P

(`)
p . Under our assumption that all units are `mth powers

modulo p, it follows that

P
(`)
p /(P (`)

p )`m ∼= (OK/p)∗/((OK/p)∗)`m

is cyclic and has order divisible by `m. Taking m > r, we see that there exists a cyclic extension
L/K of degree `r that is ramified only at p and in which p is totally ramified. Thus L/K satisfies
conditions (1)–(5) (with n= 1).

(b) Since G ∈ Fmin, there is an extension K1/K with Gal(K1/K)∼=G which satisfies
properties (1)–(5) with the sets of primes {p1, . . . , pn} and {p1, . . . , pn}. Set S′ = S ∪
{p1, . . . , pn}. Since H ∈ Fmin, let K2/K be an extension with Gal(K2/K)∼=H which satisfies
properties (1)–(5) for K and S′, with primes {q1, . . . , qm} and {q1, . . . , qm}, respectively.
Then, by Lemma 1, L=K1K2 puts G×H in Fmin with primes p1, . . . , pn, q1, . . . , qm, and
n+m= rank(G×H). This establishes (b).

(c) Let L/K be a Galois extension with group G which puts G in Fmin. Let N be a normal
subgroup of G contained in Φ(G). Let L′ be the fixed field of N . Then rank(G/N) = rank(G).
The other conditions are immediate.

(d) Let K1/K be a Galois extension with group G which puts G in Fmin, with ramified
primes p1, . . . , pn over p1, . . . , pn /∈ S. Let m= rank(H) and S1 = S ∪ {p1, . . . , pn}. Apply the
hypothesis H ∈ Fmin to the pair K1, S1. Then there exists a Galois extension L1/K1 with
group H, with m primes Q1, . . . ,Qm of K1 ramified in L1 such that the primes q1, . . . , qm
of k below Q1, . . . ,Qm are distinct, q1, . . . , qm split completely in K1, q1, . . . , qm /∈ S1, and L1

contains no non-trivial unramified extension of K1. Let q1, . . . , qm be the primes of K below
Q1, . . . ,Qm. Then q1, . . . , qm split completely in K1. So each Qi has |G| distinct conjugates
{σ(Qi) | σ ∈G} over K, for i= 1, . . . , m. For each σ ∈G, the conjugate extension σ(L1)/K1 is
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well-defined since L1/K1 is Galois. Let L be the composite of the σ(L1), σ ∈G. For each σ ∈G,
σ(L1)/K1 is Galois with group H, with exactly m ramified primes σ(Q1), . . . , σ(Qm) lying above
q1, . . . , qm, and σ(L1) contains no unramified extension of K1. Furthermore, the set of primes
σ(Q1), . . . , σ(Qm) ramified in σ(L1)/K1 is disjoint from the set of primes τ(Q1), . . . , τ(Qm)
ramified in τ(L1)/K1 if σ 6= τ. This is true because if σ(Qi) = τ(Qj), we would have qi = qj ; but
then i= j by property (3) in the definition of Fmin and so we would have σ = τ.

Applying Lemma 1 repeatedly, we see that the fields {σ(L1) | σ ∈G} are linearly disjoint over
K1. It follows that we have an exact sequence of groups

1→H |G|→G(L/K)→G→ 1, (†)

where G is identified with G(K1/K) and H |G| is the direct product of |G| copies of H.
Furthermore, this exact sequence defines a unique homomorphism φ :G→Out(H |G|) (injective
in this case), which is equivalent, as a permutation representation on the |G| copies of H, to
the regular representation of G. The set of all group extensions of G by H |G| corresponding
to a given φ, if non-empty, is in one-to-one correspondence with H2(G, Z(H |G|)) (see [JZ71]),
where Z(H |G|) denotes the center of H |G|. Since Z(H |G|) = Z(H)|G| is an induced G-module,
H2(G, Z(H |G|)) = 0. It follows that the group extension (†) splits, and G(L/K)∼=H oG.

The primes of K that ramify in L are exactly {p1, . . . , pn, q1, . . . , qm}, where n+m=
rank(H oG); the primes p1, . . . , pn, q1, . . . , qm below p1, . . . , pn, q1, . . . , qm are distinct, split
completely in K, and lie outside S. Finally, L/K does not contain a non-trivial unramified
subextension M/K, since if it did, then M would be contained in K1, and K1/K contains no
non-trivial unramified subextension of K. 2

How large is the family G(`)? It is smaller than the family of all `-groups, as we will now
show.

Lemma 3. Let G be a non-trivial group in G(`), and let dl(G) be the derived length (length of
the derived series) of G. Then dl(G) 6 rank(G).

Proof. We prove this result by induction on the minimal number t of applications of the
three types of operations (direct product, wreath product, rank-preserving homomorphic image)
defining G(`) which are needed to produce G starting from cyclic `-groups. If t= 0 (G cyclic),
we have dl(G) = rank(G). We examine the behavior of the rank and the derived length under
each of the three operations.

(i) If G, H ∈ G(`), then rank(G×H) = rank(G) + rank(H) while dl(G×H) = max(dl(G),
dl(H)).

(ii) If G, H ∈ G(`), then rank(H oG) = rank(G) + rank(H) (Proposition 2) while dl(H oG) 6
dl(G) + dl(H) (easy).

(iii) If G ∈ G(`) and G is a homomorphic image of G (with rank(G) = rank(G)), then dl(G) 6
dl(G).

The result follows. 2

Proposition 2. For every ` and n > 1, there exist `-groups of rank n not in G(`).

Proof. It suffices to show that for every n > 1, there exist `-groups of rank n and derived length
larger than n. Let F be the free group of rank n, and let Ft be the tth term of the descending
`-central series of F (i.e. the series with F1 = F and, for t > 1, Ft = F `

t−1[F, Ft−1]). It suffices
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to show that the derived length of F/Ft is larger than n for sufficiently large t. But this is
true since the derived length of F is infinite and the descending `-central series of F has trivial
intersection. (For sufficiently large t, Ft does not contain the (non-trivial) nth term of the derived
series of F .) 2

Example 1. Here is an example of an `-group not in the family G(`). (We thank John Labute
for help with this example.)

Let F be a free group on two generators x and y, and let G be the quotient of F by the
sixth term F6 of the descending `-central series of F . We claim that G /∈ G(`). By Lemma 3, it
suffices to show that dl(G) = 3. Indeed, [[x, y], [x, [x, y]]] lies in F5 but not in F6, so there are two
elements of the commutator subgroup G′ of G whose commutator is non-trivial. (For another
example see Remark 2 below.)

Remark 1. If we drop condition (1) from the definition of Fmin to obtain the (larger) family F ,
then we get the following variant of Theorem 1.

Theorem 2. The family F has the following properties.

(a) F contains all cyclic groups of `-power order.

(b) If G, H ∈ F , then G×H ∈ F .

(c) If G ∈ F , then every homomorphic image of G is in F .

(d) If G, H ∈ F , then H oG ∈ F .

The proof is the same as that of Theorem 1, mutatis mutandis. As with Theorem 1, we obtain
the following corollary.

Corollary 2. Let Ĝ(`) be the minimal family of `-groups satisfying conditions (a)–(d) of
Theorem 2. Then all G ∈ Ĝ(`) are tamely realizable over Q.

Theorem 2 in fact gives tame realizations of the groups in Ĝ(`) over every global field, which
of course follows from the Scholz–Reichardt theorem for ` odd, and from Shafarevich’s theorem
for `= 2. However, for these groups we obtain a different, perhaps simpler, proof, especially for
`= 2.

Remark 2. A finite group G is called semiabelian if and only if there exists a sequence

G0 = {1}, G1, . . . , Gn =G

such that Gi is a homomorphic image of a semidirect product Ai oGi−1 with Ai abelian,
i= 1, . . . , n.

It turns out that Ĝ(`) is the family of all semiabelian `-groups, as we will show.
Dentzer [Den95] gives geometric realizations of the semiabelian groups over k(t) for any field k
(in particular, for k a global field) and therefore, by Hilbert’s irreducibility theorem, realizations
over global fields k. However, it does not seem to be known how to produce tame realizations via
Hilbert’s irreducibility theorem. In [Den95] there is also an example of a three-generator `-group
of order `5 (for any odd `) which is not semiabelian.

Proposition 3. For any prime `, Ĝ(`) is the family of all semiabelian `-groups.

Proof. Let S(`) denote the family of all semiabelian `-groups. It is clear from the definition
that S(`) contains all cyclic `-groups and is closed under homomorphic images. Furthermore,
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by [Den95, Theorem 2.8], S(`) is closed under direct products and (regular) wreath products.
Hence S(`) contains Ĝ(`). For the reverse inclusion, suppose to the contrary that G is a
group of minimal order in S(`)\Ĝ(`). Then G is non-abelian and hence non-trivial. By [Den95,
Theorem 2.3], G is a composite AH with H being a proper semiabelian subgroup of G and A an
abelian normal subgroup of G. Then G is a homomorphic image of a semidirect product AoH
and, by the induction hypothesis, H ∈ Ĝ(`). Now AoH is a homomorphic image of the (regular)
wreath product A oH; this lies in Ĝ(`), and hence so does its homomorphic image AH =G, which
is a contradiction. 2

Remark 3. Given a finite `-group G, let ramt(G) denote the minimal n such that G can be
realized as a Galois group of a tamely ramified extension L/Q with exactly n ramified primes.
As mentioned in the introduction, Plans [Pla04] has shown that the Scholz–Reichardt method
for realizing odd-order `-groups over Q can be made to yield an upper bound for ramt(G) equal
to the sum of the ranks of the factors in the lower central series of G, where the bottom factor
can be left out of the sum. For most of the groups in the family G(`), this bound is larger than
the rank of the group, e.g. for C` o C`, ` > 3.

Note. Since the submission of this paper, Neftin has proved in [Nef09] that the family G(`) is
equal to the family Ĝ(`) of semiabelian `-groups. To give some indication of the size of G(`), the
following is known about ‘small’ `-groups (see [Den95] and also [Sch93]).

(1) For any `, all `-groups of order less than or equal to `4 are semiabelian.

(2) All 2-groups of order less than or equal to 32 are semiabelian.

(3) Among the 267 groups of order 64, only ten are not semiabelian. Similarly, among the 2328
groups of order 27, 82 are not semiabelian; and among the 56 092 groups of order 28, 993
are not semiabelian. Among the 67 groups of order 35, ten are not semiabelian, and among
the 504 groups of order 36, 54 are not semiabelian.
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