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SHAPE FIBRATIONS, MULTIVALUED MAPS
AND SHAPE GROUPS

ANTONIO GIRALDO

ABSTRACT. The notion of shape fibration with the near lifting of near multivalued
paths property is studied. The relation of these maps—which agree with shape fibrations
having totally disconnected fibers—with Hurewicz fibrations with the unique path
lifting property is completely settled. Some results concerning homotopy and shape
groups are presented for shape fibrations with the near lifting of near multivalued paths
property. It is shown that for this class of shape fibrations the existence of liftings of a
fine multivalued map is equivalent to an algebraic problem relative to the homotopy,
shape or strong shape groups associated.

1. Introduction. Inspired by works of R. C. Lacher [5, 6] on cellular maps,
D. S. Coram and P. F. Duvall, Jr. [3] defined in 1977 the concept of approximative
fibration, replacing the homotopy lifting property of Hurewicz fibrations by an approxi-
mate homotopy lifting property (AHLP), applying to a larger class of maps. This property
is based on the notion of é-closeness for maps: Given two maps f Ò g: X ! Y and given a

covering é of Y, f and g are é-close (denoted f
é
= g) if, for every x 2 X, f (x) and g(x) are

contained in a member of é. A map p: E ! B has the AHLP(X ) with respect to a class X
of topological spaces if, for every open covering ã of B, there are open coverings é and å
of E and B such that for every X 2 X , every map g: X ! E and every map h: X ð I ! B

such that pg
å
= h0 there exists a homotopy k: X ð I ! E such that k0

é
= g and pk

ã
= h. In

this way they obtained a generalization of Hurewicz fibrations with similar properties.
In 1979, S. Mardešić and T. B. Rushing [8, 9] introduced shape fibrations between

metric compacta, as those maps p: E ! B satisfying an approximate homotopy lifting
property, but referred to sequences of maps and homotopies whose images are not
contained in the spaces E and B but in systems of ANRs having E, B and p as limits. In its
most simplified formulation this reduces to sequences of homotopies in neighborhoods
of B in the Hilbert cube Q being lifted to homotopies in neighborhoods of E in Q. This
notion was extended by Mardešić [7] to the general case of maps between arbitrary
topological spaces using polyhedral resolutions.

Recently, Z. Čerin [2] has given a redefinition of approximate fibrations for arbitrary
topological spaces, replacing the maps g, h and k in the definition of the AHLP(X ) by
relations (i.e. multivalued functions with nonempty images of points). Čerin’s approach
provides, in addition, a unifying theory for the main types of fibrations in the literature.
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In fact, Čerin’s approximate fibrations include, as particular cases, Coram and Duvall’s
approximate fibrations and Mardešić and Rushing’s shape fibrations, as well as other
types of fibrations, like weak shape fibrations and n-shape fibrations.

Given a topological space X, a class G of relations, and an open coveringã of another
space E, a relation f from X to E is anãG-relation if it is in the class G and there exists an
open covering õ of X such that, for every member S of õ, f (S) is contained in a member
of ã.

Let now ú = (GÒH ÒK ) be a triple of classes of relations and let X be a class of
topological spaces. A map p: E ! B has the AHLP(X Ò ú), if for every open covering
ã of B and every open covering é of E there are open coverings å and ¢ of B and E,
respectively, such that for every X 2 X , every ¢G-relation g: X ! E and every åH -

relation h: X ð I ! B such that pg
å
= h0 there exists a éK -relation k: X ð I ! E such

that k0
é
= g and pk

ã
= h.

The main result in [2] establishes that this version of the original concept of approxi-
mate fibration is equivalent to Mardešić’s shape fibrations.

THEOREM 1 (Z. ČERIN [2]). A map p: E ! B is a shape fibration if and only if it
has the AHLP(T Ò ö), where T denotes the class of all topological spaces, and ö =
(R ÒR ÒR ), with R the class of all relations.

In this paper, the spaces E and B will be metric compacta, while the AHLP will be
applied only to the class M of metric spaces. In this case, Theorem 1 holds if we replace
R by the class U of all upper semicontinuous multivalued functions, where an upper
semicontinuous multivalued function from X to Y is a multivalued function satisfying
that for every x 2 X and for every neighborhood V of F(x) in Y there is a neighborhood
U of x such that F(U) =

S
y2U F(y) is contained in V.

Throughout the paper, we will suppose that all multivalued functions are upper semi-
continuous, calling them multivalued maps for short.

We study in this paper an extension of the unique path lifting property of Hurewicz
fibrations, adapted to shape fibrations, called the near lifting of near multivalued paths
property. This notion was introduced in an earlier version of [2]. Our main results concern
this property. We show that a shape fibration has this property if and only if its fibers are
totally disconnected, and completely determine its relationship with Hurewicz fibrations
with the unique path lifting property.

In the last part of the paper we study algebraic properties of shape fibrations with
the near lifting of near multivalued paths property, related to homotopy groups, shape
groups and strong shape groups. The main result of this part is a theorem giving necessary
and sufficient algebraic conditions for the existence of liftings of fine multivalued maps
defined in Peano continua and with values in the base space of a shape fibration with
near lifting of near multivalued paths.

The author is grateful to the referee for useful suggestions.
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2. The near lifting of near multivalued paths property. Let F: X ! Y be a
multivalued map. F is said to be ¢-small if diam

�
F(x)

�
Ú ¢ for every x 2 X. Any é-small

multivalued map °: I ! E, from the unit interval to a metric space E will be called a
é-small path in E, and any é-small multivalued map °: In ! E will be called a é-small
n-path in E.

The following definition is the analogous property, for shape fibrations, of the unique
path lifting property of Hurewicz’s fibrations.

DEFINITION 1. Let E and B be compact metric spaces and let p: E ! B a map. We
say that p has the near lifting of near multivalued paths property if for every ¢ Ù 0 there
exists é Ù 0 such that given °0Ò °00: I ! E é-small paths such that

d
�
°0(0)Ò °00(0)

�
Ú é and d

�
p°0(t)Ò p°00(t)

�
Ú é

for every t 2 I, then d
�
°0(t)Ò °00(t)

�
Ú ¢ for every t 2 I.

The two following results are immediate.

PROPOSITION 1. Let p: E ! B be a map between compact metric spaces, with the near
lifting of near multivalued paths property. Then p has the unique path lifting property.

PROPOSITION 2. Let E and B be compact metric spaces and let p: E ! B be a map
with the near lifting of near multivalued paths property. Then for every ¢ Ù 0 there
exists é Ù 0 such that given a metric continuum X and given F0ÒF00: X ! E é-small
multivalued maps such that d

�
F0(x0)ÒF00(x0)

�
Ú é for a point x0 2 X and such that

d
�
pF0(x)Ò pF00(x)

�
Ú é for every x 2 X, then d

�
F0(x)ÒF00(x)

�
Ú ¢ for every x 2 X.

In the next result we show that the near lifting of near multivalued paths property can
be characterized by the stronger condition of the fibers being totally disconnected, in the
case of shape fibrations. This result is the shape theoretical version of the well-known
result stating that for a Hurewicz’s fibrations the unique path lifting property is equivalent
to fibers not having non constant paths.

As we already mentioned in the introduction, throughout this paper the spaces E
and B will be metric compacta, while the AHLP will be applied only to the class M
of metric spaces and to the class U of multivalued maps. In this particular case, the
AHLP(M Ò ù) property (where ù = (UÒUÒU)) admits the following form, which we
call MHLP property.

Let E and B be compact metric spaces and let p: E ! B be a map. We say that p
satisfies the multivalued homotopy lifting property (MHLP) with respect to a topological
space X if for every ¢ Ù 0 there exists é Ù 0 such that for every é-small multivalued
maps F: X ! E and H: X ð I ! B with d

�
pF(x)ÒH(xÒ 0)

�
Ú é for every x 2 X, then

there exists an ¢-small multivalued map H0: X ð I ! E such that d
�
H0(xÒ 0)ÒF(x)

�
Ú

¢Ò d
�
pH0(xÒ t)ÒH(xÒ t)

�
Ú ¢ for every (xÒ t) 2 X ð I.

THEOREM 2. Let E and B be compact metric spaces and let p: E ! B be a shape
fibration. Then p has the near lifting of near multivalued paths property if and only if
every non empty fiber is totally disconnected.
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PROOF. Observe first that if p: E ! B is a shape fibration so is p: E ! p(E). Moreover,
p: E ! B has the near lifting of near multivalued paths property if and only if p: E ! p(E)
has the near lifting of near multivalued paths property. Hence we can suppose that p is
surjective.

Suppose now that p has the near lifting of near multivalued paths property and that
there exists x 2 X such that p�1(x) is not totally disconnected. Then there exists a
connected subset A of p�1(x) with more than two points. Take x0Ò y0 2 A, x0 6= y0 and
consider é Ù 0 associated with ¢ = d(x0Ò y0) by the near lifting of near multivalued paths
property.

Since A is connected, there exists a é-small path °0: I ! A ² p�1(x) such that
°0(0) = x0, °0(1) = y0, and we can consider, on the other hand, °00: I ! p�1(x) given by
°00(t) = x0 for every t 2 I. Then °0 and °00 are é-small paths such that °0(0) = °00(0) and
p°0 = p°00. Therefore d

�
°0(t)Ò °00(t)

�
Ú ¢ for every t 2 I. In particular,

d
�
°0(1)Ò °00(1)

�
= d(y0Ò x0) Ú ¢

This contradiction proves the first implication.
Let us prove the other implication. Consider ¢ Ù 0. We see first that there exists

0 Ú ë Ú ¢ such that for every A ² B with diam(A) Ú ë there exist fU1Ò    ÒUng pairwise
disjoint open subsets of E with diameter less than ¢ such that p�1(A) ² U1 [ Ð Ð Ð [ Un

with d(UiÒUj) Ù ë for every i 6= j.
For every x 2 B, since p�1(x) is a totally disconnected compact set, there exist

fUx
1Ò    ÒU

x
nx
g pairwise disjoint open and closed subsets of p�1(x) with diameter less than

¢
3 , such that p�1(x) = Ux

1 [ Ð Ð Ð [Ux
nx

. There exists 0 Ú ¢x Ú ¢
3 such that d(Ux

i ÒU
x
j ) Ù 3¢x

for every i 6= j. Then B¢x

�
p�1(x)

�
= B¢x (U

x
1) [ Ð Ð Ð [ B¢x(U

x
nx

), union of open balls in E

with d
�
B¢x(U

x
i )ÒB¢x (U

x
j )
�
Ù ¢x for every i 6= j. Now, there exists 0 Ú ëx Ú ¢x such that

p�1
�
Bëx(x)

�
² B¢x

�
p�1(x)

�
.

If not, there would exist (yn) ² E that, by the compactness of E, we can suppose
converging to some y 2 E, such that for every n 2 N we have yn 2 p�1

�
B 1

n
(x)
�

but

yn 62 B¢x

�
p�1(x)

�
. But then by the first condition

�
p(yn)

�
converges to x and by the

second p(y) 6= x and this is in contradiction with the continuity of p. Hence there exists
0 Ú ëx Ú ¢x such that

p�1
�
Bëx (x)

�
² B¢x

�
p�1(x)

�
Ò

and, by the compactness of B, there exists 0 Ú ë Ú ¢ such that for every A ² B with
diam(A) Ú ë there exists x 2 B such that

p�1(A) ² p�1
�
Bëx(x)

�
² B¢x

�
p�1(x)

�
= B¢x (U

x
1) [ Ð Ð Ð [ B¢x (U

x
nx

)

with d
�
B¢x (U

x
i )ÒB¢x (U

x
j )
�
Ù ë for every i 6= j. Therefore for every A ² B with diam(A) Ú

ë there exist fU1Ò    ÒUng pairwise disjoint open subsets of E with diameter less than ¢
such that p�1(A) ² U1 [ Ð Ð Ð [ Un with d(UiÒUj) Ù ë for every i 6= j.

Take 0 Ú ë0 Ú ë
6 such that diam

�
p(K)

�
Ú ë

6 for every compact subset K of E with
diam(K) Ú ë0. Take 0 Ú é0 Ú ë0 associated with ë0 by the property MHLP with respect
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to I, and 0 Ú é Ú é0

3 such that diam
�
p(K)

�
Ú é0

3 for every compact subset K of E
with diam(K) Ú é. To complete the proof of the theorem it only rests to show that é is
associated with ¢ by the near lifting of near multivalued paths property.

Let °0Ò °00: I ! E be é-small paths such that

d
�
°0(0)Ò °00(0)

�
Ú é and d

�
p°0(t)Ò p°00(t)

�
Ú é

for every t 2 I. Fix s 2 I and consider F: I ð f0g [ f0Ò 1g ð I ! E given by

F(tÒ r) =

8>>>>>><
>>>>>>:

°0(s � 2st) if 0 � t Ú 1
2 , r = 0

°0(0) [ °00(0) if t = 1
2 , r = 0

°00(2st � s) if 1
2 Ú t � 1, r = 0

°0(s) if t = 0
°00(s) if t = 1

and H: I ð I ! B defined as

H(tÒ r) =

8<
: p°0(s � 2st + 2rst) if 0 � t � 1

2
p°0(2rs + 2st � s � 2rst) if 1

2 � t � 1.

Then F and H are é0-small multivalued maps such that d
�
pF(tÒ r)ÒH(tÒ r)

�
Ú é0 for

every (tÒ r) 2 I ð f0g [ f0Ò 1g ð I. Then by the property MHLP, since there exists a
homeomorphism of I ð I into itself sending I ð f0g [ f0Ò 1g ð I onto I ð f0g, there
exists an ë0-small multivalued map H0: I ð I ! E such that d

�
H0(tÒ r)ÒF(tÒ r)

�
Ú ë0 for

every (tÒ r) 2 I ð f0g [ f0Ò 1g ð I and d
�
pH0(tÒ r)ÒH(tÒ r)

�
Ú ë0 for every (tÒ r) 2 I ð I.

In particular, d
�
pH0(tÒ 1)ÒH(tÒ 1)

�
= d

�
pH0(tÒ 1)Ò p°0(s)

�
Ú ë0 Ú ë

6 , for every t 2 I, and

since H0 is ë0-small, then pH0 is ë
6 -small and hence H0(tÒ 1) 2 p�1

�
B ë

3

�
p°0(s)

��
for every

t 2 I. On the other hand °00 is é-small, hence diam
�
p°00(s)

�
Ú é0

3 Ú ë0 Ú ë
6 and, since

d
�
p°0(s)Ò p°00(s)

�
Ú é Ú ë0 Ú ë

6 , then

°0(s)Ò °00(s) 2 p�1
�

B ë

3

�
p°0(s)

��


Hence we can define °̄: I ! p�1
�

B ë

3

�
°(s)

��
such that

°̄(t) =

8><
>:

H0(0Ò 1) [ °0(s) if t = 0
H0(tÒ 1) if 0 Ú t Ú 1
H0(1Ò 1) [ °00(s) if t = 1.

It is easy to see that °̄ is an ë-small multivalued map.

On the other hand, since diam
�

B ë

3

�
p°0(s)

��
Ú ë there exist fU1Ò    ÒUng pairwise

disjoint open subsets of E with diameter less than ¢ such that

p�1
�

B ë

3

�
p°0(s)

��
² U1 [ Ð Ð Ð [ Un

with d(UiÒUj) Ù ë for every i 6= j. And since °̄ is ë-small, there exists Ui such that
°̄(I) ² Ui. In particular, °0(s)Ò °00(s) ² Ui and d

�
°0(s)Ò °00(s)

�
Ú ¢. This completes the

proof of the theorem.
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REMARK 1. The property of p being a shape fibration may be replaced by the weaker
condition of p having the property MHLP with respect to I. Moreover, this property
is only necessary in the second part of the proof of the theorem. Therefore if a map
p: E ! B has the near lifting of near multivalued paths property then every non empty
fiber is totally disconnected.

The above theorem allows us to easily recognize shape fibrations with the near lifting
of near multivalued maps property.

EXAMPLE 1. Let E be a dyadic solenoid and let B be the unit circumference. The
canonical projection of E on B is a shape fibration whose fibers are Cantor sets and
hence totally disconnected. Therefore p is a shape fibration with the near lifting of near
multivalued paths property.

In the following theorem and the examples that follow it, we completely establish
the relationship between the concept of shape fibration with the near lifting of near
multivalued paths property and the classical concept of fibration with the unique path
lifting property.

THEOREM 3. Let E and B be compact metric spaces and let p: E ! B be a shape
fibration with the near lifting of near multivalued paths property. Then p is a Hurewicz’s
fibration with the unique path lifting property.

PROOF. We have to show that p has the homotopy lifting property with respect to all
metric spaces. Let X be a metric space and let f : X ! E and H: X ð I ! B be maps such
that pf = H0.

Let f¢ng be a decreasing sequence satisfying that ¢n Ú 1
2n+1 and that 2¢n is associated

with 1
2n+2 by the near lifting of near multivalued paths property, for every n 2 N.

By the property MHLP, for every n 2 N there exists H0
n: Xð I ! E ¢n-small multival-

ued map such that d
�
H0

n(xÒ 0)Ò f (x)
�
Ú ¢n and d

�
pH0

n(xÒ t)ÒH(xÒ t)
�
Ú ¢n for every (xÒ t) 2

X ð I. Then for every x 2 X and every n 2 N we have that d
�
H0

n(xÒ 0)ÒH0
n+1(xÒ 0)

�
Ú

¢n + ¢n+1 � 2¢n and d
�
pH0

n(xÒ t)Ò pH0
n+1(xÒ t)

�
Ú ¢n + ¢n+1 � 2¢n, for every t 2 I. By the

near lifting of near multivalued paths property

d
�
H0

n(xÒ t)ÒH0
n+1(xÒ t)

�
Ú

1
2n+2

for every n 2 N, for every x 2 X and every t 2 I. Therefore, since H0
n+1 is ¢n+1-small,

H0
n+1(xÒ t) ² B¢n+1+ 1

2n+2
H0

n(xÒ t) ² B 1
2n+1

H0
n(xÒ t) and hence

B̄ 1
2n+1

H0
n+1(xÒ t) ² B̄ 1

2n
H0

n(xÒ t)

for every n 2 N, every x 2 X and every t 2 I. Then, for every (xÒ t) 2 XðI, fB̄ 1
2n

H0
n(xÒ t)g

is a decreasing sequence of compact sets with diameter converging to zero. Therefore
H0: X ð I ! E defined by

H0(xÒ t) =
1\

n=1
B̄ 1

2n
H0

n(xÒ t)Ò
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for every (xÒ t) 2 X ð I, is a well defined single-valued function. To see that H0 is
continuous, consider (x0Ò t0) 2 Xð I and ¢ Ù 0. Take n 2 N such that 1

2n Ú ¢
4 and ¢n Ú ¢

4 .
Then, since H0(xÒ t) 2 B̄ 1

2n
H0

n(xÒ t) ² B ¢

4
H0

n(xÒ t) and diam
�
H0

n(xÒ t)
�
Ú ¢n Ú ¢

4 , we have
that H0

n(xÒ t) ² B ¢

2
H0(xÒ t) and hence B ¢

4
H0

n(xÒ t) ² B 3¢
4

H0(xÒ t) for every (xÒ t) 2 X ð I.
Take é Ù 0 such that H0

n(xÒ t) ² B ¢

4
H0

n(x0Ò t0) for every (xÒ t) 2 X ð I with d(xÒ x0) Ú é
and d(tÒ t0) Ú é. Then

H0(xÒ t) 2 B ¢

4
H0

n(xÒ t) ² B ¢

4
B ¢

4
H0

n(x0Ò t0) ² B ¢

4
B 3¢

4
H0(x0Ò t0) ² B¢H

0(x0Ò t0)

for every (xÒ t) 2 X ð I with d(xÒ x0) Ú é and d(tÒ t0) Ú é. Hence H0 is continuous.

Moreover, since d
�
H0

n(xÒ 0)Ò f (x)
�
Ú ¢n for every x 2 X, then H0

n(xÒ 0) ² B2¢n

�
f (x)

�
and hence

H0(xÒ 0) 2 B̄ 1
2n

H0
n(xÒ 0) ² B2¢n+ 1

2n

�
f (x)

�

for every n 2 N. Therefore H0(xÒ 0) = f (x) for every x 2 X.

Finally, for every (xÒ t) 2 X ð I and every ç Ù 0, by the continuity of H0, there exists

n 2 N such that ¢n Ú ç
2 and p

�
B¢n+ 1

2n

�
H0(xÒ t)

��
² B ç

2

�
pH0(xÒ t)

�
. On the other hand,

since H0(xÒ t) 2 B̄ 1
2n

H0
n(xÒ t) then H0

n(xÒ t) ² B¢n+ 1
2n

H0(xÒ t). Therefore,

H(xÒ t) 2 B¢n

�
pH0

n(xÒ t)
�
² B¢n

�
pB¢n+ 1

2n

�
H0(xÒ t)

��
² Bç

�
pH0(xÒ t)

�


Hence pH0(xÒ t) = H(xÒ t) for every (xÒ t) 2 X ð I.

The converse of the above theorem is false as shown by the following examples.

EXAMPLE 2. Let K be the pseudoarc [1] and let B be any compact metric space.
Consider the projection p1: B ð K ! B on the first component. Then p1 is a shape
fibration (it is also a Hurewicz’s fibration) whose fibers are homeomorphic to K. But K
is a continuum such that every path connected component is a point. Therefore p1 is a
shape fibration and a fibration with the unique path lifting property, but it has not the
near lifting of near multivalued paths property.

EXAMPLE 3. Let K be the pseudoarc, E = K ð f0Ò 1g and B = K _ K (considered as
the space resultant from E after identifying (x0Ò 0) and (x0Ò 1) for some point x0 2 K). Let
p: E ! K be the projection. Then p is a fibration with the near lifting of near multivalued
paths property but it is not a shape fibration.

EXAMPLE 4. Let K be the pseudoarc, E = K _ K and p: E ! K. Then, since the path
connected components of K are points, every homotopy from any topological space to
K is fixed. Hence p is a fibration and, since its fibers are discrete, it has the unique path
lifting property. However, p is not a shape fibration (see [8, Example 4]), and it has not
the near lifting of near multivalued paths property.
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3. Lifting of homotopic paths. We show in this section that the near lifting of
near multivalued paths property implies the homotopic lifting of homotopic multivalued
paths. Moreover, since the liftings of homotopies by a shape fibration are not exact, but
approximate, it will prove useful to consider, not only homotopies of paths with extreme
points fixed, but also to allow small variations in the homotopies in these extreme points.
This fact suggests the following definition.

DEFINITION 2. Let E be a metric space and let °0Ò °00: In ! E be é-small n-paths,
n 2 N. We say that °0 and °00 are ¢-homotopic (rel. ] In) if there exists an ¢-small
multivalued map H: In ð I ! X such that H(tÒ 0) = °0(t) and H(tÒ 1) = °00(t) for every
t 2 In, and H(tÒ s) = °0(t) = °00(t) for every t 2 ] In and every s 2 I. We say that °0 and°00

are ¢-homotopic (rel. f] In;ëg) if there exists an ¢-small multivalued map H: In ð I ! E
such that H0 = °0, H1 = °00 and diam

�
H(ftg ð I)

�
Ú ë for every t 2 ] In.

REMARK 2. It is easy to see that if °0Ò °00: In ! E are ¢-small n-paths such that
°0j] In = °00j] In and °0 and °00 are ¢-homotopic (rel. f] In; ¢g), then °0 and °00 are ¢-
homotopic (rel. ] In).

The next result, whose proof is left to the reader, is a technical lemma that we will
need in the following sections.

LEMMA 1. Let E and B be compact metric spaces and let p: E ! B be a map with
the property MHLP with respect to In and with the near lifting of near multivalued
paths property. Then for every ¢ Ù 0 there exists é Ù 0 such that given °0Ò °00: In ! E
é-small n-paths with d

�
°0(0Ò    Ò 0)Ò °00(0Ò    Ò 0)

�
Ú é and such that p°0 and p°00 are

é-homotopic (rel. f] In; ég), then °0 and °00 are ¢-homotopic (rel. f] In; ¢g).
Moreover, if °0j] In = °00j] In and p°0 and p°00 are é-homotopic (rel. f] Ing), then °0

and °00 are ¢-homotopic (rel. f] Ing).

4. The lifting problem for fine multivalued maps. The notion of fine multivalued
map plays a leading role in shape theory as developed in [10, 11, 12, 4]. Given X and
Y compact metric spaces, a fine multivalued map from X to Y is a multivalued map
F: X ð R+ ! Y such that for every ¢ Ù 0 there is a t0 2 R+ = [0Ò1) such that
diam

�
F(xÒ t)

�
Ú ¢ for every x 2 X and every t ½ t0. Two fine multivalued maps F

and G from X to Y are said to be homotopic if there exists a fine multivalued map
H: X ð [0Ò 1] ð R+ ! Y such that H(xÒ 0Ò t) = F(xÒ t) and H(xÒ 1Ò t) = G(xÒ t) for every
(xÒ t) 2 X ð R+. F and G are said to be weakly homotopic if for every ¢ Ù 0 there is
a t0 2 R+ such that FjXð[t0Ò1) and GjXð[t0Ò1) are ¢-homotopic. In the above mentioned
papers, the morphisms in the shape and strong shape categories are expressed as weak
homotopy and homotopy classes of fine multivalued maps, respectively.

Given a compact metric space X and given x 2 X we can consider, for every n 2 N,
the strong shape group Πs

n(XÒ x) and the shape group Πn(XÒ x), as formulated in [4],
in terms of fine multivalued maps. Moreover, if f : (XÒ x0) ! (YÒ y0) is a map between
compact metric spaces then f induces homomorphisms

f hh
Ł :ôn(XÒ x0) ! ôn(YÒ y0)Ò f hs

Ł :ôn(XÒ x0) ! Πs
n(YÒ y0)Ò
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f hw
Ł :ôn(XÒ x0) ! Πn(YÒ y0)Ò f ss

Ł : Πs
n(XÒ x0) ! Πs

n(YÒ y0)Ò

f sw
Ł : Πs

n(XÒ x0) ! Πn(YÒ y0)Ò f ww
Ł : Πn(XÒ x0) ! Πn(YÒ y0)

It is easy to see using Lemma 1, although we will not make use of this fact, that if
p: E ! B is a shape fibration with the near lifting of near multivalued paths property,
then phh

Ł , pss
Ł and pww

Ł are monomorphisms.
On the other hand, a fine multivalued map F: (XÒ x0) ð R+ ! (YÒ y0) induces homo-

morphisms

Fww
Ł : Πn(XÒ x0) ! Πn(YÒ y0)Ò Fss

Ł : Πs
n(XÒ x0) ! Πs

n(YÒ y0)Ò

Fsw
Ł : Πs

n(XÒ x0) ! Πn(YÒ y0)Ò

given by Fww
Ł ([°]w) = [õ]w, Fss

Ł ([°]) = [õ] and Fsw
Ł ([°]) = [õ]w, where

õ(tÒ r) = F
�
°
�
tÒ ã(r)

�
Ò r
�

with ã stretching map (see [4]) associated with the pair (°ÒF).
F also induces Fhs

Ł :ôn(XÒ x0) ! Πs
n(YÒ y0) and Fhw

Ł :ôn(XÒ x0) ! Πn(YÒ y0) given by
Fhs
Ł ([°]) = [õ] and Fhw

Ł ([°]) = [õ]w, where õ(tÒ r) = F(°(t)Ò r).
In the following proposition we give necessary conditions, concerning the above

homomorphisms, for the existence of a lifting of a fine multivalued map. This lifting
problem is to be understood in terms of asymptoticity, where two fine multivalued maps
FÒG: X ð R+ ! Y are asymptotic if for every ¢ Ù 0 there is a t0 2 R+ such that
d
�
F(xÒ t)ÒG(xÒ t)

�
Ú ¢ for every x 2 X and every t ½ t0.

PROPOSITION 3. Let p: (EÒ e0) ! (BÒ b0) be a map between compact metric spaces
and let F: (XÒ x0)ð R+ ! (BÒ b0) be a fine multivalued map defined in a compact metric
space X. Suppose that there exists a fine multivalued map F̃: (XÒ x0)ðR+ ! (EÒ e0) such
that pF̃ and F are asymptotic. Then

Fhs
Ł

�
ôn(XÒ x0)

�
² Fss

Ł

�
Πs

n(XÒ x0)
�
² pss

Ł

�
Πs

n(EÒ e0)
�
Ò

Fhw
Ł

�
ôn(XÒ x0)

�
² Fsw

Ł

�
Πs

n(XÒ x0)
�
² psw

Ł

�
Πs

n(EÒ e0)
�
² pww

Ł

�
Πn(EÒ e0)

�
Ò

Fsw
Ł

�
Πs

n(XÒ x0)
�
² Fww

Ł

�
Πn(XÒ x0)

�
² pww

Ł

�
Πn(EÒ e0)

�


The above proposition admits the following converse result, in the case of Peano
continua.

THEOREM 4. Let p: (EÒ e0) ! (BÒ b0) be a shape fibration between compact metric
spaces, with the near lifting of near multivalued paths property. Let X be a Peano
continuum and let F: (XÒ x0) ð R+ ! (BÒ b0) be a fine multivalued map.

Then there exists a fine multivalued map F̃: (XÒ x0) ð R+ ! (EÒ e0) such that pF̃ and
F are asymptotic if and only if Fhw

Ł

�
ô1(XÒ x0)

�
² pww

Ł

�
Π1(EÒ e0)

�
.
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PROOF. The necessity is part of the above proposition. In order to prove the suffi-
ciency consider a null sequence f¢ng. Since p�1(x) is an empty or totally disconnected
compact set, there exists, by the compactness of E and B, a null sequence fëng with
0 Ú ën Ú ¢n, such that for every A ² B with diam(A) Ú ën there exists a family
fU1Ò    ÒUrg of pairwise disjoint open subsets of E such that p�1(A) ² U1 [ Ð Ð Ð [ Ur,
where diam(Ui) Ú ¢n for every i 2 f1Ò    Ò rg and d(UiÒUj) Ù ën for every i 6= j.

On the other hand, there exists a null sequence fñng with 0 Ú ñn Ú ën such that
given ú0Ò ú00: I ! E ñn-small paths with d

�
ú0(0)Ò ú00(0)

�
Ú ñn and such that pú0 and pú00

are ñn-homotopic (rel.
n
f0Ò 1g;ñn

o
), then ú0 and ú00 are ën-homotopic (rel.

n
f0Ò 1g;ën

o
).

Let f†ng be a null sequence with 0 Ú †n Ú
ñn
5 such that diam

�
p(K)

�
Ú ñn

5 for every
K ² E with diam(K) Ú †n, and consider a null sequence féng with én Ú †n such that én

is associated with †n by the property MHLP with respect to I.
Let F: (XÒ x0)ðR+ ! (BÒ b0) be a fine multivalued map defined in a Peano continuum

X. Let fkng be an unbounded increasing sequence such that diam
�
F(xÒ r)

�
Ú én for every

(xÒ r) 2 X ð [knÒ1), and consider a point (xÒ r) 2 X ð (knÒ kn+1], n 2 N. We are going to
show how to define F̃(xÒ r).

Since X is path connected there exists a map °: I ! X such that °(0) = x0 and
°(1) = x. Let õ: I ! B be the én-small multivalued map given by õ(t) = F

�
°(t)Ò r

�
.

Then õ satisfies that õ(0) = F(x0Ò r) = b0 and õ(1) = F(xÒ r). Moreover, the fact that
õ(0) = b0 = p(e0) implies the existence of a †n-small multivalued map ú: I ! E such
that

d
�
ú(0)Ò e0

�
Ú †nÒ d

�
pú(t)Ò õ(t)

�
Ú †nÒ

for every t 2 I. In particular d
�
pú(1)ÒF(xÒ r)

�
Ú †n.

Let °0: I ! X be another map such that °0(0) = x0 and °0(1) = x. Let õ0: I ! B be
given by õ0(t) = F

�
°0(t)Ò r

�
. Let ú0: I ! E be a †n-small multivalued map such that

d
�
ú0(0)Ò e0

�
Ú †nÒ d

�
pú0(t)Ò õ0(t)

�
Ú †nÒ

for every t 2 I. We are going to see that diam
�
ú(1) [ ú0(1)

�
Ú ën.

Consider the map (°0)�: I ! X given by (°0)�(t) = °0(1 � t). Then ° Ł (°0)�: I ! X
given by

° Ł (°0)�(t) =

8<
:°(2t) if 0 � t � 1

2
°0(2 � 2t) if 1

2 � t � 1,

defines an element [° Ł (°0)�]h 2 ô1(XÒ x0) and hence

Fhw
Ł

�
[° Ł (°0)�]h

�
2 Fhw

Ł

�
ô1(XÒ x0)

�
² pww

Ł

�
Π1(EÒ e0)

�
² Π1(BÒ b0)

This implies, since diam
�

F
�
° Ł (°0)�(t)Ò r0

��
Ú én for every t 2 I and every r0 ½ kn,

that there exists a én-small multivalued map î: (IÒ f0Ò 1g) ! (EÒ e0) such that õ Ł (õ0)�

and pî are én-homotopic (rel. f0Ò 1g).
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Consider the multivalued maps ú̄: I ! E given by

ú̄(t) =

8><
>:
ú(0) [ fe0g if t = 0
ú(t) if 0 Ú t Ú 1
ú(1) [ ú0(1) if t = 1,

ú̄0: I ! E given by

ú̄0(t) =

8><
>:
ú0(0) [ fe0g if t = 0
ú0(t) if 0 Ú t Ú 1
ú(1) [ ú0(1) if t = 1,

and î̄: I ! E given by

î̄(t) =

8><
>:
î(0) [ ú(0) = ú(0) [ fe0g if t = 0
î(t) if 0 Ú t Ú 1
î(1) [ ú0(0) = ú0(0) [ fe0g if t = 1.

Then pú̄ Ł (pú̄0)� and õŁ (õ0)� are ñn-homotopic (rel.
n
f0Ò 1g; 2ñn

5

o
). On the other hand, it

is easy to see that õŁ(õ0)� and pî̄ areñn-homotopic (rel.
n
f0Ò 1g; 2ñn

5

o
). Hence pú̄ Ł(pú̄0)�

and pî̄ are ñn-homotopic (rel.
n
f0Ò 1g;ñn

o
). Therefore, by Remark 2, pú̄ Ł (pú̄0)� and pî̄

are ñn-homotopic (rel. f0Ò 1g), and hence pú̄ and pî̄ Ł pú̄0 are ñn-homotopic (rel. f0Ò 1g).
Consider now ú̃: I ! E given by

ú̃(t) =
(
ú(0) [ fe0g if t = 0
ú(t) if 0 Ú t � 1,

and ú̃0: I ! E given by

ú̃0(t) =
(
ú0(0) [ fe0g if t = 0
ú0(t) if 0 Ú t � 1.

Then ú̃ and î̄ Ł ú̃0 are ñn-small multivalued maps with ú̃(0) = î̄(0) such that pú̃ and
pî̄ Ł pú̃0 are ñn-homotopic (rel.

n
f0Ò 1g;ñn

o
). Therefore ú̃ and î̄ Ł ú̃0 are ën-homotopic

(rel.
n
f0Ò 1g;ën

o
). In particular,

diam
�
ú(1) [ ú0(1)

�
Ú ën

Coming back to the definition of F̃ observe that pú(1) 2 B 2ñn
5

�
F(xÒ r)

�
and hence

p�1
�

B 2ñn
5

�
F(xÒ r)

��
6= ;

On the other hand, since diam
�

B 2ñn
5

�
F(xÒ r)

��
Ú ñn, we have that

p�1
�

B 2ñn
5

�
F(xÒ r)

��
= K(xÒr)

1 [ Ð Ð Ð [ K(xÒr)
n(xÒr)

where diam(K(xÒr)
i ) Ú ¢n for every i 2 f1Ò    Ò n(xÒr)g, and d(K(xÒr)

i ÒK(xÒr)
j ) Ù ën for every

i 6= j. Suppose that no K(xÒr)
i can be decomposed in union of two subcompacta whose
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distance is bigger than ën (this is always possible by the compactness of E). It is easy to

see that there exists a unique decomposition of p�1
�

B 2ñn
5

�
F(xÒ r)

��
with these properties.

On the other hand, since ú(1) [ ú0(1) ² p�1
�

B 2ñn
5

�
F(xÒ r)

��
, there exists K(xÒr)

j(xÒr)
such that

ú(1) ² K(xÒr)
j(xÒr)

, for all the maps ú obtained according to the above construction.

Define F0: X ð (k1Ò1) ! E, a first approximation of F̃, by

F0(xÒ r) = K(xÒr)
j(xÒr)



Then F0 satisfies that diam
�
F0(xÒ r)

�
Ú ¢n for every (xÒ r) 2 X ð (knÒ1). We are going

to see that F0 is upper semicontinuous.
Take (xÒ r) 2 Xð(knÒ kn+1] and let V be a neighborhood of F0(xÒ r) in E. There exists an

open neighborhood U of p�1
�

B 2ñn
5

�
F(xÒ r)

��
in E such that U = U1 [ Ð Ð Ð [Un(xÒr) , where

diam(Ui) Ú ¢n for every i 2 f1Ò    Ò n(xÒr)g, d(UiÒUj) Ù ën for every i 6= j, and such that

Uj(xÒr) ² V. On the other hand, there exists ã Ù 0 such that diam
�

Bã

�
F(xÒ r)

��
Ú én and

such that
p�1

�
B 2ñn

5 +ã

�
F(xÒ r)

��
² U

If not, there would exist (yk) ² E that, by the compactness of E, we can take converging

to some y 2 E, such that for every k 2 Nwe have yk 2 p�1
�

B 2ñn
5 + 1

k

�
F(xÒ r)

��
but yk 62 U.

But by the first condition, since
�
p(yk)

�
converges to p(y), y 2 p�1

�
B 2ñn

5

�
F(xÒ r)

��
and

by the second y 62 U and this is a contradiction.
Take 0 Ú å Ú r � kn such that F(x0Ò r0) ² Bã

�
F(xÒ r)

�
, for every x0 2 X with

d(xÒ x0) Ú å and every r0 2 R+ with d(rÒ r0) Ú å. Let W be a path connected neighborhood

of x contained in Bå(x) (hence diam
�

F
�
W ð Bå(r)

��
Ú én). Take x0 2 W and r0 2 R+

with d(rÒ r0) Ú å. Then

F0(x0Ò r0) ² p�1
�

B 2ñn
5

�
F(x0Ò r0)

��
² p�1

�
B 2ñn

5 +ã

�
F(xÒ r)

��
² UÒ

and, by the construction of F0, there exists Uj0 such that F0(x0Ò r0) ² Uj0 . We are going to
see that F0(x0Ò r0) ² Uj(xÒr) ² V.

Let °0: I ! X be a map such that °0(0) = x0 and °0(1) = x0. Let õ0: I ! B be given
by õ0(t) = F

�
°0(t)Ò r0

�
. Let ú0: I ! E be a †n-small (†n+1-small if r0 Ù kn+1) multivalued

map such that d
�
ú0(0)Ò e0

�
Ú †nÒ d

�
pú0(t)Ò õ0(t)

�
Ú †n, for every t 2 I.

Since W is path connected, there exists a map°00: I ! W ² Bå(x) such that °00(0) = x0

and °00(1) = x. Let õ: I ! B be given by

õ(t) =

8<
:F

�
°0(2t)Ò r

�
if 0 � t � 1

2

F
�
°00(2t � 1)Ò r

�
if 1

2 � t � 1.

Then õ and õ0 are én-homotopic by a homotopy H such that H(0Ò s) = e0 for every s 2 I

and such that H(f1gð I) ² F
�
W ðBå(r)

�
and hence, since diam

�
F
�
W ðBå(r)

��
Ú én,

õ and õ0 are ñn
5 -homotopic (rel.

n
f0Ò 1g; ñn

5

o
).
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Let ú: I ! E be a †n-small multivalued map such that

d
�
ú(0)Ò e0

�
Ú †nÒ d

�
pú(t)Ò õ(t)

�
Ú †n

for every t 2 I. Then ú and ú0 are ñn-small paths such that d
�
ú(0)Ò ú0(0)

�
Ú ñn and such

that pú and pú0 are ñn-homotopic (rel.
n
f0Ò 1g;ñn

o
). Then ú and ú0 are ën-homotopic (rel.n

f0Ò 1g;ën

o
).

In particular, diam
�
ú(1) [ ú0(1)

�
Ú ën. And since ú(1) ² Uj(xÒr) and ú0(1) ² U, then

ú0(1) ² Uj(xÒr) , and hence F0(x0Ò r0) ² Uj(xÒr) ² V. Therefore F0 is upper semicontinuous.
On the other hand, since for x0 we can consider °0: I ! X such that °0(t) = x0 for

every t 2 I, and ú0: I ! E given by ú0(t) = e0, then e0 2 F0(x0Ò r) for every r 2 (k1Ò1).
Finally F0 can be extended to a fine multivalued map F0: X ð R+ ! E such that

e0 2 F0(x0Ò r) for every r 2 R+. Moreover, since p
�
F0(xÒ r)

�
² B 2ñn

5

�
F(xÒ r)

�
, for every

(xÒ r) 2 X ð (knÒ1), then pF0 and F are asymptotic.
Let now fûng and fçng be null sequences such that F0(B̄çn (x0)ð [nÒ n + 1]) ² B̄ûn (e0)

for every n 2 N [ f0g, and define F00: X ð R+ ! E such that

F00(xÒ r) =

8>><
>>:

F0(xÒ r) if (xÒ r) 62 [n2N[f0gB̄çn (x0)ð [nÒ n + 1]
B̄û0 (e0) if (xÒ r) 2 B̄ç0 (x0) ð [0Ò 1]
B̄ûn(e0) if (xÒ r) 2 B̄çn(x0) ð (nÒ n + 1].

Then F00 is a fine multivalued map (since
S

n2N[f0g B̄çn(x0)ð [nÒ n+1] is closed in XðR+)
such that F0 ² F00 and hence pF00 and F are asymptotic and e0 2 F00(x0Ò r) for every
r 2 R+.

Finally define F̃: (XÒ x0) ð R+ ! (EÒ e0) by

F̃(xÒ r) =
(

F00(xÒ r) if (xÒ r) 62
S

n2N[f0g Bçn(x0) ð [nÒ n + 1)
e0 if (xÒ r) 2 Bçn(x0) ð [nÒ n + 1).

Then F̃ is a fine multivalued (since
S

n2N[f0g Bçn(x0) ð [nÒ n + 1) is open in X ð R+) and
satisfies that F̃ ² F00, and hence pF̃ and F are asymptotic. This completes the proof of
the theorem.

COROLLARY 1. Let p: (EÒ e0) ! (BÒ b0) be a surjective shape fibration between com-
pact metric spaces, with the near lifting of near multivalued paths property. Let X be a
Peano continuum and let F: (XÒ x0) ð R+ ! (BÒ b0) be a fine multivalued map such that

Fhs
Ł

�
ô1(XÒ x0)

�
² pss

Ł

�
Πs

1(EÒ e0)
�


Then there exists a fine multivalued map F0: (XÒ x0) ð R+ ! (EÒ e0) such that pF0 and F
are asymptotic.

PROOF. It suffices to observe that if Fhs
Ł

�
ô1(XÒ x0)

�
² pss

Ł

�
Πs

1(EÒ e0)
�
, then

Fhw
Ł

�
ô1(XÒ x0)

�
² pww

Ł

�
Π1(EÒ e0)

�

holds too.
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REMARK 3. Theorem 4 still holds if p has the property MHLP with respect to I, and
if we replace the condition

Fhw
Ł

�
ô1(XÒ x0)

�
² pww

Ł

�
Π1(EÒ e0)

�

by any of the conditions

Fww
Ł

�
Π1(XÒ x0)

�
² pww

Ł

�
Π1(EÒ e0)

�
or Fss

Ł

�
Πs

1(XÒ x0)
�
² pss

Ł

�
Πs

1(EÒ e0)
�


We close this section with the following open question.

PROBLEM 1. Does Theorem 4 hold for arbitrary continua X, if we replace the homo-
topy group ô1(XÒX0) by the shape group Π1(XÒX0)?
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