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SHAPE FIBRATIONS, MULTIVALUED MAPS
AND SHAPE GROUPS

ANTONIO GIRALDO

ABSTRACT. The notion of shape fibration with the near lifting of near multivalued
paths property is studied. Therelation of these maps—which agreewith shapefibrations
having totally disconnected fibers—with Hurewicz fibrations with the unique path
lifting property is completely settled. Some results concerning homotopy and shape
groups are presented for shape fibrations with the near lifting of near multivalued paths
property. It is shown that for this class of shape fibrations the existence of liftings of a
fine multivalued map is equivalent to an algebraic problem relative to the homotopy,
shape or strong shape groups associated.

1. Introduction. Inspired by works of R. C. Lacher [5, 6] on cellular maps,
D. S. Coram and P. F. Duvall, Jr. [3] defined in 1977 the concept of approximative
fibration, replacing the homotopy lifting property of Hurewicz fibrations by an approxi-
mate homotopy lifting property (AHLP), applying to alarger classof maps. Thisproperty
is based on the notion of 6-closenessfor maps: Given two mapsf. g: X — Y and given a
covering ¢ of Y, f and g are $-close (denoted f g ) if, for every x € X, f(x) and g(x) are
contained in amember of 6. A map p: E — B hasthe AHLP(X) with respect to aclass X
of topological spacesif, for every open covering « of B, there are open coveringsé and 3
of E and B such that for every X € X, every map g: X — E and every maph: X x | — B

such that pg g hp there exists ahomotopy k: X x | — E such that kg L gandpk £ h. In
this way they obtained a generalization of Hurewicz fibrations with similar properties.

In 1979, S. Mardesic and T. B. Rushing [8, 9] introduced shape fibrations between
metric compacta, as those maps p: E — B satisfying an approximate homotopy lifting
property, but referred to sequences of maps and homotopies whose images are not
containedin the spaces E and B but in systems of ANRshaving E, B and p aslimits. Inits
most simplified formulation this reduces to sequences of homotopies in neighborhoods
of B in the Hilbert cube Q being lifted to homotopiesin neighborhoods of E in Q. This
notion was extended by MardeSic [7] to the general case of maps between arbitrary
topological spacesusing polyhedral resolutions.

Recently, Z. Cerin [2] has given aredefinition of approximate fibrations for arbitrary
topological spaces, replacing the maps g, h and k in the definition of the AHLP(X) by
relations (i.e. multivalued functions with nonempty images of points). Cerin's approach
provides, in addition, a unifying theory for the main types of fibrationsin the literature.
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In fact, Cerin's approximate fibrations include, as particular cases, Coram and Duvall’s
approximate fibrations and Mardesi¢ and Rushing's shape fibrations, as well as other
types of fibrations, like weak shape fibrations and n-shape fibrations.

Given atopological space X, aclassG of relations, and an open covering o of another
spaceE, arelationf from X to Eisan oG-relation if it isintheclassG and there existsan
open covering o of X such that, for every member Sof o, f(S) is contained in a member
of a.

Let now 7 = (G,H .K) be atriple of classes of relations and let X be a class of
topological spaces. A map p: E — B has the AHLP(X,7), if for every open covering
o of B and every open covering 6 of E there are open coverings 8 and ¢ of B and E,
respectively, such that for every X € X, every ¢G-relation g: X — E and every gH -
relation h: X x | — B such that pg g ho there exists a§K -relation k: X x | — E such
that ko £ g and pk £ h.

Themain result in [2] establishesthat this version of the original concept of approxi-
mate fibration is equivalent to MardeSi¢'s shape fibrations.

THEOREM 1 (Z. CERIN [2]). A map p:E — B is a shape fibration if and only if it
has the AHLP(T . p), where T denotes the class of all topological spaces, and p =
(R.R.R),withR theclassof all relations.

In this paper, the spaces E and B will be metric compacta, while the AHLP will be
applied only to the classM of metric spaces. In this case, Theorem 1 holdsif we replace
R by the class U of all upper semicontinuous multivalued functions, where an upper
semicontinuous multivalued function from X to Y is a multivalued function satisfying
that for every x € X and for every neighborhood V of F(x) in Y there is a neighborhood
U of x such that F(U) = Uycy F(y) iscontainedin V.

Throughout the paper, we will supposethat all multivalued functions are upper semi-
continuous, calling them multivalued maps for short.

We study in this paper an extension of the unique path lifting property of Hurewicz
fibrations, adapted to shape fibrations, called the near lifting of near multivalued paths
property. Thisnotionwasintroducedin an earlier version of [2]. Our main resultsconcern
this property. We show that a shape fibration has this property if and only if itsfibersare
totally disconnected, and completely determine its relationship with Hurewicz fibrations
with the unique path lifting property.

In the last part of the paper we study algebraic properties of shape fibrations with
the near lifting of near multivalued paths property, related to homotopy groups, shape
groupsand strong shapegroups. The main result of this part isatheorem giving necessary
and sufficient algebraic conditions for the existence of liftings of fine multivalued maps
defined in Peano continua and with values in the base space of a shape fibration with
near lifting of near multivalued paths.

The author is grateful to the referee for useful suggestions.
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2. The near lifting of near multivalued paths property. Let F:X — Y be a
multivalued map. F is said to be c-small if diam(F(x)) < « for every x € X. Any §-small
multivalued map w:1 — E, from the unit interval to a metric space E will be called a
o-small path in E, and any 6-small multivalued map w: 1" — E will be called a -small
n-pathin E.

Thefollowing definition is the analogous property, for shapefibrations, of the unique
path lifting property of Hurewicz's fibrations.

DerINITION 1. Let E and B be compact metric spaces and let p: E — B a map. We
say that p hasthe near lifting of near multivalued paths property if for every ¢ > 0 there
exists§ > O such that given o/, w": | — E §-small paths such that

d(«'(0).w"(0)) <& and d(pw/(t). pu’(t) <6

forevery t € I, thend(w/(t). () < e forevery t €1
The two following results are immediate.

PrRoOPOSITION 1. Let p: E — Bbeamap between compact metric spaces, with the near
lifting of near multivalued paths property. Then p has the unique path lifting property.

PROPOSITION 2. Let E and B be compact metric spaces and let p: E — B be a map
with the near lifting of near multivalued paths property. Then for every e > 0 there
exists & > 0 such that given a metric continuum X and given F’, F”: X — E §-small
multivalued maps such that d(F’(xo). F”(xo)) < ¢é for a point xg € X and such that
d(pF’(x). pF”(x)) < & for every x € X, then d(F'(x). F”(x)) < « for everyx € X.

In the next result we show that the near lifting of near multivalued paths property can
be characterized by the stronger condition of the fibers being totally disconnected, in the
case of shape fibrations. This result is the shape theoretical version of the well-known
result stating that for aHurewicz' sfibrationsthe unique path lifting property isequivalent
to fibers not having non constant paths.

As we already mentioned in the introduction, throughout this paper the spaces E
and B will be metric compacta, while the AHLP will be applied only to the class M
of metric spaces and to the class U of multivalued maps. In this particular case, the
AHLP(M , v) property (where v = (U. U, U)) admits the following form, which we
call MHLP property.

Let E and B be compact metric spaces and let p:E — B be a map. We say that p
satisfiesthe multivalued homotopy lifting property (MHL P) with respect to atopological
space X if for every ¢ > 0O there exists § > 0 such that for every 6-small multivalued
maps F: X — Eand H: X x | — B with d(pF(x), H(x, 0)) < ¢ for every x € X, then
there exists an =-small multivalued map H’: X x | — E such that d(H’'(x.0). F(x)) <
e d(pH'(x.1), H(x. 1)) < & for every (x.t) € X x I.

THEOREM 2. Let E and B be compact metric spaces and let p: E — B be a shape
fibration. Then p has the near lifting of near multivalued paths property if and only if
every non empty fiber is totally disconnected.
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PROOF. Observefirstthatif p: E— Bisashapefibrationsoisp: E— p(E). Moreover,
p: E — Bhasthenear lifting of near multivalued pathsproperty if andonly if p: E — p(E)
has the near lifting of near multivalued paths property. Hence we can supposethat p is
surjective.

Suppose now that p has the near lifting of near multivalued paths property and that
there exists x € X such that p~1(x) is not totally disconnected. Then there exists a
connected subset A of p~1(x) with more than two points. Take X,y € A, X' #y and
consider § > 0 associated with € = d(X', y') by the near lifting of near multivalued paths
property.

Since A is connected, there exists a §-small path w':1 — A C p~(x) such that
W'(0) =%, J'(2) =y, and we can consider, on the other hand, w”: 1 — p~(X) given by
W'(t) =X forevery t € |. Then w’ and w” are §-small paths such that «’(0) = " (0) and
pw' = pw”. Therefore d(w/(t). (1)) < ¢ for every t € I. In particular,

d(/(D). (D)) = dy. x) < e.

This contradiction proves the first implication.

Let us prove the other implication. Consider e > 0. We see first that there exists
0 < n < e suchthat for every A C Bwithdiam(A) < nthereexist {U,...,U,} pairwise
disjoint open subsets of E with diameter less than ¢ such that p~1(A) ¢ Uy U --- U U,
with d(Ui, U;) > n for every i #].

For every x € B, since p~X(x) is a totally disconnected compact set, there exist
{U%..... U} } pairwisedisjoint open and closed subsetsof p~1(X) with diameter lessthan
5,suchthat p~(x) = UfU- - - U U} . Thereexists 0 < ey < § such that d(UF. Uj) > 3ex
for every i #j. ThenB., (p%(x)) = B,,(Uy) U--- UB. (U}), union of open ballsin E
with d(B.,(U}). B, (UY)) > x for every i # j. Now, there exists O < 1x < & such that
p(B, () C B, (p71(x).

If not, there would exist (y,) C E that, by the compactness of E, we can suppose
converging to somey € E, such that for every n € N we havey, € p‘l(B%(x)) but

Yo £ B.,(p(x)). But then by the first condition (p(yn)) converges to x and by the
second p(y) # x and thisis in contradiction with the continuity of p. Hence there exists
0 < nx < ex such that

p (B () C B (P '(9),
and, by the compactness of B, there exists 0 < 1 < e such that for every A C B with
diam(A) < 1 there existsx € B such that

p (A cp(B,(9)) C B, (p7'(¥) =B (UDU--- UB. (Uy)

with d(B.,(Uy). B.,(UX)) > 1 for every i #j. Thereforefor every A C Bwith diam(A) <
n there exist {Us. . ... Uy} pairwise disioint open subsets of E with diameter lessthan ¢
suchthat p~1(A) C U3 U - - U Uy with d(U;, U;) > 1) for every i #].

Take 0 < 5’ < ¢ such that diam(p(K)) < ¢ for every compact subset K of E with

diam(K) < n’. Take 0 < &' < ' associated with 1’ by the property MHLP with respect
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tol, and 0 < § < & such that diam(p(K)) < % for every compact subset K of E
with diam(K) < é. To complete the proof of the theorem it only rests to show that 6 is
associated with € by the near lifting of near multivalued paths property.

Let o', w”:1 — E bed-small paths such that

d(w'(0).0"(0)) <& and d(pu/(t). pw’(t)) <&
foreveryt € |. Fix s€ | and consider F:1 x {0} U {0,1} x | — E givenby

[w’(s—Zst) ifo<t<i,r=0
W' (O Uw(0) ift=3r=0
Ft=Ju@st—9 ifi<t<ir=0

W'(S) ift=0
Lw”(s) ift=1
andH: | x | — B defined as
'(s— ifo<t<i
H(t.r) = pwl(s 2st + 2rst) !f(lJ_t_ 5
pu'(2rs+2st —s—2rst) if 3 <t <1

Then F and H are §’-small multivalued maps such that d(pF(t.r), H(t.r)) < &' for
every (t,r) € | x {0} U {0,1} x I. Then by the property MHLP, since there exists a
homeomorphism of | x | into itself sending | x {0} U {0,1} x | onto | x {0}, there
exists an »’-small multivalued map H':1 x | — E such that d(H'(t.r). F(t.r)) < »’ for
every (t.r) € | x {0} U{0.1} x | and d(pH'(t.r). H(t.r)) <1’ for every (t.r) € I x .
In particular, d(pH'(t. 1), H(t. 1)) = d(pH'(t. 1). p/(s)) < 1’ < &, forevery t € I, and
sinceH’ isn’-small, then pH' is #-small and henceH'(t. 1) € p‘l(Bg (pw’(s))) for every
t € 1. On the other hand w” is §-small, hence diam(pw”(s)) < % <7’ < £ and, since
d(pw/(9), pu’'(9)) <6 <’ < ¢, then

WJ(9), " (s) € pfl(B% (pw’(s))) )

Hence we can definew: | — p—1<B% (w(S))) such that

H'(t, 1) ifo<t<1
H'@1 1) UdJ"(s) ift=1
It iseasy to seethat w is an -small multivalued map.
On the other hand, since diam(Bg (pw’(s))) < n there exist {Uy, ..., Un} pairwise
digioint open subsets of E with diameter less than e such that

p‘l(Bg(pw’(s))) cUU---UU,

with d(U;, U;) > n for every i # j. And since w is n-small, there exists U; such that
w(l) C U;. In particular, /'(s), w”(s) C Uj and d(w’(s).w”(s)) < e. This completes the
proof of the theorem.

H(0.1) Uw/(s) ift=0
w(t) = {
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REMARK 1. The property of p being a shapefibration may be replaced by the weaker
condition of p having the property MHLP with respect to |. Moreover, this property
is only necessary in the second part of the proof of the theorem. Therefore if a map
p: E — B hasthe near lifting of near multivalued paths property then every non empty
fiber is totally disconnected.

The abovetheorem allows us to easily recognize shapefibrations with the near lifting
of near multivalued maps property.

ExampPLE 1. Let E be a dyadic solenoid and let B be the unit circumference. The
canonical projection of E on B is a shape fibration whose fibers are Cantor sets and
hence totally disconnected. Therefore p is a shape fibration with the near lifting of near
multivalued paths property.

In the following theorem and the examples that follow it, we completely establish
the relationship between the concept of shape fibration with the near lifting of near
multivalued paths property and the classical concept of fibration with the unique path

lifting property.
THEOREM 3. Let E and B be compact metric spaces and let p: E — B be a shape

fibration with the near lifting of near multivalued paths property. Then pisa Hurewicz's
fibration with the unique path lifting property.

PrROOF. We haveto show that p has the homotopy lifting property with respect to all
metric spaces. Let X beametric spaceandlet f: X — Eand H: X x | — B bemaps such
that pf = Ho.

Let {en} beadecreasing sequence satisfying that ,, < 2—11 and that 2=, is associated
with 2—12 by the near lifting of near multivalued paths property, for every n € N.

By the property MHLP, for every n € N thereexistsH},: X x | — E ey-small multival-
ued map suchthat d(Hy(x, 0). f(x)) < enand d(pHA(x. t). H(x.t)) < en forevery (x.t) €
X x |. Then for every x € X and every n € N we have that d(H{,(x. 0), H ., (x. O)) <
en+em1 < 2en and d(pHy(X. 1), PHp (X, 1)) < en+enea < 24, for every t € 1. By the
near lifting of near multivalued paths property

d(HA0C O Hia (D) < 535

for every n € N, for every x € X and every t € |. Therefore, since H/, is en+1-small,
H/. (x.t) CB_ , 1 Hi(X.t) C B H/ (x, t) and hence
N+

et on+2

an_1+1 HrIH_l(X. t) C BE}‘ HQ(X, t)

foreveryn € N, every x € X andeveryt € |. Then, for every (x.t) € X x|, {§%Hr’1(x,t)}
is a decreasing sequence of compact sets with diameter converging to zero. Therefore
H’: X x | — E defined by

I — 2= ’
H'(x.t) = nrle%T H{ (%, 1),
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for every (x,t) € X x |, is a well defined single-valued function. To see that H’ is
continuous, consider (Xo, to) € Xx 1 ande > 0. Taken € N suchthat 2—1n < zandey < 3.
Then, since H'(x,t) € Biln Hu(x,t) C B:H)(x.t) and diam(Hg(x, t)) < en < 3, Wehave
that Hy(x, t) C By H’(x,t) and hence B H{(x.t) C Bs H'(x,t) for every (x,t) € X x I.
Take > 0 such that Hj(x, t) C B Hp (o, to) for every (x,t) € X x | with d(x, %) < &
and d(t, to) < 6. Then

H'(x.t) € BsHy(x.t) C B;B;Hy(xo. to) C B;Bs.H'(X0. o) C B-H'(Xo, o)

for every (x,t) € X x | with d(x, xo) < 6 and d(t, to) < é. Hence H’ is continuous.
Moreover, since d(Hp(x. 0).f(X)) < e, for every x € X, then H/(x. 0) C By, (f(x))
and hence

H'(x.0) € §%Hr’1(x. 0) CB,. . (f()

for every n € N. Therefore H'(x, 0) = f(x) for every x € X.

Finally, for every (x.t) € X x | and every ¥ > 0, by the continuity of H’, there exists
n € N suchthat en < 3 and p(szln(H’(x. t))) C B, (pH'(x.1)). On the other hand,
since H'(x, t) € Biln Hh(x. t) then H)(x, t) C B, , 1 H'(X.t). Therefore,

1
n+§rT

HO ) € B, (pHA0C D) C B, (PB. .3 (H'(x.D) ) C By(PH'(x.).

ntam
Hence pH’(x. t) = H(x, t) for every (x,t) € X x I. "
The converse of the above theorem is false as shown by the following examples.

ExAMPLE 2. Let K be the pseudoarc [1] and let B be any compact metric space.
Consider the projection p;:B x K — B on the first component. Then p; is a shape
fibration (it is also a Hurewicz's fibration) whose fibers are homeomorphic to K. But K
is a continuum such that every path connected component is a point. Therefore p; is a
shape fibration and a fibration with the unique path lifting property, but it has not the
near lifting of near multivalued paths property.

EXAMPLE 3. Let K be the pseudoarc, E = K x {0,1} and B = K VV K (considered as
the space resultant from E after identifying (Xo, 0) and (xo, 1) for some point Xy € K). Let
p: E — K bethe projection. Then p isafibration with the near lifting of near multivalued
paths property but it is not a shape fibration.

ExAMPLE 4. Let K bethe pseudoarc, E = KV K and p: E — K. Then, since the path
connected components of K are points, every homotopy from any topological space to
K isfixed. Hence p is a fibration and, since its fibers are discrete, it has the unique path
lifting property. However, p is not a shape fibration (see [8, Example 4]), and it has not
the near lifting of near multivalued paths property.
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3. Lifting of homotopic paths. We show in this section that the near lifting of
near multivalued paths property implies the homotopic lifting of homotopic multivalued
paths. Moreover, since the liftings of homotopies by a shape fibration are not exact, but
approximate, it will prove useful to consider, not only homotopies of pathswith extreme
pointsfixed, but also to allow small variationsin the homotopiesin these extreme points.
Thisfact suggeststhe following definition.

DEFINITION 2. Let E be a metric space and let ', w”: 1" — E be §-small n-paths,
n € N. We say that ' and "’ are e-homotopic (rel. 91") if there exists an e-small
multivalued map H: 1" x | — X such that H(t, 0) = «/(t) and H(t, 1) = "(t) for every
te " andH(t,s) = /(t) = w'(t) foreveryt € 91" andevery s € |. Wesay that o’ and o
are e-homotopic (rel. {01"; n}) if there existsan e-small multivalued mapH: I" x | — E
such that Ho = o/, Hy = w” and diam(H({t} x 1)) < for every t € 91",

REMARK 2. It is easy to see that if w'.w”:I" — E are e-small n-paths such that
o = | and ' and W are e-homotopic (rel. {91™;¢}), then ' and " are e-
homoatopic (rel. o 1M).

The next result, whose proof is left to the reader, is a technical lemma that we will
need in the following sections.

LEMMA 1. Let E and B be compact metric spaces and let p: E — B be a map with
the property MHLP with respect to I" and with the near lifting of near multivalued
paths property. Then for every e > 0 there exists§ > 0 such that given o/, " 1" — E
s-small n-paths with d(w/(0, ..., 0)./'(0...., 0)) < & and such that pu’ and pu” are
5-homotopic (rel. {a1";6}), then o’ and " are e-homotopic (rel. {9 1"; €}).

Moreover, if &'|5n = w”|5n and pw’ and pw” are 5-homotopic (rel. {91"}), then o/
and " are e-homotopic (rel. {91"}).

4. Thelifting problem for fine multivalued maps. The notion of fine multivalued
map plays a leading role in shape theory as developed in [10, 11, 12, 4]. Given X and
Y compact metric spaces, a fine multivalued map from X to Y is a multivalued map
F:X x Ry — Y such that for every ¢ > O thereisaty € R+ = [0, 00) such that
diam(F(x.t)) < e for every x € X and every t > to. Two fine multivalued maps F
and G from X to Y are said to be homotopic if there exists a fine multivalued map
H: X x [0,1] x Ry — Y such that H(x, 0,t) = F(x,t) and H(x, 1, t) = G(x, t) for every
(x,t) € X x R+. F and G are said to be weakly homotopic if for every ¢ > 0 there is
aty € Ry such that F|xxt,00) and Gxxt,00) are e-homotopic. In the above mentioned
papers, the morphisms in the shape and strong shape categories are expressed as weak
homotopy and homotopy classes of fine multivalued maps, respectively.

Given a compact metric space X and given X € X we can consider, for every n € N,
the strong shape group M3(X, xX) and the shape group M,(X, X), as formulated in [4],
in terms of fine multivalued maps. Moreover, if f: (X, X)) — (Y, Vo) is a map between
compact metric spacesthen f induces homomorphisms

£ 10X, %0) — Tn(Y.Yo), £ (X, X0) — MS(Y. yo).
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™ (X, %0) — Ma(Y.yo), TS MIS(X, %0) — M3(Y. yo).
fMR(X %) — Ma(Y,¥0), £ Mn(X, o) — Mn(Y. Yo).

It is easy to see using Lemma 1, although we will not make use of this fact, that if
p: E — B is a shape fibration with the near lifting of near multivalued paths property,
then pi", p and p™* are monomorphisms.

On the other hand, a fine multivalued map F: (X, Xg) x R+ — (Y, Yo) induces homo-
morphisms

FiY Ma(X Xo) — Ma(Y, o). FI (X, Xo0) — M3(Y, o),
FY: M3(X. Xo) — Ma(Y, o),

given by FX*([wlw) = [o]w, F([w]) = [0] and F¥*([w]) = [o]w, where

o(t.r) = F(w(t. a(r)). r)

with o stretching map (see [4]) associated with the pair (w. F).

F also induces F1: 7, (X, X0) — M3(Y, Yo) and F™: (X, %0) — Mn(Y, Yo) given by
F'S(w]) = [0] and F™([w]) = [0]w, Where a(t, 1) = F(w(t). r).

In the following proposition we give necessary conditions, concerning the above
homomorphisms, for the existence of a lifting of a fine multivalued map. This lifting
problem isto be understood in terms of asymptoticity, where two fine multivalued maps
F,G:X x Ry — Y are asymptotic if for every ¢ > O thereisaty € R. such that
d(F(x.t), G(x.1)) < e for every x € X and every t > to.

ProPOSITION 3. Let p: (E, ) — (B, bp) be a map between compact metric spaces
and let F: (X, X9) X R+ — (B, bp) be a fine multivalued map defined in a compact metric
space X. Supposethat there exists a fine multivalued map F: (X, Xo) x R+ — (E. ep) such
that pF and F are asymptotic. Then

FI®(mn(X. X0)) € F¥(MR(X %0)) C pP(M3(E. &)
FI(mn(X, X0)) C F2(M3(X. %)) C p(MR(E &) C p™(Mn(E. ).
F(MH(X %0)) C F*(Ma(X, %)) C p*(Ma(E, &v)).

The above proposition admits the following converse result, in the case of Peano
continua.

THEOREM 4. Let p: (E. &) — (B, by) be a shape fibration between compact metric
spaces, with the near lifting of near multivalued paths property. Let X be a Peano
continuumand let F: (X, Xp) x Ry — (B, bp) be a fine multivalued map.

Then there exists a fine multivalued map F: (X, Xo) x R+ — (E, &) such that pF and
F areasymptotic if and only if F™ (X, o)) C p(M1(E, e0)).

https://doi.org/10.4153/CJM-1998-018-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-018-7

SHAPE FIBRATIONS, MULTIVALUED MAPS AND SHAPE GROUPS 351

PROOF. The necessity is part of the above proposition. In order to prove the suffi-
ciency consider a null sequence {e,}. Since p~1(x) is an empty or totally disconnected
compact set, there exists, by the compactness of E and B, a null sequence {n,} with
0 < nn < &n, such that for every A C B with diam(A) < nn there exists a family
{Uy,..., U } of pairwise disjoint open subsets of E such that p~1(A) c Uy U--- U U,
wherediam(U;) < e, foreveryi € {1,..., r} andd(U;, Uj) > n, for every i #].

On the other hand, there exists a null sequence {un} with 0 < pn < 7n such that
given'.7":1 — E pp-small paths with d(7/(0). 7”(0)) < un and such that pr’ and pr”
are yin-homotopic (rel. {{0. 1}; uin}), then+’ and " arep-homotopic (rel. {{0, 1};1a}).
Let {1y} be anull sequencewith 0 < v, < % such that diam(p(K)) < 4 for every
K c Ewith diam(K) < 1p, and consider anull sequence {6} with én < v, suchthat é,
is associated with v, by the property MHLP with respect to I.

Let F: (X, x0) x R+ — (B, bp) be afine multivalued map defined in a Peano continuum
X. Let {kq} be an unboundedincreasing sequencesuch that diam(F(x. 1)) < & for every
(X, 1) € X X [kn, 00), and consider apoint (X, r) € X x (kq, kn+1], N € N. We are going to
show how to define |~:(x. r.

Since X is path connected there exists a map w:l — X such that w(0) = % and
w(l) = x. Let 011 — B be the é,-small multivalued map given by o(t) = F(w(t).r).
Then ¢ satisfies that (0) = F(xo,r) = by and (1) = F(x,r). Moreover, the fact that
c(0) = by = p(ep) implies the existence of a y,-small multivalued map 7:1 — E such
that

d(r(0). &) < Y. d(pr(®). o)) < o

for every t € 1. In particular d(pr(1). F(x.1)) < vn.
Let w':1 — X be another map such that «'(0) = Xp and /(1) = x. Let ¢’:1 — B be
given by o’(t) = F(w/(t).r). Let 71 — E be ayn-small multivalued map such that

d(r(0). &) <. d(pr'().0'(V) < .

for every t € |. We are going to seethat diam(T(l) U T/(l)) <.

Consider the map (w')~:1 — X givenby (/) (t) =’ (1 —t). Thenw x () ":1 — X
given by
w(2t) ifo<t<

1
3
w@2-2t) ifi<t<y,

wk (W) (@)= {
defines an element [w * (/)" Tn € m1(X. Xo) and hence
FI([w * (@) Th) € F(m1(X %0)) C p™(Ma(E. &)) C M(B, b).
This implies, since diam(F(w % (W) (1), r’)) < 6 for every t € I and every r' > kn,

that there exists a §,-small multivalued map «: (1, {0, 1}) — (E, &) such that o * (¢”)~
and pr are §p-homotopic (rel. {0, 1}).
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Consider the multivalued maps7: | — E given by
70U {e} ift=0

7(t) ifo<t<1
(YU ift=1,

7.1 — Egiven by

7(0)U{e} ift=0
'F(t):{T/(t) ifo<t<1
QU@ ift=1,

and x: 1 — E given by
r(O)UT0) =7(0)U {ep} ift=0
&(t) = {

(1) ifo<t<l1
rRUT0)=70)U{e} ift=1

Then pr (p7')~ and 0% (o)~ are pi-homotopic (rel. {{0. 1}; %2 }). Ontheother hand, it

iseasy to seethat o'(c”)~ and pis areun-homotopic (rel. {{0. 1}; 22 }). Hencepr(pr)~

and px are pp-homotopic (rel. {{0, 1}; un})- Therefore, by Remark 2, pr* (pr’)~ and px

are un-homotopic (rel. {0, 1}), and hence pr and px * pr’ are un-homotopic (rel. {0, 1}).
Consider now 7: 1 — E given by

. _ [1(0)U{ep} ift=0
T(t)_{r(t) ifo<t<i,

and7:1 — E given by

o [T(O)U{e) ift=0

T(t)_{r'(t) ifo<t<1.
Then 7 and x * 7 are pp-small multivalued maps with 7(0) = x(0) such that p7 and
pr % p’ are pn-homotopic (rel. {{0, 1}; un}). Therefore 7 and & x 7 are ny-homotopic
(rel. {{0.1}; 10 }). In particular,

diam(7(1) U7'(2)) < .

Coming back to the definition of F observethat pr(1) € B,

5

(F(x.r)) and hence
pfl(Bz}% (F(x. r))) Z0.
On the other hand, since diam(BzLSn (F(x. r))) < pin, we have that

pfl(Bz%(F(X. r))) = Kgx.r) U--- UK®D

Nexr)

i #]. Suppose that no Ki(x”) can be decomposed in union of two subcompacta whose

where diam(K"") < e, for every i € {1.....10n }, and d(K*?. K*?) > n, for every
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distanceis bigger than 1, (thisis always possible by the compactnessof E). It iseasy to
seethat there exists aunique decomposition of p—* (B 2 (F(x. r)) ) with these properties.

On the other hand, since (1) U7/(1) C p~* (ng (F(x. r))) , there exists Kj(;:rr)) such that

(1) C Kj((’:'r’)), for all the maps  obtained according to the above construction.
Define F’: X x (k1. 00) — E, afirst approximation of F, by

F/(x,r) = K&

J(xr) .

Then F’ satisfies that diam(F'(x. 1)) < e, for every (x.r) € X x (k;. 00). We are going
to seethat F is upper semicontinuous.

Take (X, 1) € XX (Kq, kn+1] and let V be aneighborhood of F/(x, r) in E. Thereexistsan
open neighborhood U of p*1<Baé_n (F(x. r))) inEsuchthat U =U;U---UUp,,, where
diam(U;) < enforeveryi € {1.....nxn}, d(Ui, U;) > nn for every i # j, and such that
Uj,, C V. On the other hand, there exists o« > 0 such that diam(Ba(F(x, r))) < épn and
such that

p‘l(Baé_nm(F(x. r))) cu.
If not, there would exist (yx) C E that, by the compactnessof E, we can take converging
tosomey € E, suchthat for every k € N wehaveyy € p*l(B@é_”% (F(x. r))) buty, £ U.

But by the first condition, since (p(yi)) convergesto p(y), y € pfl(BzuTn (F(x. r))) and
by the secondy ¢ U and thisis a contradiction.

Take 0 < B < r — ky such that F(x.1") C B,(F(x.r)), for every X' € X with
d(x,x) < gandeveryr’ € R, withd(r, r’) < 3. Let Wbe apath connected neighborhood
of x contained in By(x) (hence diam(F(w x Bg(r))) < 6,). Takex' € Wand r’ € R.
withd(r,r’) < 3. Then

F(X.r') p‘%W) - IO_1<W) cu,

and, by the construction of F’, there exists U such that F'(X', r') C U;. We are going to
seethat F'(X',r’') C U, C V.

Let ':1 — X beamap such that /(0) = xg and /(1) = X. Let o’:1 — B be given
by o’'(t) = F(w’(t), r’). Let7':1 — E beayn-small (ynsr-small if r’ > kniq) multivalued
map such that d(7'(0). &) < ¥n. d(pr'(t). o’ (t)) < v, for every t € 1.

Since Wispath connected, there existsamap w”: 1 — W C Bgy(x) suchthat " (0) = X’
and w”(1) = x. Let o: 1 — B begiven by

F(J'(21), fo<t<l1
oy = F/@) 0SS
Flo'2—1).r) if3 <t<Ll
Then o and ¢’ are §,-homotopic by a homotopy H such that H(0, s) = ey for every s € |
and suchthat H({1} x 1) C F(W x By(r)) and hence, sincediam(F(W X Bg(r))) < bn,
o and o’ are 42-homotopic (rel. {{0.1}; 42 1).
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Let7:1 — E be ayn-small multivalued map such that
d(r(0). &) < vn. d(pr(t). o(t)) < ¥

for every t € 1. ThenT and 7’ are yu,-small paths such that d(7(0).'(0)) < i and such
that pr and pr’ are j,-homotopic (rel. {{0. 1}; 1n}). Thenr and 7’ are ny-homotopic (rel.
{{Ov 1}; 77n})-

In particular, diam(r(1) U7'(1)) < nn. And since (1) C Uj,,, and 7'(1) C U, then
7'(1) C U}, and hence F'(X'. ') C U;,, C V. Therefore F’ is upper semicontinuous.

On the other hand, since for xg we can consider wp: | — X such that wy(t) = X for
everyt € |, and 1o: 1 — E given by 7o(t) = g, then ey € F'(Xo, r) for every r € (kg, 00).

Finally F' can be extended to a fine multivalued map F’: X x R — E such that
& € F'(Xo. 1) for every r € R.. Moreover, since p(F'(x.1)) C Bz (F(x.r)), for every
(%, 1) € X x (kn, 00), then pF’ and F are asymptotic.

Let now {¢,} and {v,} be null sequencessuchthat F/(B,, (xo) X [n.n+1]) C ng)n(eo)
for every n € N U {0}, and define F”: X x R+ — E such that

F/(x.1) if (1) # Unenugoy By, (X0) X [ +1]
F/(x.1) = { Byy(€0) if (x.T) € Byy(¥o) X [0, 1]
By, (€0) if (x,1) € By, (%) x (n,n+1].

Then F” isafine multivalued map (since Unenugoy I;n(xo) x[n,n+1]isclosedin X x R;)
such that F' C F” and hence pF” and F are asymptotic and ey € F”(xo,r) for every
r € Rs.

Finally define F: (X. o) x Ry — (E, &) by

FP(x.1) i (% 1) £ Unenojoy Br(%0) X [n.n+1)

Fen =1 g if (x.1) € By, (Xo) x [n.N+1).

Then F is afine multivalued (since UneNU{O} By, (Xo) X [n.n+ 1) isopenin X x R.) and
satisfiesthat F  F”, and hence pF and F are asymptotic. This completes the proof of
the theorem. -

COROLLARY 1. Let p: (E, eg) — (B. bp) be a surjective shape fibration between com-
pact metric spaces, with the near lifting of near multivalued paths property. Let X be a
Peano continuumand let F: (X, Xp) x R+ — (B, bp) be a fine multivalued map such that

FIS(m(X. %)) C p(M3(E. ).

Then there exists a fine multivalued map F’: (X. x) x R+ — (E. &) such that pF’ and F
are asymptotic.

ProOF. It sufficesto observethat if F'S(m1(X. x0)) C pS(M$(E. &), then

FI*(m(X. %)) C p"(M1(E. e))

holds too. n
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REMARK 3. Theorem 4 till holdsif p has the property MHLP with respect to |, and
if we replace the condition

FIY(m(X, %0)) C p™(M4(E, o))
by any of the conditions
FI*(M1(X, %0)) € p(Mi(E.e0)) or FR(M5(X,%0)) C pS(M3(E. e0)).-

We close this section with the following open question.

ProBLEM 1. Does Theorem 4 hold for arbitrary continua X, if we replace the homo-
topy group 71 (X, Xo) by the shape group M1 (X, Xo)?
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