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1. Introduction

A group G is said to be quasi-injective if, for each subgroup H of G and
homomorphism 0:H-*G, there is an endomorphism B:G-*G such that B\H = 9. It is of
course well known that the category of groups does not possess non-trivial injective
objects and so we consider groups satisfying the weaker condition of quasi-injectivity.

The quasi-injective abelian groups are determined in [2, p. 106]; these are either
divisible abelian groups or are periodic and each Sylow p-subgroup is a direct product
of isomorphic cyclic or quasicyclic groups. The quasi-injective finite groups were
completely characterized by Bertholf and Walls [1]. They showed in particular that
every subgroup of a finite quasi-injective group is a T-group (i.e., every subnormal
subgroup is normal) and that finite quasi-injective groups are supersoluble and met-
abelian.

We do not attempt to give a complete characterization of infinite quasi-injective
groups as there will be very considerable difficulties in dealing with certain types of
infinite group. Ol'sanskii [5] has constructed infinite groups in which every proper
subgroup has prime order and any two subgroups of the same order are conjugate.
Such a group G would be quasi-injective if, for each xeG, and for each integer n, the
mapping of x to x" could be extended to an automorphism of G. It is not clear to the
author whether this can, in fact, be done but it seems likely that some variation on
Ol'sanskirs construction would lead to a quasi-injective group.

To exclude the possibility of such examples arising, we restrict our investigations to
more manageable classes of groups, namely soluble groups and locally finite groups. In
these cases we are able to give a characterization of the quasi-injective groups which is
similar to that in the finite case. In particular, we shall see that quasi-injective groups
which are soluble or locally finite are T-groups. Strangely, we have been unable to give
a direct proof of this fact for nonperiodic groups but the arguments used in this case are
related to those used by Robinson [6] in his investigations of infinite ^groups.

Our results may be summarized in the following theorem.

Theorem. (A) A nonperiodic soluble group is quasi-injective if and only if it is a
divisible abelian group.

(B) A locally finite group G is quasi-injective if and only if it is one of the following two
types:

(I) G = Q x Gi, where Q is the quaternion group of order 8 and Gx is a quasi-injective
T-group.
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(II) G is a split extension of a normal n'-group K by a n-group H satisfying the
conditions:

(i) H and K are abelian groups in which each Sylow subgroup is a direct product of
isomorphic cyclic or quasi cyclic groups,

(ii) K = G,
(iii) every maximal n-subgroup of G is a complement to K,
(iv) for each heH, pen' and positive integer r, there is an integer m = m(p, r, h) such

that h~lah = am,for every element aeK having order dividing pr,
(v) ifazn and Ka is the Sylow a-subgroup of K, then CH(Ka) is a direct factor of H.

Part (B) of this theorem is very similar to the finite case. There is a slight adjustment
to condition (iv) to allow for quasi cyclic groups to appear in K but the significant
change is the addition of condition (iii) requiring that every maximal Tt-subgroup is a
complement to K. In particular, this implies that any two maximal 7i-subgroups are
conjugate under some automorphism of G (see, for example [3, Hilfssatz VI.7.14]). This
seems to be a very strong condition which would repay further investigation. Certainly
it does prevent some simple constructions from providing examples of quasi-injective
groups.

For example, let K = DrfL t Xh where Xt = <*,-> is cyclic of prime order p,, where the p,
are distinct odd primes. If H = DrfL t Yh where Y( = <y,-> has order 2 and we form the
split extension G = KH in which

then G is quasi-injective. The group G is just the direct product of the finite groups
<x,-, yty and so the maximal 2-subgroups are just the subgroups which are locally
conjugate to H in G.

However, if we let H = Y\?= i <.Vi> and form G = KH, then G does not satisfy condition
(iii) as the subgroup <x1>'1,x2y2,...> is a maximal 2-subgroup which, being countable,
clearly does not complement K.

In fact, we have been unable to construct any quasi-injective group G = KH in which
H/CH(K) is uncountable and would conjecture that this situation can not occur.

But even the assumption of countability of H does not ensure that G = KH satisfies
condition (iii). If we take H0 = (DrfLl YJx(y} where y has order 2 and yxiy = xfi, for
all i, then in the group G0 — KH0 we again have L=<x1y1,x2>'2>-) a s a maximal
2-subgroup but \G:KL\ = 2.

1. Soluble groups

Although some of the results here apply to all soluble quasi-injective groups and will
be used later, our main aim in this section is to determine the nonperiodic soluble
quasi-injective groups. The remaining soluble groups will then be included in the locally
finite case which is dealt with in Section 3.

https://doi.org/10.1017/S0013091500003370 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003370


INFINITE QUASI-INJECTIVE GROUPS 251

The first three parts of the following lemma are given in Bertholf and Walls [1]. The
results on fully invariant subgroups will be most useful when applied to terms of the
derived series.

Lemma 2.1. (i) A direct factor of a quasi-injective group is quasi-injective.
(ii) A fully invariant subgroup of a quasi-injective group is quasi-injective.
(iii) / / a fully invariant subgroup of a quasi-injective group has an element of order n

{including n infinite) then it contains all elements of order n.
(iv) / / the quasi-injective group G has an element of infinite order then G is radicable.

Proof, (iv) Let xeG have infinite order and let g be any element of G. If n is a
positive integer, consider the homomorphism 0: <*">-•<£> which maps x" onto g. This
mapping extends to ah endomorphism 8.G-+G. If xB=y, then

Lemma 2.2. Every locally nilpotent subgroup H of a quasi-injective group is a
Dedekind group (i.e. each subgroup of H is normal in H).

Proof. It is sufficient to prove that every finitely generated nilpotent subgroup H is
Dedekind.

Let K = y3(H) = [//', H]; we show first that H'/K is finite.
Let K^U<H; then U<\ UH'-^iH. If U is not normal in H then there are elements

heH such that Uhj=U. Suppose, if possible, that UkU/U is nonperiodic for some heH.
Then UhU/U contains an infinite cyclic subgroup C/U and so there is a homomorphism
O-.C^G with Ker0=l / . There is an extension U.G-+G of 6 with KerB=N, say. Then
N<iG and NnC = U. But U^N<iG implies that Uh^N and so C£UUh^N. This
contradiction shows that UhU/U is periodic for all heH. Therefore UH/H is periodic
and, being a finitely generated nilpotent group, UH/U is finite. The finitely generated
group UH has only finitely many subgroups of index |t/H:t/ | and so U has only finitely
many conjugates in H.

We have shown that each subgroup of H/K has only finitely many conjugates. By a
theorem of Neumann [4], H/K is centre-by-finite and hence is finite-by-abelian. Thus
H'/K = y2(H)/y3(H) is finite.

It follows that y,(//)/yI + 1(#) is finite for each i^2 [7, p. 55] and so H' is finite.
Now we can complete the proof. If H is not a Dedekind group then there is a

subgroup M<H such that M o 2 / / but M~fiH. Then MH'<iH and so there is a
subgroup L such that M<iL<iH and L^MH'. Since M~fiH, there is an element heH
such that M ^ M SO that M<MMh^L^MH'. Since H' is finite, MMh/M contains a
cyclic subgroup C/M of prime order p, say, where p divides \H'\. Then H' contains an
element of order p and there is a homomorphism <p:C->G with Ker<£ = M. This
mapping has an extension <fi:G->G with K e r $ = T and TnC = M. But T-=aG implies
that Mh^T and so C^MMh^T. This final contradiction shows that H is a Dedekind
group.

Corollary 23. Every normal (locally) nilpotent subgroup of a quasi-injective group is
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either abelian or is a direct product, QxA, of a quaternion group Q of order 8 and a
periodic abelian 2'-group.

Proof. The normal locally nilpotent subgroup N is a Dedekind group and so is
either abelian or a direct product Q x A of a quaternion group and a periodic abelian
group [3, Satz III.7.12].

We may therefore suppose that N = Q\A and it remains to show that A has no
elements of order 2. Let <<?> be the centre of Q and let xeA be an element of order 2.
There is an isomorphism 0:<q>-»<x> mapping q onto x. Let B:G-*G be an extension of
6 and let Ker B=K. Since Kn<<j> = l, we must have KnQ = l and so there is a
quaternion group Qt = Q0 containing x. Now Q is characteristic in N and hence normal
in G. Thus QQt is a finite 2-group and so, by Lemma 2.2, is a Dedekind group. But
such a group contains only one quaternion group and so Qi = Q contrary to x£Q.

Lemma 2.4 Let N be a normal (locally) nilpotent subgroup of the quasi-injective group
G. Then every subgroup of N is normal in G.

Proof. It is sufficient to prove that each cyclic subgroup X = <x> of N is normal in G.
Suppose first that X has finite order and let geG. It follows from Lemma 2.2 that

X < N and so U = XXB is a finite nilpotent group with Xo U. If X9£ X, then U/X
contains a subgroup C/X of prime order and there is a homomorphism d:C-*G with
Ker0 = X. There is an endomorphism B:G-*G extending Q with YLzrB=Y, say. Then
YoG implies that Y^XX9 = U^C contrary to CnY=X<C. This contradiction
shows that X < G whenever X is finite.

Now suppose that X is infinite cyclic; by Corollary 2.3, N must be abelian. Let geG
and U = XX9; then U is a finitely generated abelian group. If U/X is infinite cyclic then
there is a homomorphism <p:U-*G with Ker<p = X. This extends to an endomorphism
<f>:G^>G with Ker#= W, say. Then W~a G implies that W^XX9= U contrary to UnW=
X<U. We may therefore assume that U/X is finite.

If the torsion subgroup T of U is non-trivial, then TX/X^T and so U/X contains a
subgroup C/X of prime order p for some p dividing \T\. Thus there is a homomorphism
\ji:C-*G with Kerip = X and we obtain a contradiction as above.

Therefore, we may assume that U is torsion-free. Since U/X is finite it follows that U
is infinite cyclic so that either U = X or U = X9. If X"±X, then either (1) g - 1xg=x" or
(2) # ~1x"g = x for some integer n^=0, ± 1 . There is a positive integer r such that n is not
an rth power. Since, by Lemma 2.1(iv), G is radicable, there is an element heG such
that h'=g. Since X9=/=X, we also have Xh£X and, as above, we can show that XXh is
infinite cyclic and either (a) h~1xh = xm or (b) h~1xmh = x, for some integer m=f 0, ±1.
From (a) we obtain g~lxg = h~rxhr = xnf so that either (1) xmr = x" and m' = n or (2)
g~lx"g = xnnf = x so that nmr=l. From (b) we obtain g~1xnfg = h~'xmrhr = x so that
either (1) g~1xfg = x = xnnf and nmr=l or (2) f~1xm'g=x=s~1x'l£ and n = mr. In all
cases we have a contradiction to n not being an rth power and this completes our proof
that X*=i G.

Corollary 2.5. Let G be a quasi-injective group. Then CG(G') is the unique maximal
normal (locally) nilpotent subgroup of G.
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Proof. Certainty CG(G) is a normal nilpotent subgroup. If N is any normal locally
nilpotent subgroup and xeJV, then <x)<G and so G/CG((x}) is abelian. Hence
CG{(x})^G' and so xeCG{G').

Theorem 2.6. A soluble quasi-injective group is metabelian.

Proof. If not, then since the terms of the derived series are fully invariant there is a
soluble quasi-injective group G of derived length 3. In this group G" is a normal abelian
subgroup and so, by Corollary 2.5, G' ̂  CG(G'); that is, G' is abelian and G metabelian.

Theorem 2.7. A nonperiodic soluble quasi-injective group G is abelian and hence is a
divisible abelian group.

Proof. Let xeG'; then <x><3 G and so G/CG«x.y) is finite. But, by Lemma 2.1(iv), G
is radicable and so has no non-trivial finite factor group. Therefore x is central and
hence G' is central. Therefore G is nilpotent and the result now follows from Corollary
2.3.

3. Locally finite groups

We have now reduced our investigation of soluble quasi-injective groups to the
locally finite case. In fact, we shall see that the locally finite quasi-injective groups are
necessarily soluble. Our methods in this section are much closer to those used by
Bertholf and Walls [1] in the finite case although some complications arise through not
being able to assume that the groups have a satisfactory theory of Sylow subgroups.

Lemma 3.1. A locally finite quasi-injective group G is locally supersoluble.

Proof. Let F be any finite subgroup of G and let U/V be a chief factor of F. If U/V
is not cyclic of prime order than there is a prime p such that U/V has a subgroup
E/V^CpxCp. (If U/V is nonabelian we can take p = 2.) There is a homomorphism
Q:E-*G with |lm#| = p and V<Ker0<E. This mapping 6 can be extended to an
endomorphism 8.G-+G with K(STB=K, say. Then K n £ = K e r 0 and so V<KnU<U.
But K n l / < F and we have a contradiction to U/V being a chief factor of F.

Corollary 3.2. A locally finite quasi-injective group is metabelian.

Proof. By Lemma 3.1, G' is locally nilpotent and, by Corollary 2.3, G' is metabelian.
Therefore G is soluble and Theorem 2.6 shows that G is metabelian.

We shall use the term Sylow p-subgroup simply to mean a maximal p-subgroup. It
follows from Lemma 2.2 that a Sylow p-subgroup S of a locally finite quasi-injective
group is a Dedekind group. It follows that S is either abelian or is the direct product of
a quaternion group and an elementary abelian 2-group [3, Satz III.7.12]. We can
improve this result as follows.

Lemma 33. Let G be a locally finite quasi-injective group and let S be a Sylow p-
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subgroup of G. If p is odd then S is abelian. If p=2 then S is either abelian or a
quaternion group of order 8.

Proof. By the remarks above we need only consider the case in which p = 2
and S = Q x E where Q is a quaternion group and E an elementary abelian 2-group.

Suppose that E =/= 1 and let x be a non-trivial element in E. Let <<?> be the centre of Q
so that there is an isomorphism 0:<q>-»<x> mapping q onto x. Let B:G->G be an
extension of 6; then QnKerB= 1 and so there is a quaternion group Qt = QB with <x>
as centre.

There is a finite subgroup F containing Q and Q^ Let T and Ti be Sylow 2-
subgroups of F containing Q and Qi> respectively. Since T and 7\ are Dedekind groups,
Q and Qt are characteristic subgroups of T and 7\ and hence there is an element geF
such that Qi=gQg~l and so x = ^ g " 1 . The homomorphism 0:<x,g>-><x> with Ker$ =
<<2> has an extension <j>:G->G. If M = Ker$, then M^<?,g^" 1 > = <x,q} contrary to
Mn<x, q> = Ker$ = <g>. Therefore E=\ and S is a quaternion group.

Theorem 3.4. / / the locally finite quasi-injective group G has a quaternion Sylow 2-
subgroup Q, then G = QxH where H is a quasi-injective 2'-group.

Proof. Since G has a finite Sylow 2-subgroup, the Sylow 2-subgroups of any
subgroup U of G are conjugate in U. Now Q is a Sylow 2-subgroup of the normal
subgroup QG' and so, by the Frattini argument, G = QG'NG(Q) = G'NG(Q). \{Q£G then
there is a 2'-element xeG' — NG(Q). By Corollary 3.2, G' is abelian and so, by Lemma
2.4, <x>o G.

The natural homomorphism 0:<x>CQ(x)-»<x> can be extended to an endomorphism
B:G->G with Ker#=M, say. Then CQ(x)^Mn<x>Q<i <x>Q. Also Mn<x> = l so that
[ M n ( x ) 2 , ( x ) ] g M n ( x ) = l and we obtain CQ(x) = Mn<x>Q. Therefore lmB
contains a subgroup isomorphic to <x>g/CQ(x).

But Q/CQ(X) is a non-trivial cyclic group and so has order 2. Therefore CQ(x) contains
the centre of Q. Since the Sylow 2-subgroups of G are conjugate to Q and <x><a G it
follows that each element of order 2 centralizes x. However, <x>Q/CQ(x) contains an
element of order 2 which does not centralize x. Hence Im B contains an element of order
2 which does not centralize x8 = x. This contradiction shows that Q«=J G.

But by Lemma 3.1, G is locally supersoluble and so has a normal Sylow 2'-subgroup
H, say. Then G = QxH and it follows from Lemma 2.1(i) that H is quasi-injective.

The following lemma shows that groups of the above form are necessarily quasi-
injective. This gives part (B)(I) of our main theorem and reduces the characterization of
locally finite quasi-injective groups to the case in which the Sylow p-subgroups are
abelian for each prime p.

Lemma 3.5. Let G = SxT, where S is a n-group and T a n'-group. Then G is quasi-
injective if and only if S and T are quasi-injective.

Proof. One direction is contained in Lemma 2.1(i). We assume therefore that S and
T are quasi-injective groups, H is a subgroup of G and B:H-*G is a homomorphism.
Then there are endomorphisms 8S:S-*S and QT:T->T which extend 0\HnS and 9\HnT.
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Since H=(Hr\S) x(HnT) it is easy to check that the mapping B:G->G defined by

(st)8~=(s8s)(tdT), for s e S, t e T,

is an endomorphism extending 9.

The remainder of the paper is concerned with locally finite quasi-injective groups in
which every p-subgroup is abelian for every prime p. We begin by proving that these
groups satisfy the conditions of part (B)(H) of the main theorem (Lemmas 3.6 to 3.10)
and then show that a group with these properties is quasi-injective (Theorem 3.13).

Lemma 3.6. Let G be a locally finite quasi-injective group with abelian Sylow
subgroups. Then G' is a maximal n-subgroup for some set of primes n, and each Sylow p-
subgroup of G is a direct product of isomorphic cyclic or quasicyclic groups.

Proof. If G' contains elements of order p" for each positive integer n, then G'
contains all p-elements of G, by Lemma 2.1(iii), and so G' contains a Sylow p-subgroup
of G.

Suppose then that p" is the maximal order of a p-element in G', where n^. 1. Then G'
contains all elements of order dividing p". If G' does not contain a Sylow p-subgroup of
G then there is an element a£G' such that a has order p"+ 1 . There is a finite subgroup
F such that aeF and a"eF'. Let P be a Sylow p-subgroup of F containing a. Since P is
abelian we have, by Satz III. 13.4 in [3],

P=(PnF')x(PnZ(NF(P))).

Write a = xy, with xePnF' and yePnZ(N^P)): then a" = xpypePnF' and so y"=\.
Hence ap = xp and x is an element of G' of order pn + 1. This contradiction shows that the
Sylow p-subgroup of G' is a Sylow p-subgroup of G.

The structure of the Sylow p-subgroup S of G, for ped>(G'), follows from the
observation that any two elements x, y of order p have the same height in S. For,
suppose x has height n in S and y has height greater than n. Then there is an element
geS such that gp"*l = y. The isomorphism #:<>>>-><x> mapping y onto x extends to an
endomorphism &~:G->G. Clearly (g3)p"+> =x and gU, being a p-element, is an element of
the normal Sylow p-subgroup S.

By Lemma 2.4, every subgroup of G' is normal in G and so each element of G induces
an automorphism of the abelian group G' which fixes each subgroup. Robinson [6] calls
such a subgroup-preserving automorphism a power automorphism. We restate the
relevant part of his Lemma 4.1.1 on power automorphisms in the context of quasi-
injective groups.

Lemma 3.7. Let G be a locally finite quasi-injective group with abelian Sylow
subgroups and let geG. Then, for each prime p e a>(G') and each positive integer r, there is
an integer m = m(p,r,g) such that g~iag = am,for every element aeG' of order dividing pr.

Lemma 3.8. Let G be a locally finite quasi-injective group with abelian Sylow sub-
groups and let n = w(G)—<b(G'). Then each maximal n-subgroup of G is a complement to G'.
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Proof. Note first that G'nZ(G) = 1. For, otherwise there is a p-element xeG' nZ{G).
There is a finite subgroup F of G such that xeF' and F has an abelian normal Sylow p-
subgroup P, say. Then xePnF'nZ(F) contrary to this subgroup being trivial, by Satz
IV.2.2 in [3].

Now let C = CG(G') the maximal normal locally nilpotent subgroup of G (Corollary
2.5). Then C = G' xD, where D is an abelian normal re-subgroup of G. Since
[G, D] g G' n D = 1 we see that £> = Z(G).

For each peaJ(G'), let CP = CG((G')P). It follows from Lemma 3.7 that G/Cp is finite
and so there is a countable subgroup L/C of G/C such that LCP=G, for all petw(G').
Then L/£> is an extension of the normal re'-subgroup C/D by a countable re-group and
so C/D has a complement K/D in L/£>. Now K is a re-group, K/D is countable and
KCP = G, for all ped>(G'). We show first that CG(K) is a complement to G' in G.

If G'nCG(K)£l, then there is a p-element xeG'nCG(K). The element x centralizes
Cp and K and hence xeZ(G)nG' = l. Thus G'nCG(K) = l and, in particular, CG(K) is
an abelian re-group.

Let geG and H = KG\g~) so that H/C is a countable re-group. Then C/Z) has a
complement S/D in H/D. Since D = Z(G), S is a re-group and SG' = H. It follows that
SnKG' and X are both complements to G' in KG'. Since G' is abelian, we may apply
Hilfssatz VI.7.14 of [3] to obtain an automorphism 9 of KG' which coincides with the
identity on G', maps SnKG' isomorphically onto K and satisfies (xO)x~leG', for all
xeKG'. There is an endomorphism B:G-*G which coincides with 9 on KG'. Suppose
that S=(SnKG'Ky}, so that H = KG\y). Since B coincides with the identity on G', we
have {yB)y~leC^KG'. Therefore yeKG'(yB)£KG'(SQ). But SB is a 7t-group containing
K and so SB^CG(K). Therefore yeG'CG(K). Hence geH = SG\y>^G'CG(K) and, since
g was chosen arbitrarily, we have G'CG(K) = G and so CG(K) is a complement to G'.

Now let T be a complement to G' (e.g., T=CG(/C)) and let U be any maximal TI-
subgroup of G. Then 1/ and TnUG' are complements to G' in t/G'. As above there is
an automorphism <f> of t/G' coinciding with the identity on G' and mapping TnUG'
isomorphically onto U. Let $:G-*G be an endomorphism extending <f>. Then T"$ is a n-
group containing U and by the maximality of U we have T$ = U. If UG' ̂  G, then since
(TnUG')^ = T$ we obtain T n K e r ^ ^ l . But

[ T n Ker <?, G] ^ Ker <? n G'= 1

and so T n K e r $ is a central re-subgroup. Hence TnKer$ is contained in the maximal
re-subgroup U, contrary to Tnl /G 'nK.er$=l .

Lemma 3.9. Let G be a locally finite quasi-injective group with abelian Sylow
subgroups. If S is a Sylow p-subgroup of G, then S is the direct product of isomorphic
cyclic or quasicyclic subgroups.

Proof. This has already been proved in Lemma 3.6 for primes pec5(G'). For primes
p^co(G') we require the complementation result proved above. As in Lemma 3.6 we can
prove that any two elements of order p have the same p-height in G. We must show
that an element x e S of order p has the same p-height in S as in G. Suppose that y is a
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p-element such that xe<y>; we must show that there is an element geS having the
same order as y such that xe<g>. There is a Sylow p-subgroup P of G containing y
and, by Lemma 3.8 and Hilfssatz VI.7.14 of [3], there is an automorphism 4> of G such
that P<t> = S and (f> induces the identity on G/G'. Then x<peO/>>^S and ^eG'<x>. But
Sr\G'(xy = (xy and it follows that x(f> = x. Therefore xe(y<p}^S and x has the same p-
height in S as in G.

Lemma 3.10. Let G be a locally finite quasi-injective group with abelian Sylow
subgroups. Let n = &{G) —d)(G'), H a maximal n-subgroup of G and G'tt a maximal a-
subgroup of G', for some set of primes a £ dj(G'). Then C^G'a) is a direct factor of H. In
particular, Z(G) = CH(G') is a direct factor ofH.

Proof. It is sufficient to prove that if heH such that h"eCH(G'a) for some prime
pen, then there is an xeCH(G'a) such that h"=xp.

The natural homomorphism 0:G'a(h
p)>-*G'a can be extended to an endomorphism

B:G-*G with Ker#=M, say. Since h^C^G'a), we have MnG'a(h) = <hpy and so imB
contains an element y with the same action on G'a as h. Now yeG\yy = G'(G\yynH)
and G\y}nH is a finite Sylow 7t-subgroup of G\y}. Therefore there is an element
geG' such that <y>*gH. Clearly y" still has the same action on G'o as h and so x =
h(y9)"1 e CH(G'a) is the required element.

We now show that a group with the properties obtained in Lemmas 3.6 to 3.10 is in
fact a quasi-injective group.

Theorem 3.11. Let G be a split extension of a normal n'-group K by a n-group H
satisfying the following conditions:

(i) H and K are abelian groups in which each Sylow subgroup is a direct product of
isomorphic cyclic or quasicyclic groups,

(ii) K = G',

(iii) every maximal n-subgroup of G is a complement to K,

(iv) for each heH, pen' and positive integer r, there is an integer m = m(p,r,h) such
that h~iah = am,for every element aeK of order dividing pT,

(v) if ffS7t and Ka is the Sylow a-subgroup ofK, then CH(Ka) is a direct factor ofH.

Then G is a quasi-injective group.

Proof. Let L^G and let O.L^G be a homomorphism.
(A) If a=ib{KnL/KnLnKer6) and xeL, then x~\x9)e CG(Ka).
Let pea and ke(KpnL)-Ker6. Then, using (iv), we obtain (kd)xB = (kx)e=(k6)x. Thus

x-1{xd)eCG(k6). But, using (iv) again, CG{k6) = CG(KP). Therefore x~l(x6) centralises Kp

for all pea and so x~\x&)eCG{Ka).

(B) The homomorphism 0:L-*G can be extended to a homomorphism O^.
such that K^gKerflj.

Since K is a quasi-injective abelian group and {KnL)6^Ka, we can extend 9\KnL to a
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homomorphism 92:K-*K such that Ka92^Ka and Ko^Ker92. We now define
O^.KL^G by

(kx)9l =(kd2)(x6), fovkeK, xe L.

Since 92 is an extension of 9\KnL> 6l is well-defined. Also 6t is a homomorphism, since

by (A),

using (iv),

(C) The homomorphism 9l:KL-*G can be extended to B.G-+G.
There is an ascending series from KL to G in which each factor is cyclic of prime

order. It is sufficient to extend 92 to B:M-*G where \M/KL\ = p and proceed inductively
as there is no problem at limit ordinals.

Now M = K(MnH) and KL=K(KLnH). Let he(MnH)-KL be a p-element. Since
(KLnH)91 is a 7r-group, there is an automorphism 0 of G coinciding with the identity
on K and such that (KLriH)9l^H((>. Then 6i(p~1:KL->G is a homomorphism such
that (KLnH)91(f>~1^H and dJ(/C/XnKer01</»"l) = <T. By (A), ( / i ^ ' ^ i f 1 )eCH(JCB)
or hp91=(hpc)(t>, for some p-element c=(/i"1(^i^"1))p6CH(K,). By (v), there is an
element deCH(Ka) such that d" = c and so (hp)91=((hd)")<t>. We can extend 0j by
defining hQ=(hd)<j>.

This completes the proof of our main theorem. We stated in the Introduction that
soluble or locally finite quasi-injective groups are T-groups. We have not yet proved this
as we have only needed the subgroups of G' to be normal in G. Since nonperiodic
soluble groups are abelian they are clearly T-groups. For the locally finite case we can
give a direct proof as in [1].

Theorem 3.12. Every subgroup of a periodic quasi-injective group is a T-group.

Proof. Suppose that K < L < I / ^ G . / / K-jiH then there is an element heH such
that Khj=K. Let U = KhK^L. Since U>K, there is a subgroup C/K of prime order p
and a homomorphism 9:C->G with Ker0=/C. This mapping can be extended to an
endomorphism 9~:G-*G with Ker#=M, say. Then /CgM-aG and so U = KKh£M,
contrary to MnC = K.
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