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Abstract. This paper investigates finite p-groups, p > 5, in which every cyclic
subgroup has defect at most two. This class of groups is often denoted by U5, ;. The
main result is a theorem which characterises these groups by identifying a family of
groups in U, 1, and showing that any finite p-group in U, ;, with p > 5, must be a
homomorphic image of one of these groups.
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Introduction. In this paper we characterise finite p-groups (p > 5) in which
every cyclic subgroup is subnormal of defect at most two. Let ¢/, denote the class of
all groups in which every subgroup is subnormal of defect at most d, and let U,
denote the class of groups in which every n-generator subgroup has defect at most d.
In the case d = 1, Uy is the class of Dedekind groups, and U, ; = U;. Ford =2, U>
is different from U, as shown by Ormerod [4] for 3-groups, and Parmeggiani [5] for
p-groups, p > 3.

In terms of this notation, we investigate the groups U, ;. Restricted to 2-
generator p-groups, p odd, Mahdavianary [3] has shown that U,; =U,, and
that any group in U,; has nilpotency class at most three. Further he has
shown that any group G € Uy, if and only if [v,u,u] € (u) for all ¥ and v in
G. Using this, and the regularity of p-groups in U, ;, we prove the following
result.

THEOREM A. Let G be a finite p-group, p > 5. Then G € Uy if, and only if, G is a
homomorphic image of a group G,(ry,...,r,), where 1 <ry <r, <-.-- <r, and

Gy(ris ..., ra) =<ai, by, ..., aw by [biyaial =&’ [bi, ai, bl = b, [x, a;, bi] =
[bi, x, )]l = X", [x, a;, @] = [x, a;, x] = [x, b, bi] =[x, b, x] = 1,

. aia] =y, @y ail = [y, bi, bjl = [y, b bil = 1, [y, a;, bj] =

V. b ai]l =1, ya(Gy(ri, ..., ) =1 >

where 1 <1i, j<n, i#]j, xe{a,by,...,a,b,\{a;,b;}, yvelay,b,...,ayb,}\
{afs bi? a]? b]}'

https://doi.org/10.1017/5S0017089502030094 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089502030094

444 ELIZABETH A. ORMEROD

While writing this paper I was made aware of a similar unpublished result con-
tained in the dissertation of M. Stadelmann [6]. For a group G, P. Hall [2] defined an

ordered set of elements pi,...,p, of order my,...,m respectively, (m; > 1,
i=1,...,r) as a uniqueness basis of G if every element p € G can be expressed
uniquely

p=p...p"
withO<x;<m (i=1,...,7r).

Hall also showed that every regular p-group has a uniqueness basis. Stadelmann
in his dissertation showed that if G is a p-group in U, | on n generators (p > 3), then
there exists a uniqueness basis for G, and for each i,j € {1, ..., n} there exist integers
Pij and rij > 0 such that rij = Vi, Pij = —Pji> Vi = Pii = 0, (,OU‘,[)) = 1, for l?é],

L
i P
i )

[x), xi, Xi] = X forall i,jef{l,...,n}

and

D"k + 0 p I
[Xk, XiXjX0, XiXjx] = (000 ) 0 Ok

forall i,j,ke{l,...,n}.
Also, if G is a p-group with y4(G) = 1, and a basis xi, ..., x, satisfying these rela-
tions, then G € Uy ;.

The work in this paper is quite consistent with Stadelmann’s work but gives a
much clearer picture of groups in U, . Having found such a characterisation of
groups in which every cyclic subgroup is 2-subnormal it remains to find more
information about U,, the class of groups in which every subgroup is 2-subnormal.
As mentioned earlier, U/, is a proper subset of U |, so the result in this paper should
be helpful. Other subclasses of U, | have also been defined, namely N/, the class of
groups in which every normaliser is normal, and C, the class of groups in which the
commutator subgroup normalises every subgroup. The class A is a proper subset of
U, (Parmeggiani [5]) and for p-groups, when p is odd, the class C coincides with W,
the class of groups of Wielandt length two. However, it is not known whether or not
the class of p-groups (p odd) in N coincides with those in C.

Proof of Theorem A. Throughout the rest of the paper assume that p > 5. The
proof of Theorem A is quite long and has many tedious calculations. We aim to
keep these to a minimum, subject to providing sufficient evidence of their accuracy.
The first step is to prove the sufficiency of Theorem A.

LemMMA 1. Let Gy(r1, ..., r,) be a group with the presentation given in the state-
ment of Theorem A. Then Gy(ry, ..., r,) € Ua .

Proof. Put G = G,(ry, ..., r,), r =ri, and note that G is a regular p-group. Since
F<ry <---<r, the relations imply that y3(G) = (a’l’/, b’l’/, o al Py Tt follows
that y,(G) has exponent p" and each generator has order p*. Since G is regular this is
enough to show that G has exponent p’.
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For any u € G we can write
_ b % 1B/
u=a"'b\" ... .a;b"u

where ' € y2(G) and 0 < a, Bi < p'. Also w?” = a7 P .. %P bP" . To show that
G € U, it will be sufficient to show that [x, u, u] € (u) for all x € {a1, by, ..., an, by}.
Let x =a;, 1 <i <n. Then

[x, u, u] = [a;, a‘f‘b’f‘ .. .aZ”bf”u’, a‘f‘bf‘ .. .afj"bf”u/]

= [ai, a? D" .. a P a B . a b

n°?
= l_l[ai7 ajo'[/s Cl‘;k][aj, q;?tly bfk][ai» bf/’ azk][al'v b//'sfv bfk]
Jk
= ([Tt @ o0 e, ' @ ' 6 W, B Vi B 60V, B, 571)
J#
x [aj, bf’, ala, bf’, bj»g"]

aiBipl —aiBipi —aiBip’i —2aBip"i , —BiBip"t . —2BiBipi
_ Hai Bip a Bip a iBip a iBip b, BiBip b, ﬁ/ﬁp>

J#i
I
)
_ e
A similar calculation shows that [b;, u, u] = u’*”". Hence G € U ;. ]

We now move to the rest of the proof of Theorem A. The proof relies very much
on the facts that G,(r1, ..., r,) has nilpotency class three, and that p > 5, ensuring
that G,(r1, ..., r,) is a regular group. The choice of generators is also crucial. Since
2-generator groups in U, ; belong to W,, the class of groups of Wielandt length two,
some properties of these groups are used extensively. When p is an odd prime, if a
group G has Wielandt length two, the commutator subgroup G’ is in the Wielandt
subgroup. Elements of the Wielandt subgroup induce power automorphisms, and
for regular finite p-groups, power automorphisms are universal (see Cooper [1,
5.3.1]). Hence if w is an element of the Wielandt subgroup of a regular finite p-group
G, then there is an integer n such that [w, g] = g” for all g € G. It follows then that if
x is an element of maximal order in G and [w, x] = x™ for some integer m, then
[w, g] = g" for all g € G. In particular, if [w, x] = I then [w, g] =1 for all g € G. Let
g, hbe elements of a group G € U, ;. Since (g, &) has Wielandt length two, there are
integers o and r > 1 such that [g, 4, x] = x*" for all x € (g, h). The integer « is not
unique, since if |x| =p”, x¥ = x4 = x«(H"W  However, the integer r
remains unchanged. If [g, /1, x] # 1 for all x € (g, h), put

rgn = {r:[g, h,x] = x*7 for all x € (g, h), (a, p) = 1}.

If [g, h, x] =1 for all x € (g, h), put g, := 00. For every g € G, set
R(g) :={ren : h € G}.

Also we use ©(G) to denote the Frattini subgroup of G.
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LEMMA 2. Let G be a group in Uy 1 of class 3. Then

(1) there exists a € G of maximal order and x € G such that [x, a, a]l # 1,

(i1) there exists a of maximal order in G and b e G\(a)®(G) such that
[b,a,a] # 1.

Proof. (1) If [v,u,u] =1 for all v, u € G, then G has class 2, contrary to the
assumption. So there exist ¥ and v in G such that [v, u, u] # 1. If u is of maximal
order, the proof is complete. If v is of maximal order, [v, u, u] # 1 implies [v, u, v] # 1
and again the proof is complete. If neither u# nor v is of maximal order, let a be an
element of maximal order. Then |av| = |a| and [av, u, u] = [a, u, u][v, u, u], where
either [av, u, u] or [a, u, u] is non trivial. If [a, u, u] # 1, then [a, u, a] # 1, giving the
required result. A similar result follows if [av, u, u] # 1.

(i1) From part (i) we can find x and « such that [x, a, a] # 1. If x & (@) ®(G), there
is nothing to prove. If x € (a)®(G), choose b € G\ (@) ®(G). Then bu € G\P(G) and
either [b, a, a] or [bu, a, a] is non trivial. |

THEOREM 3. Let G be a finite 3-generator p-group in U, of class 3. Then there
exist generators {a, b, ¢} for G such that a has maximal order in G, and G has relations:

[b,a,al =a*, [b,a,b]l=>b¥,
[c,a,b] =[b,c,al = ¢,

[c,a,al =]c,a,c]=]c, b,b]l=]c,b,c]=1.

Proof. Choose a and b in G such that
(1) a is of maximal order in G,
(i1) {a, b} can be extended to a set of (non redundant) generators for G, and
(iii) rg, is minimal in U,R(a) for a of maximal order in G, and b satisfying (ii).
Lemma 2 ensures that this choice is possible. Put r = ry,. Then [, a, a] = a*" and
[b,a, b] = b*". Let {a, b, y} be a set of generators for G. Since G is in U, ; and every
2-generator subgroup is in W, we can assume that G has the following relations;

[b,a,al=a”, [b,a, bl=>b",
[v.a,al=a”, [y ayl=)y",
[y, b,b] =7, [p,b,y] =",

where p, o and 1 are integers and (pot, p) = 1, and r, s and ¢ are positive integers. By
the choice of @ and b, s > r. By taking suitable powers of » and y we may assume
that o = v = 1. Since G has class three, a’, b, a”', "', b and )" are central. Since
the group is regular and r < s, | = [y, @1 = [y, af’ =", a]. Similarly [y, b] = 1,
[@”,y] =1 and [a", b] = 1. So if m = min{r, 1}, then {a", ", 17"} C £(G).

Assume that [y, a,a] # 1. If [y, a,a] = 1, then [y, a, y] = 1, making the following
step unnecessary. Put x = y?5”"". Then

[x,a,a] =", a, dt’ ", a a = a” @) =1.
Since |x| < |al, the regularity of the group gives [x, a, x] = 1. Also [x, b, b] = b”" and

[x,b, x] = X' So G = {a, b, x) and has relations
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[b.a,al=a”, [b,a,b]=b",

[x,b,b] = bPr, [x, b, x] = X

[x,a,dl =[x,a,x]=1.

By taking a suitable power of » we can adjust p. For convenience in the next step,
choose p = 3.

We get further information about G by considering 2-generator subgroups of G.
Each 2-generator subgroup of G has Wielandt length two with the property that its
commutator subgroup is in its Wielandt subgroup. In (a, bx),

[a, bx, a] = [a, b, d][a, x, a] = a” .
Hence [a, bx, bx] = (bx)™ = b= x=¥"_ On expansion

la, bx, bx] = [a, b, b][a, b, X][a, x, bl[a, x, x] = b~ [a, b, X][a, X, b].

Put w =[x, a, b]. Then [a, b, x] = wx™¥, and from the Jacobi identity, [x, b, a] =
w?x~3 _If |b| > |x|, consider (b, ax). Here

[b, ax, b] = [b, a, b][b, x, b] = b b~ = pP" ),

From this, [b, ax, g] = g "= for g € (b, ax), where (%, p) = 1 and " = 1 and by
the assumption on the orders of » and x, x” = 1. Consequently,

[b, ax, ax] = (ax)*? P = P03

Also
[, ax, ax] =[b, a, d][b, a, x][b, x, a][b, x, x]
= @V w2
= @ XT3
giving

’ ’ !
w =X

If @' =1, then w = x"a”. If @ # 1, put 3p' + ipl = 3%p. Then [x, b, b] = B%,
[x, b, x] = x>, and w = x” y7'. By choosing a suitable power of x, we may assume
7 = 1. We have shown that the following relations hold in G:

[b.a,a)=a”, [b,a,b]=b",

[x, b, b] = Y, [x, b, x] = X

[x,a,b] = a'xV [b, x,a] = a

[x,a,a]l =[x,a,x]=1

where ¢ represents ¢ or f, as necessary. The same result is achieved by a similar cal-
culation if x| > |b|.
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If t <7, put @ =ay”'~'. Then |d'| = |a|, and [b, &', a') = (@)"', [b.d', b] = b¥"",
contradicting the choice of  and b. If ¢ > r, put ¢ = x&” . Then G has the required
relations. ]

THEOREM 4. Let G be a finite p-group in U 1. Then there exists a set of generators
{a, b, x3, ..., x,} for G, where a is of maximal order in G, and the following relations
are satisfied:

[b,a,al=a*, [b,a bl=>b",
[x,a, bl =[b,x,a] = X

[x,a,al =[x,a,x]=[x,b,bl=[x,b,x] =1,1(G) =1,

where x € {x3, ..., X,}.

Proof. Choose a and b in G such that
(i) ais of maximal order in G,
(i1) {a, b} can be extended to a set of (non redundant) generators for G, and
(iii) r4 1s minimal in U,R(«a) for a of maximal order in G, and b satisfying (ii).
Put r =ry. Let {a, b, y3,...y,} be a set of generators for G. Put H; = {(a, b, y;).
As in Theorem 3, each group H; has generators {a, b;, x;} satisfying

bi,a,al =a”, [bi,a,b]=b"
[xi. @, bi] = [by, xi.a] = 5
[xi, a, al = [xi, a, x;] = [x;, b;, bi] = [xi, bi, xi] = 1, y4(G) = 1.

This almost completes the proof of the theorem, except that each b; is a (possibly
different) power of the original element b. However, since each b; satisfies
(b, a,a] = ¥ and [b;, a, b)) = b}”" and b; only differs from b; by a power of b, b; will
also satisty [x;, a, bj] = [b}, x;, a] = xf So any b; will be suitable to satisfy the rela-
tions given in the statement of the theorem. For convenience, choose b = b3. O

The statement of Theorem 4 does not yet give a presentation for a group in U, ,
but perhaps it can be thought of as a “partial presentation’. The designation “‘par-
tial presentation’ is used for convenience and refers to the presentation of a group
of which the group having the “partial presentation” is a quotient. Call this partial
presentation P;. We define a series of partial presentations, Py, on the generating set
Dy, where

Dk = {alv blv ~'~3ak’bk7x2k+ls ...,xn},
and q; is of maximal order in {(a;, b;, ..., ar, bx, X2k41, ..., Xn), 1 <i < k. The partial
presentation P; is given by:
31 31
]p ) [b17a19b1]:b1p )

[x, a1, bi] = [b1, x, a1] = ¥,

[br,ai,al]l=a

[x, a1, a1] =[x, a1, X] =[x, b1, b1] =[x, b1, x] = 1,
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where x € Di\{a, b1}. The partial presentation Py is given by:

[bi, @i, ai] = a%p . [bisai, bil = b?pri,

[x, ai, b] = [bi, X, aj] = X",

[x, ai, ai] = [x, ai, x] = [x, b, bi] = [x, by, x] = 1,
Ly, @i, a) = [“V’a a) = [y, bi, bl = [y, b;, bi] = 1,
[y, ai, b) = [y, bj, ] = 1,

where l,j € {1, ey k}, l#j, and x € Dk — {a,-, bl'}, DS Dk — {a,‘, b,‘, a;, b/}
THEOREM 5. Let G be a finite p-group of class three in Uy, on n generators, and let
k be a positive integer such that 2k < n. Then there exists a set of generators Dy as

given above, such that G has a partial presentation Py.

The next series of lemmas is used in the proof of this theorem. In these lemmas
the group G has class three and is defined as follows:

G={ay b, ...,a1,bk_1,X0%—1,...,Xy)

where the generators satisfy the relations P_;, 2 < 2k < n, and

Hi = (ah bi’ ceey Qi—1, bk—l» Xok—1s+ -+ X”>,

and ¢; is of maximal order in H;, 1 <i <k —1. Also

Hy = (xop—1, ..., Xp)

LEMMA 6. Let a be an element of maximal order in the subgroup Hy of G and let
b € Hy such that [b,a,al = a*', [b, a, bl = b for some integer t. Then there exists
an integer r such that

[b,a,al=a*”, [b,a b= and [ai,a, bl=I[b,ai,a=a".
Proof. Note that [ay, ab, a;] = 1 which implies that
1 =[ay, ab, ab] = [a1, a, b][a, b, d].

Put w:=[a;,a,b]=[b,a;,a]. By the Jacobi identity w? =][b, a, a;]. Further
[a, aib, a) = a~" which implies

[a, a1b, a1b] = (ayb) ¥ 3" = af3p’b*31"af3”’/
where (A, p) = 1 and @' = 1. Also

la, arb, a1b] =[a, a1, bl[a, b, ar][a, b, b]

_ _ '
=w3p,
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. / .
From this we get w’ = a?” g = 1, put r := t and we have the required result.

Otherwise, put 3pp" := 3p' 4 31p’ which gives w = a{’ ". Then [b, a,a] = a*"” and
[b,a, b] = b3 . |

LEMMA 7. Let a be an element of maximal order in the subgroup Hy of G and let
b € Hy such that [b, a,a] = ar, [b,a, bl = b, If also [a1,a,b]=[b,ai,al=a",

then [u, a, bl = [b, u, al = u”" for u € {by,ay, bs, ..., ar_1, bi_1}.

Proof. If |u| = |ay|, then [u, ab, u] = 1 giving 1 = [u, ab, ab] = [u, a, b][u, b, a]. If
lu| < |a1], then |ua;| = |a;| and

[uai, ab, uai] = [u, a, ullu, a, aillu, b, ullu, b, aillai, a, ulla,, a, ai][a1, b, ullai, b, a1].
If u # by all these terms are trivial. If u = by, then
w,a,a)]=d", [a,aul=a?”", [ubal=0", [a,bu=>b"",
and all other terms are trivial. In all cases [ua;, ab, ua;] = 1. So

| = [ua, ab, ab) =[u, a, b][u, b, ald’ a;”’
=[u, a, b][u, b, a].

Put w:=[u,a, bl =[b,u,a] and w? =[b,a,ul. If |a| = |a;|, then [a,ub,a] =a= >

implies
(ub)™" =a, ub, ubl = w3b=¥".
Thus w = u”". If |a| < |a;|, then |aa;| = |a;| and
e AR A
So, if u = by,
(b1b)™" =" =T[aay, byb, byb) = b7 =" = w3,
giving w = b’l’ If u # b, a similar calculation gives w = »”', as required. O

LEMMA 8. Let a be an element of maximal order in the subgroup Hy of G and let
b, x € Hy such that |[ay, a, b]| > |[a1, a, X]|, [a1, a,b] = & , and [a, x, x] = [a, x, a] = 1.
Then there exists X' = xb™ such that [x',a, 1] =[x, a1, a] = 1.

Proof. The proof is similar to the previous proofs, and [a;, ax, a;] = 1 implies
1 =[ay, ax, ax] = [a1, x, a][a;, a, x]. Put w :=[ay, a, x] =[x, a1, a] and w2 = [x, a, ai].
Also [a, a;x, a] = 1, but since a is not necessarily of maximal order in G we can only
deduce that there exist integers A and /> 1 such that (\,p)=1, o’ =1 and

! _ ! .
[a, a1x, a;x]= (alx)*?” =q, 31”1 . Upon expansion [a, a1 x, a1 x] = [a, a1, X][a, x, a;] =

w3, giving w=a". If @’ =1, then w=1 and we put x' =x. Otherwise
put x' = xb=*"". The condition on the orders of [a1, a, b] and [ay, a, x] ensures that

[ >r. Then [a;, a, X'] = [X, a1, a] = 1, giving the required result. O
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LEMMA 9. Let a be an element of maximal order in the subgroup Hy of G and

assume that [z,a,b] =[b,z,a] =z for z € {a, by, ..., ar_1, bi_1}. Let x € Hy such
that [x,ai,al=[x,a,a;]=1. Then [u,a,x]=[u,x,al=1 for ue{by,ax by,...,
-1, br—1}.

Proof. Again, the proof is similar to previous proofs. If |u| =|a;|, then
[u, ax, u] = 1 implies 1 = [u, ax, ax] = [u, a, X][u, x, a]. If |u| < |ai|, then |aju| = |a|,
together with [ayu, ax, aju] =1, implies 1 = [ayu, ax, ax] = [u, a, x|[u, x, a]. Set
w:=[u,a, x] =[x,u,a] and w?> =[x, a,u]. If |a| =|ai|, then [a, ux,a] =1 implies
1 = [a, ux, ux] = [a, u, x][a, x, u] = w3, giving w = 1, as required. If |a| < |a;], then
laa,| = |ay]. In this case

3y -
[(1(11, ux, (JLZI] = { (aal) 7 if u= bl’
1 otherwise.

Hence

wx)™  if u=b,

[aala ux, ux] = { .
1 otherwise.

In either case, upon expansion of the commutators, we get w® = 1, which implies
w = 1, completing the proof. O

Proof of Theorem 5. The partial presentation P; is given by Theorem 4. Assume
that the group G has partial presentation Pi_1,2 < k < 2n. We prove the theorem
by deriving the presentation Py. Let Hy = (xp,_1, ..., X,). Assume that Hj has class
three. By Theorem 4 there exist generators {a, b, zo4+1, - - ., z,} for Hj with the fol-
lowing properties:

[b,a,a)=d”, [b,a,bl=b"
[z,a,b] =[b,z,al =",

[z,a,al =[z,a,z] =[z,b,b) = [z,b,z] = 1, ya(Hy) = 1,

where (@) N (b) = 1, and z € {zok41 ..., z,}. Since
[x, ai, b;] = [b;, x, a;] = X" and [x, ai, a;] = [x, a;, x] =[x, by, bi] =[x, by, x] = 1

for ie{l,...,k} and x € Dy — {a;, b;}, for each i these relations are also true for
x € (Dy — {a;, b;}). In particular,

[v, ai, bi] = [bi, v, ai] = v?" and v, ai, a;] = [v, a;, v] = [v, b;, bi] = [v, b;,v] = 1

forve{a b, zyyr...,zn}.
To prove the theorem we need to define r; and then show that

[u,a, b] = [b, u, a] = u”", (10)
for u € {ay, by, ..., ar_1, by—1}. Then we need to show that
[z,a,ul =z, u,a]l = [z, b, u] = [z,u,b] =1 (11)
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for z € {zog41 ..., zy} (or an appropriate set of generators) and u as above. Lemma 6
provides an integer, call it r;, such that

[b,a,al = a***, [b,a,b]l=b*" and [ay,a, bl =][b,a,a=a"",

where pp* :=p' +Ap', (A, p) = 1 and @” = 1. Since @ has maximal order in Hy, we

also have that [z, a, b] = [b, z, a] = z”"* for z € {z241 ..., z,}. By choosing a suitable
power of b we can assume that p = 1. Lemma 7 now completes the proof of (10).
Let z € {zok41 - - . f [ay, a, z] [ay, z, a] =1, put 7/ :=z. Otherwise, from

the proof of Lemma 8 [a1 a,z]l= a’l\ , where o = 1 Since [b a,al = a"* ;é 1, this
ensures that /> r, and |[ay, @, b]| > |[a1, a, z]|. In this case, replace z by z/ = zb’\l’

Then {a,b,z5,...,2,} generates Hy, and [z,a,a]]=][z,a,a]=1 for
z€{Zyys--on2y)e It is also  true that [z, a4, b = [bi, 2, 4] = ", and
z,ai,a;) = [z,a;,z] = [z, b;, b;] = [z, b;,z] =1, 1 <i<k—1. Lemma 9 now com-
pletes the first part of (11), namely, that [z, a, u] =[z,u, a] = for z € {Z5_,, ..., 2}
and u € {Cll, bl, ey i1, bkfl}.

To complete the proof of (11) we first consider [z, aj, b]. If |b| = |a| we can again
use Lemma 8, with a small modification, to show that [z/,al,b] =[Z,b,a1] =1,
where z' = za™, for some integer m and z € {zzkH,... z,}. If |b] < |al, we use
Lemma 8 also, for ¢ = ab noting that [a), d’, a] = a;” Wlth a slight modification
to the proof of Lemma 8, we again find z/ = za™ for some integer m such that for
each 7z, [Z,a,d]=[Z,d,a;]=1. Since [Z,a;,d] =]z, a,a]ld",a;,a]=1 and
[z, a,a;] = 1, this is enough to show that [Z/, a;, b] = [z, b, a1] = 1. Again the rela-
tions already established for z € {25, ..., z,} also hold for z € {5, ..., z;}, and
Hi={a,b,z5_,,...,z,). Lemma 9 now completes the proof of (11).

We consider the situation when Hj has class two. In this case choose a so that a
has maximal order in Hj;, and choose » so that b e H\®(H;) and
[[ai, a, b]| = |[ai, a, x]| for any x € H\®(Hy). If [a;,a,x] =1 for all x € Hy, the
choice of b is arbitrary. Choose {zyiy1...,z,} so that {a, b, zop11...,2,} 1S a gen-
erating set for Hy. With the convention that [0, a, a] = @' for some integer ¢ > |al,
the proof follows as for the case when Hj has class three.

If we now put a; :=a, by := b and u; 1=z}, 2k + 1 < i < n, then the generators
{ay, by, ..., ar, by, usgs1, ..., u,} for G satisfy the relations Py. O

Proof of Theorem A. If G has class less than three, the theorem is true. So
assume that G has class three and is a group on m generators. If m is even put
n = m/2. Then by Theorem 4 G has the partial presentation P,. This is the required
presentation, except that the integers r; might not be ordered as stated in the Theo-
rem. By changing the labelling of the generators we can ensure that
rn=<rn<--=<rn

If m is odd, put n = (m + 1)/2. Then from Theorem 4 G has the partial pre-

sentation P,_i, on generators D, = {ay, by, ..., ay_1, by_1, Xxpn}. Again, by changing

the labelling of the generators, we can ensure that r; <..- <r,_;.Put @, = x,,, and

r, = exp(G) + 1. Then G is a homomorphic image of G(ry, ..., r,). O
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