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ON SHEAF REPRESENTATION OF A 
BIREGULAR NEAR-RING 

BY 

G E O R G E S Z E T O 

ABSTRACT. It is shown that R is a biregular near-ring if and only 
if it is isomorphic with the near-ring of sections of a sheaf of 
reduced near-rings over a Boolean space. Also, some ideal proper­
ties of a biregular near-ring are proved. These are considered as 
generalizations of some works of R. Pierce on biregular rings. 

1. Introduction. R. Arens and I. Kaplansky [1] called a ring with identity 
biregular if every two sided principal ideal is generated by a central idempo-
tent, and they gave a topological representation of such a ring. Then A. 
Grothendieck and J. Dieudonne [7] proved that a commutative ring is 
isomorphic with the ring of sections of a sheaf of local rings. More sheaf 
representations of rings, modules and algebras were found by J. Dauns and K. 
Hofmann [4], R. Pierce [11], J. Lambek [9], K. Koh [8], and B. Davey [5]. A 
lot of applications of the representation theory were also obtained by R. Pierce 
[11], O. Villamayor and D. Zelinsky [13], G. Bergman [3], A. Magid [10], F. 
DeMeyer [6] and G. Szeto [12]. The purpose of the present paper is to 
generalize the Pierce representation for a biregular ring [11] to the case of 
near-rings. We shall show that JR is a biregular near-ring if and only if it is 
isomorphic with the near-ring of sections of a sheaf of reduced near-rings over 
a Boolean space, where a near-ring T is called reduced if TaT= T or 0 for 
each a in T and T is biregular. Also, some ideal properties of a biregular 
near-ring are proved. 

The author would like to thank Professor B. Banaschewski for his many 
valuable comments and suggestions. In particular, he has called my attention to 
the related work of B. Davey [5] (see Remark 2), and suggested the theorem 
that the central idempotents of a biregular near-ring form a Boolean algebra 
(See Lemma 3.1 and Theorem 3.2). 

2. Preliminaries. A near-ring R is an algebraic structure (R, + , •) such that 
the following axioms are satisfied: (1) (R, +) is a group (not necessarily 
commutative) with identity 0, (2) (R, •) is a semigroup, and (3) the multiplica­
tion • is left distributive over the addition + . A left R -subgroup G is a 
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subgroup of (JR, +) such that JRG<= G. It is easy to see that RrR ={V rjt, in JR 
for rv tt in R and r a fixed element in R} is a left R-subgroup in R. A biregular 
near-ring R is a near-ring with a multiplicative identity such that RaR = Re for 
some central idempotent e in 1?. Every near-ring i? with i in which every 
element is a power of itself and OR = 0 is biregular ([2]). More examples can be 
constructed by using our representation theorem of this paper (see Example 
4.2). An ideal I of a near-ring R is a subset of JR such that (1) (I, +) is a normal 
subgroup of (JR, + ), (2) !?/<=/, and (3) ((x + a)y-jcy) is in / for all x, y in R 
and a in I. Throughout, let R be a near-ring with an identity 1, B(R) the set of 
all central idempotents of R. Then, B(R) is a Boolean algebra under the joint 
e v / = e + / ' - ef, the meet ? A / = e/j and the complement 1 - e of e for all e, / in 
B(R), when 1? is a distributively generated near-ring or a near-ring with no 
non-zero nilpotent elements such that 01? = 0. Here, we are particularly 
interested in the above fact that B{R) is a Boolean algebra for a biregular 
near-ring JR. As usual when B(R) is a Boolean algebra, we denote the set of 
all maximal ideals of B(R) by Spec B{R) with the hull-kernel topology. It is 
known that Spec B(R) is compact, Hausdorff and totally disconnected with a 
system of basic open sets T(e) = {x in Spec B(R) such that ce x) for e in B(JR). 

3. ideals of a biregular near-ring. In this section, we shall give several 
properties of the ideals of a biregular near-ring R, which provide us with all 
necessary materials for the main representation theorem. We begin with a 
proof of the fact due to Professor B. Banaschewski that B(R) is a Boolean 
algebra for a biregular near-ring JR. 

LEMMA 3.1. Let R be a biregular near-ring. Then the following statements 
hold: (1) OJR = 0. (2) If e is in B(R) then (1 - e) is in B(R). (3) For any e, f in 
JB(JR), e-ef+fis in B(R). (4) For any e, f in B(R), ef (=e-ef + f) is the least 
upper bound of e and f where u < v means that u ~ uv for a, v in B{R). 

Proof. (1) Since 0r=l?01? = l?e for some e in B(R), 0=ae and e = Ob for 
some a, b in R. Then 0 = e0~ 0(0i>) = Ob = e, which makes 0 central, and 
therefore 0R = 0. 

(2) Since R(l — e)R = Rf for some / In B(R), one has l—e = af and / = 
V bi{l - e)q with suitable a, bh ct in JR. Then fe = ef= £ ^ ( 1 - e)c, = V ()c, = 0, 
further, l-e= / ( l - e) = / - /e = /, so that l~e = f which is in B(R). 

(3) If R(e-ef+f)R = Ru for some w in B(R) then e-ef+f=au and 
u^Ytbiie-ef+fjCi with suitable a, &,-, c£- in JR and therefore, 

e-ef + f=(e-ef+f)u = Yê(e-ef+f)bi(e-ef+f)ci 

^((e-ef+nbte-ie-ef + flbief+ie-ef+flbfiCi 

= X («*,- - efc+fbdCi - I ft,.(e-ef+f)ct - u, 

which proves the assertion. 
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(4) We note that v understood for the partial order of the central idempo-
tents given by u < v if and only if u = uv, for which meet is then given by the 
product. Now since e(e~ef+f) = e and f(e-ef+f) = f one has e,f<e-ef+f 
On the other hand, if e,f<u for any u in 2?(JR) then u(e~ef-rf) = 
ue — uef+uf=e — ef+f and hence e — e / + / < w . This proves that evf is the 
least upper bound of e and /. 

THEOREM 3.2. Let R be a biregular near-ring. Then B(R) is a Boolean 
algebra under the join evf=e+f—ef, the meet eAf=ef and the complement 
1-e of e for all e in B(R). 

Proof. We want to show that B(R) is a Boolean algebra under the consider­
ation of Lemma 3.1-(4) such that 1 -e is a complement of e. In fact, for 
any e, /, u in B(R), uA(evf)^u(e-~ef + f)=ue-uef+uf=ue-ueuf+uf = 
(uAe)v(uAf). Thus B(R) is a distributive lattice. Moreover, since e ( l - e ) = 0 
and ( l - e ) v e = l - e - ( l - e ) e + e = l - e + 0 - e = 1, \-e is a complement of e 
for any e in B(R). Then, the proof is complete once we show that e-ef+f = 
e+f—ef. Since 1. = ev(l — e)-= e + 1 — e, 1 — e = — e + 1, for any e in B(R), and 
hence f-ef= - ef + f for any e, / in B(R). Thus e - c / + / = e + f-ef= evf. 

Next are several properties of the ideals of a biregular near-ring R. 

LEMMA 3.3 Every left R-subgroup RaR for an a in R is an ideal 

Proof. Since R is biregular, RaR = Re for a central idempotent e. For re, re 
in Re, re - r'e — re + e(-r') = e(r—r') - (r-r')e which is in Re. For r, t in JR, 

(l-e)(t+re-t) = (l-e)t + 0 + (l-e)(-t) = (l-e)(t-t) = 0, 

so (t+re — f) is in Re. Hence (RaR, + ) is a normal subgroup of (JR, + ). Clearly, 
R(Re)aRe. Now, for r, f', r in K, we have 

(l-e)((r + re)r'-rr,) = ((l-e)r + 0)r'-(l-e)rr' = ( l -e) (^-rO = 0, 

so ( ( f+re) t ' -#) is in Re. Thus JRai? is an ideal. 

THEOREM 3.4. Every two sided R-subgroup in R is an ideal where a two sided 
R-subgroup G in R is a left R-subgroup such that GR cz G. 

Proof. Let G be a two sided .R-subgroup. Then (G, +) is a subgroup of 
(i?,+) and RGRaG by definition. Now, for g in G, RgR = Re which is 
contained in G for some e in B(R), so jRgJR is an ideal by the lemma. But then 
(r+g-r) is in G and ((t +g)tf-ttf) is in G for all r, t and t' in R and g in G. 
Thus G is an ideal. 

Following R. Pierce ([11], P. 45), we call an ideal J regular if / = 
(inB(R))R. 

THEOREM 3.5. Every ideal of R is regular. 
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Proof. Let I be an ideal. Clearly, (JH JB(R))R c:/. Conversely, for any a in 
I.aR^I since ((0 + a ) r - 0 r ) is in I, and hence RaR = Re is contained in J for 
some e in B(R). So, a = re = er for some r in R. Thus a is in (IC\B(R))R. 

Since IDB(R) is an ideal of B(K), Theorem 3.5 implies that the mapping 
F: J -» Id B(R) is one-to-one from the set of ideals of R to the set of ideals of 
B(R). Now we claim that F is onto. 

THEOREM 3.6. If J is an ideal of B(R), then JR is an ideal of R. 

Proof. Clearly, ((JR), + ) is a subgroup of (R, +) and RJR c JR. For any r in 
R> (r + Z eft — i) is in JR for ^ in J and rf in R because R(£ ê r̂ JR = .Re for 
some e in J, and so (1 —e)(r + X e^ - r ) = 0. Similarly, we can show that 
( l - e ) ( ( r + Z e ^ ) * - rr) = 0 for all r, t in R, and hence (r + ^efdt-rt is in 
R ( I ^^)R c JR. Thus JR is an ideal. 

We remark that the above theorem holds even without the requirement of 
the biregularity of i?, since taking e = v et gives the same proof. Now noting 
that J = JRnB(R) for the ideal J of E(R) and that every ideal of 
R is regular, we have: 

THEOREM 3.7. The mapping F:I-> (IC\B(R)) is bijective from the set of 
ideals of R to the set of ideals of B(R). 

An ideal P is called a prime ideal of R if RaRbR <= P implies either RaR or 
RbRaP. 

COROLLARY 3.8. Every prime ideal of R is also maximal 

4. A sheaf representation. Let R be a biregular near-ring. From Section 2, 
we have a Boolean spectrum SpecB(i^) of JR, and xR is a maximal ideal of R 
for each xeSpecB(R) by Theorem 3.7. Let T be a disjoint union of the 
quotient near-rings R/xR for all x in SpecB(i^). We shall show that T can be 
topologized so that T is a sheaf with stalks R/xR over SpecjB(i?), and R is 
isomorphic with the near-ring of sections of T. 

For each F in R, let r be a function from Spec B(R) to T defined by F(x) = f 
in RjxR. We can show that the set{r(r(e)) for all r in JR, e in B{R)} forms a 
system of basic open sets for a topology imposed on T. In fact, what one needs 
is that for any a in F(Y(e))(~)s(T(f)) there exists another such set containing a 
and contained in the given intersection. To see this, let a = r(x) = s(x) where x 
is in r ( c ) f i r ( / ) . Then (r — s) is in xR, that is, (r —s) = £ u^ with suitable ut in x 
and fj in JR, so that (r-s) = (r-s)u for u=\/ui in x. Then, for v = (l — u)ef, 
x eT(v)<= r(e)PiT(/), and y GF(U) implies w e y s o that (r-s)e yR, that is, r and 
5 coincide on T(v). Hence aer(T(v))<=^ f(T(e))ns(T(f)). Also, let x be a point 
in r~l(r'(T(e)). Then r(x) = r'(jc) where xeT(e) . Thus there is an e0 in B(R) 
such that r = r' on T(e0). This implies ?(r(e0e))c= r'(T(e)), and hence f is a 
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continuous function from Spec B(R) to T. By summarizing the above results, 
the natural projection TT: T—> Spec£(i?), and the operations as given in the 
fibres R/xR, is a sheaf of near-rings such that r, reR, are continuous sections. 

We call a near-ring R reduced if RrR is either R or O for each r in R and R 
is biregular. 

THEOREM 4.1. A near-ring R is biregular if and only if it is isomorphic to the 
near-ring of sections of a sheaf of reduced near-rings with Spec B(R) as base 
space. 

Proof. Let F be the mapping: r —> f for each r in R. From the above remark, 
f is a section of T. Suppose f = 0. Then f(x)=f = 0 in R/xR for each x in 
Spec B{R). Hence r is in H (xi?) for all x in Spec B(R). This follows that r = 0 
because flOt-R) = 0 (this is a good exercise). Thus F is one-to-one. Now let / be 
a section of T. Then / (*)= r = f(x) for an r in R. By a standard property in 
sheaf theory, f=f on a basic open set T(e). Vary JC over SpecBCR), so 
SpecBCR) is covered by such r(e)'s. Hence the usual partition property of 
Spec B(R) ([11], P. 12) gives a finite set of orthogonal idempotents et with 
i = 1, 2 , . . . , fc for some integer fe summing to 1 and rj in i? such that f=ri on 
r(e£) for each L Thus r = £ r^ is the element in R such that / = r. This proves 
that F is onto. Clearly, F is a near-ring homomorphism, and RlxR is a reduced 
near-ring for each x. By using the argument of ([11], P. 44) the converse is 
immediate. 

We conclude the paper with an example which shows that the generalization 
from a biregular ring to a biregular near-ring is non-vacuous. 

EXAMPLE 4.2. Let T be the subset {1,1/2, . . . , 1/n....} with the usual relative 
topology of feal numbers, F a near-field with discrete topology. Let JR be the 
set of all continuous functions from T to F Then JR is a near-ring with the 
componentwise addition and multiplication. Moreover, B(R) = {e/e(u) = 1 or 0} 
for each u in T, SpecB(R) = {xi/eexi with e(l/i) = 0 for each positive integer 
i} U {x0fe e x0 with e(0) = 0}. Then Spec B(R)=T such that R/xR = F for each 
x. Thus R is a biregular near-ring by Theorem 4.1, but not a ring since F is not 
a ring. 

REMARKS 1. The near-ring of sections of a sheaf of reduced near-rings might 
not be biregular even for rings if the sheaf is not over a Boolean space: Any 
product is a sheaf (with discrete base space) but the product irMn(K) of all n 
by n matrix rings over a field K is not biregular, where n runs through the set 
of positive integers. 

2. The representation obtained here may also be viewed as a particular 
instance of certain universal algebraic results ([5], Theorem 4.5). For biregular 
near-rings, the ideals Re determine a sublattice of the congruence lattice of R 
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(the associated congruences are {(a, b)/a-beRe}) which is isomorphic to 
JB(JR) and satisfies the conditions under which Thecrem 4.5 holds. The detailed 
verification of this, however, together with an adequate translation of the 
general considerations into the present setting, would not be any shorter than 
our approach. 
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