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The Verdier Hypercovering Theorem

J. F. Jardine

Abstract. This note gives a simple cocycle-theoretic proof of the Verdier hypercovering theorem. This

theorem approximates morphisms [X,Y ] in the homotopy category of simplicial sheaves or presheaves

by simplicial homotopy classes of maps, in the case where Y is locally fibrant. The statement proved

in this paper is a generalization of the standard Verdier hypercovering result in that it is pointed (in a

very broad sense) and there is no requirement for the source object X to be locally fibrant.

1 Introduction

The Verdier hypercovering theorem is a traditional and widely used method of ap-

proximating the morphisms [X,Y ] between two objects in homotopy categories of

simplicial sheaves and presheaves by simplicial homotopy classes of maps.

In its standard form, the theorem says that the comparison function

(1.1) lim
−→

[p] : Z→X

π(Z,Y )→ [X,Y ],

which is defined by taking the element

X
[p]

←−− Z
[ f ]

−−→ Y

to the morphism f · p−1, is a bijection, provided that X and Y are locally fibrant in

the sense that all of their stalks are Kan complexes.

Here, π(Z,Y ) denotes simplicial homotopy classes of maps and the colimit is in-

dexed over homotopy classes represented by hypercovers p : Z → X. A hypercover

is a map which is a trivial fibration of simplicial sets in all stalks and is therefore

invertible in the homotopy category.

The theorem is stated in the form displayed above (for simplicial sheaves) in

[7], and the proof given there is a calculus of fractions argument which is adapted

from Brown’s thesis [3]. A more recent version of the classical proof for simplicial

presheaves appears in [4].

The Verdier hypercovering theorem had multiple applications during the early

development of simplicial sheaf homotopy theory, such as the identification of sheaf

cohomology with homotopy classes of maps, which appeared in [7,9] for abelian and

non-abelian cohomology, respectively. Variants of the theorem have become part of

the basic tool kit for all work in this type of homotopy theory; see [6], for example.
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It turns out that the traditional proof of the theorem, based as it is on calculus of

fractions techniques, is needlessly fussy. Cocycle category techniques from [10] can

be used to give a much simpler and more conceptual proof of this result (Theorem 3),

as well as proofs of several useful variations (Corollary 6). The purpose of this note

is to present these proofs.

The statement of Theorem 3 is a generalization of the standard result in that it

holds in pointed categories (suitably defined) and there is no requirement for the

source object X to be locally fibrant in order for the map (1.1) to be a bijection. Only

the target object Y needs to be locally fibrant, and this is a characteristic of all of

the statements proved here. This weakening of the hypotheses of the hypercovering

theorem first appeared without proof in [11].

The proofs of the variants of the Verdier hypercovering theorem which are dis-

played in this paper are quite simple. The ideas presented here represent a contin-

uation of some of the themes of the paper [10], which contains several proofs of

foundational results of simplicial sheaf and presheaf homotopy theory in which tra-

ditional appeals to hypercovers are replaced by simple arguments involving cocycles.

Thus, it is no surprise that the Verdier hypercovering theorem itself is susceptible to

the same analysis.

2 Hypercovers and Cocycles

Suppose that C is a small Grothendieck site. Write sPre and sShv for the categories of

simplicial presheaves and simplicial sheaves on C, respectively.

Recall [8] that the categories of simplicial presheaves and simplicial sheaves have

local model structures for which the cofibrations are monomorphisms and the weak

equivalences are defined stalkwise. In both cases the fibrations (called either global

or injective fibrations) are defined by a right lifting property with respect to trivial

cofibrations. The associated sheaf map η : X → X̃ is a local weak equivalence, and the

associated sheaf functor and its right adjoint define a Quillen equivalence between the

local model structures for simplicial sheaves and simplicial presheaves on the site C.

The discussion that follows will be confined to simplicial presheaves. It has an

exact analog for simplicial sheaves.

Let A be a fixed choice of simplicial presheaf. The slice category A/sPre has all

morphisms x : A→ X as objects and all diagrams

X

f

��

A

x 99ssssss

y %%K
KK

KK
K

Y

as morphisms.

The intuition, in applications, is that x : A → X is a base point of X (geometric

points of schemes are good examples to keep in mind) even though A could be non-

trivial homotopically. The object A could also be empty, and ∅/sPre is isomorphic

to the category of simplicial presheaves.
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Observe that A/sPre is complete and cocomplete, with all limits formed in the

category of simplicial presheaves.

By a standard formalism, the category A/sPre inherits a local model structure

from sPre, in that a morphism f : x → y as above is a local weak equivalence (re-

spectively cofibration, fibration) if and only if the underlying map f : X → Y is a

local weak equivalence (respectively cofibration, fibration) of simplicial presheaves.

In contrast with the model structure for simplicial presheaves, not all objects of

the slice category are cofibrant: the identity morphsm 1: A → A is initial, and so

an object x : A → X is cofibrant if an only if the map x is a cofibration of simplicial

presheaves.

The unique map A → ∗ taking values in the terminal simplicial presheaf ∗ is the

terminal object of A/sPre, and it follows that an object x : A → X is fibrant if and

only if X is an injective fibrant simplicial presheaf.

There are various ways to say what a local fibration of simplicial presheaves should

be. It is perhaps still most compelling to declare that a map p : X → Y is a local

fibration if it has the local right lifting property with respect to all inclusions Λn
k ⊂ ∆

n

of horns in simplices. This means that, given any commutative diagram of simplicial

set maps

Λ
n
k

α
//

��

X(U )

p

��

∆
n

β

// Y (U )

where U is an object of C, the lifting problem can be solved after refinement along

a covering family Ui → U in the sense that the dotted arrow liftings exist in all

diagrams

Λ
n
k

α
//

��

X(U ) // X(Ui)

p

��

∆
n

β

//

55

Y (U ) // Y (Ui)

Equivalently, the simplicial presheaf map p : X → Y is a local fibration if and only

if all presheaf maps

hom(∆n,X)→ hom(Λn
k ,X)×hom(Λn

k
,Y ) hom(∆n,Y )

are local epimorphisms. Here, for example, hom(Λn
k ,X) is the presheaf with sections

hom(Λn
k ,X)(U ) = hom(Λn

k ,X(U ))

given by the simplicial set maps Λn
k → X(U ) for objects U of C.
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A map q : Z →W is a sectionwise fibration (or pointwise fibration) if all simplicial

set maps q : Z(U ) → W (U ), U ∈ C are Kan fibrations. Every sectionwise fibration

is a local fibration, so that, for example, every presheaf of Kan complexes is locally

fibrant. Every injective fibration is a sectionwise fibration, so that every injective

fibration is a local fibration. The converse is wildly false.

It is a basic result of local homotopy theory [8, Theorem 1.12] that a map

p : X → Y is a local weak equivalence and a local fibration (or a local trivial fibra-

tion) if and only if it has the local right lifting property with respect to all inclusions

∂∆n ⊂ ∆
n, n ≥ 0.

This local lifting property means, by analogy with the definition of local fibration

given above, that for any commutative diagram of simplicial set maps

∂∆n
α

//

��

X(U )

p

��

∆
n

β

// Y (U )

there is a covering family Ui → U for which the dotted arrow liftings exist in all

diagrams

∂∆n
α

//

��

X(U ) // X(Ui)

p

��

∆
n

β

//

55

Y (U ) // Y (Ui)

Equivalently, all presheaf maps

hom(∆n,X)→ hom(∂∆n,X)×hom(∂∆n,Y ) hom(∆n,Y )

should be local epimorphisms.

The canonical isomorphisms

hom(∆n,X) ∼= Xn, hom(∂∆n,X) ∼= coskn−1 Xn

imply that a map p : X → Y of simplicial presheaves is a local trivial fibration if and

only if all induced maps Xn → coskn−1 Xn ×coskn−1 Yn
Yn, n ≥ 0, are local epimor-

phisms.

In particular, the canonical map X → ∗ is a local trivial fibration if the maps

X0 → ∗ and Xn → coskn−1(X)n, n > 0, are local epimorphisms.

In the case where U is a simplicial sheaf for the étale site on a scheme S which

is represented by a simplicial S- scheme U , then the simplicial sheaf map U → ∗

is a local trivial fibration if and only if it is a hypercover in the sense of [1]. Based

on this example, it has become the custom to use the term hypercover to refer to an
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arbitrary local trivial fibration of simplicial presheaves, and I shall continue to follow

that practice here.

Say that a map f : x → y in the slice category A/sPre is a hypercover if the under-

lying simplicial presheaf map f : X → Y is a hypercover (or a local trivial fibration).

More generally, f : x → y is a local fibration if the map f : X → Y is a local fibra-

tion of simplicial presheaves. In particular, x : A → X is locally fibrant if X is locally

fibrant.

The theory of cocycle categories of [10] applies without change to the model cat-

egory A/sPre. Explicitly, a cocycle (g, f ) from x to y is a diagram

x
g

←−
≃

z
f

−→ y

in the slice category, or equivalently a commutative diagram of simplicial presheaf

maps

A

x

����
��
��
��

z

��

y

��?
??

??
??

?

X Z
g

≃

oo
f

// Y

for which the map g is a weak equivalence. These cocycles are the objects of a cat-

egory H(x, y) which has morphisms θ : (g, f ) → (g, f ′) given by the commutative

diagrams

zg

yyrr
rr
rr

θ

��

f

%%L
LL

LL
L

x y

z ′g ′

eeJJJJJJ
f ′

99ssssss
.

The category H(x, y) is the category of cocycles from x to y.

Write π0D for the set of path components of a category D, or equivalently, for the

set of path components of the nerve BD.

The model structure on A/sPre is right proper, and weak equivalences in this

structure are closed under finite products, because these properties both hold for

the category of simplicial presheaves. Thus, [10, Theorem 1] implies the following.

Lemma 1 The function φ : π0H(x, y)→ [x, y], which is defined by (g, f ) 7→ f · g−1

for a cocycle (g, f ) in the slice category A/sPre, is a bijection.

Remark 2 There is no requirement that the target object y should be fibrant in

the statement of Lemma 1. If y is fibrant, then the map φ of Lemma 1 is known

to be a bijection by a theorem which holds for arbitrary simplicial model categories

[2, Remark 2.7], [5].

The real utility of a statement like Lemma 1 in simplicial presheaf homotopy the-

ory is for cases involving non-fibrant targets; see also [10]. The present context is the
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injective model structure for simplicial presheaves, the maps of interest have locally

fibrant targets, and we know that locally fibrant objects are not injective fibrant in

general.

Suppose that f , g : x → y are morphisms of the slice category A/sPre. A (naive)

pointed homotopy from f to g is a commutative diagram

A×∆
1

x×∆
1

��

pr
// A

y

��

X ×∆
1

h

// Y

such that h is a simplicial homotopy from f to g in the usual sense. Here, the projec-

tion map pr : A×∆
1 → A onto A defines the constant homotopy on A.

Equivalently, such a pointed homotopy is a map

h : (X ×∆
1)

⋃

A×∆1

A→ Y.

In the pushout diagram

A×∆
1

pr
//

x×∆
1

��

A

��

X ×∆
1

pr∗

// (X ×∆
1)

⋃

A×∆1

A

the map pr
∗

is a weak equivalence if the map x : A → X is a cofibration, or if x is a

cofibrant object of A/sPre. In that case, the pushout object is a cylinder for x in the

slice category.

Every object x : A→ X has a cofibrant model, meaning a diagram

A
v

//

x ��?
??

??
??

Z

p

��

X

such that v is a cofibration and p is a weak equivalence. If the maps f , g : x → y are

pointed homotopic and p : v → x is a cofibrant model of x, then the composites f p

and g p are pointed homotopic and therefore represent the same map in the homo-

topy category since v is cofibrant. But then p is an isomorphism in that category, so

that f = g in the homotopy category.
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The objects of the category Triv/x are the pointed homotopy classes of maps

[p] : z → x which are represented by hypercovers p : z → x. The morphisms of

this category are commutative triangles of pointed homotopy classes of maps in the

obvious sense.

There is a contravariant set-valued functor which takes an object [p] : z → x of

Triv/x to the set π(z, y) of pointed homotopy classes of maps between z and y. There

is a function

φh : lim
−→

[p] : z→x

π(z, y)→ [x, y]

which is defined by sending the diagram of pointed homotopy classes

x
[p]

←−− z
[ f ]

−−→ y

to the morphism f · p−1 in the homotopy category.

The colimit lim
−→[p] : z→x

π(z, y) is the set of path components of a category Hh(x, y)

whose objects are the pictures of pointed homotopy classes

x
[p]

←−− z
[ f ]

−−→ y,

such that p : z → x is a hypercover, and whose morphisms are the commutative

diagrams

(2.1) z[p]

yyrr
rr
rr

[ f ]

%%L
LL

LL
L

[θ]

��

x y

z ′[p ′]

eeJJJJJJ
[ f ′]

99ssssss

in pointed homotopy classes of maps. The map φh therefore has the form

φh : π0Hh(x, y)→ [x, y].

The following result is a generalized Verdier hypercovering theorem.

Theorem 3 The function φh : π0Hh(x, y)→ [x, y] is a bijection if y is locally fibrant.

Remark 4 Theorem 3 specializes to a generalization of the standard form of the

Verdier hypercovering theorem [3, p. 425], [7] if A = ∅ for the unique map

x : ∅→ X. The object X is not required to be locally fibrant.

Before proving Theorem 3, let us observe that there are multiple variations of the

category Hh(x, y):
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(i) Write H ′

h(x, y) for the category whose objects are pictures x
p

←− z
[ f ]

−−→ y,

where p is a hypercover and [ f ] is a pointed homotopy class of maps. The morphisms

of H ′

h(x, y) are diagrams

(2.2) zp

yyrr
rr
rr

[ f ]

%%L
LL

LL
L

[θ]

��

x y

z ′p ′

eeJJJJJJ
[ f ′]

99ssssss

such that [θ] is a fibrewise pointed homotopy class of maps over x, and [ f ′][θ] = [ f ]

as pointed homotopy classes. There is a functor ω : H ′

h(x, y) → Hh(x, y) which is

defined by the assignment (p, [ f ]) 7→ ([p], [ f ]), and which sends the morphism

(2.2) to the morphism (2.1).

(ii) Write H ′ ′

h (x, y) for the category whose objects are the pictures

x
p

←− z
[ f ]

−−→ y,

where p is a hypercover and [ f ] is a pointed homotopy class (as before). The mor-

phisms of H ′ ′

h (X,Z) are commutative diagrams

zp

xxrr
rr
rr

θ

��

x

z ′p ′

eeKKKKKK

such that [ f ′ · θ] = [ f ]. There is a canonical functor H ′ ′

h (x, y)
ω ′

−→ H ′

h(x, y) that is

the identity on objects and takes morphisms θ to their associated fibrewise pointed

homotopy classes.

(iii) Let Hhyp(x, y) be the full subcategory of H(x, y) whose objects are the cocy-

cles

x
p

←− z
f

−→ y,

with p a hypercover. There is a functor ω ′ ′ : Hhyp(x, y) → H ′ ′

h (x, y) that takes a

cocycle (p, f ) to the object (p, [ f ]).

Lemma 5 Suppose that y is locally fibrant. Then the inclusion functor

i : Hhyp(x, y) ⊂ H(x, y)

is a homotopy equivalence.
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Proof Objects of the cocycle category H(x, y) can be identified with maps (g, f )

: z → x × y such that the morphism g is a weak equivalence and morphisms of

H(x, y) are commutative triangles in the obvious way. Maps of the form (g, f ) have

functorial factorizations

(2.3) z
j

//

(g, f ) !!D
DD

DD
DD

D
v

(p,g ′)

��

x × y

such that j is a sectionwise trivial cofibration and (p, g ′) is a sectionwise Kan fibra-

tion. It follows that (p, g ′) is a local fibration. The projection map pr is a local

fibration since y is locally fibrant, so the map p is a local fibration. The map p is also

a local weak equivalence, and hence a hypercover.

It follows that the assignment (g, f ) 7→ (p, g ′) defines a functor

ψ ′ : H(x, y)→ Hhyp(x, y).

The weak equivalences j of the diagram (2.3) define homotopies ψ ′ · i ≃ 1 and

i · ψ ′ ≃ 1.

Proof of Theorem 3 The composite

(2.4) π0H(x, y)
ψ ′

∗

−→ π0Hhyp(x, y)
ω ′ ′

∗

−−→ π0H ′ ′

h (x, y)
ω ′

∗

−→ π0H ′

h(x, y)

ω∗

−→ π0Hh(x, y)
φh

−→ [x, y]

is the bijection φ of Lemma 1. The function ψ ′

∗
is a bijection by Lemma 5, and the

functions ω ′ ′

∗
, ω ′

∗
, and ω∗ are surjective, as is the function φh. The functions which

make up the string (2.4) are therefore all bijections.

The following is a corollary of the proof of Theorem 3 which deserves independent

mention.

Corollary 6 Suppose that the object y : A → Y of A/sPre is locally fibrant. Then the

induced functions

π0Hhy p(x, y)
ω ′ ′

∗

−−→ π0H ′ ′

h (x, y)
ω ′

∗

−→ π0H ′

h(x, y)
ω∗

−→ π0Hh(x, y)

are bijections, and all of these sets are isomorphic to the set [x, y] of morphisms x → y

in the homotopy category Ho(s/Pre).

The bijections of the path component objects in the statement of Corollary 6 with

the set [x, y] all represent specific variants of the Verdier hypercovering theorem.
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