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Abstract
Longevity risk is threatening the sustainability of traditional pension systems. To deal with this issue, decumulation
strategies alternative to annuities have been proposed in the literature. However, heterogeneity in mortality expe-
riences in the pool of policyholders due to socio-economic classes generates inequity, because of implicit wealth
transfers from the more disadvantaged to the wealthier classes. We address this issue in a Group Self-Annuitization
(GSA) scheme in the presence of stochastic mortality by proposing a redistributive GSA scheme where benefits are
optimally shared across classes. The expected present values of the benefits in a standard GSA scheme show relevant
gaps across socio-economic groups, which are reduced in the redistributive GSA scheme. We explore sensitivity to
pool size, interest rates and mortality assumptions.

1. Introduction
In light of the increasing pressure imposed on traditional pension systems by longevity risk, both the
actuarial academic literature and practice have started exploring alternative schemes, especially in the
decumulation phase. Self-insurance schemes, such as tontines and Group Self-Annuitization (GSA)
schemes – also called pooled annuity funds (Winter and Planchet, 2022) – are currently the most debated
ones, because they can provide feasible and improved risk sharing. Tontines and GSA schemes are very
similar, for they share the same structure: a group of retirees (possibly heterogeneous) enters the scheme
paying an initial contribution (possibly different) to the fund. The fund evolves over time due to the
investment returns, and the pool size evolves over time too, due to the members’ death. At specific time
points (time can be modelled in a discrete or continuous framework), benefits are paid out to the sur-
viving members of the pool, with the budget constraint that the wealth is not exhausted. The baseline
benefits received by the survivors are increased by the mortality credits coming from the wealth of
the deceased members. According to Milevsky and Salisbury (2015), in pooled annuity funds or GSA
schemes, the payout rate can be found as a function of time and the number of survivors in the pool,
i.e. it is path-dependent, see Piggott et al. (2005) and Stamos (2008). Instead, in tontines the optimal
payout rate can be found at time 0 in a deterministic way: “the defining feature of a tontine” is to have
a deterministic total payout, see Milevsky and Salisbury (2016). In a very special case, that is in the
absence of interest rate risk, the GSA scheme proposed by Piggott et al. (2005) turns out to provide ben-
efits that are identical to those of the natural tontine of Milevsky and Salisbury (2015) for the logarithmic
utility function, see also Section 2.1.

Self-insurance schemes have several advantages, which have been identified and studied in the lit-
erature. Their main one vis-à-vis traditional pension schemes lies in their ability to pool and mitigate
longevity risk, as pointed out by a vast literature, since the seminal contribution by Piggott et al. (2005).
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While standard retirement products expose the issuer to potential losses and solvency concerns because
of longevity risk, i.e. unexpected changes from the expected mortality of the policyholders, in self-
insurance schemes longevity risk is shared among participants. In some cases, an intermediary may
intervene, but its cost in terms of capital requirements is lower than with traditional pension solutions
(Chen et al. 2019). Another advantage is that it is easy to cope with moral hazard issues within the pool,
by adopting a pre-determined withdrawal structure (Fullmer and Sabin 2018). Finally, self-insurance
schemes can indeed constitute a valuable alternative for policyholders (see Denuit et al. 2022). It has
been shown that in several instances the tontines may be the preferred option for a policyholder (see for
instance Chen et al. 2021), especially if optimally designed in combination with other products, such
as annuities (see Chen et al. 2019; Chen et al. 2020), or long-term care benefits (Hieber and Lucas
2022).

However, there are some aspects of self-insurance schemes that need further scrutiny. In particular,
it has been pointed out that the longevity risk sharing mechanism may lead to unfairness if the policy-
holders are heterogeneous in their survival probabilities. Indeed, while previous works typically assume
homogeneity in the mortality dynamics of policyholders, some authors (see, for instance Donnelly 2015)
have raised the issue that pooling together individuals with different characteristics (age, contributions
to the fund, and health status) cannot be performed in a standard GSA scheme without discriminating
at least some individuals.

Inequality among policyholders arising from heterogeneous pooling has always been a common
problem in insurance. Self-insurance products are clearly not exempt from this issue. This problem has
even become more urgent recently since the promotion of UN’s 2030 Agenda for sustainable develop-
ment goals. Among these, goal 10.4 stresses the importance of implementing policies aimed at reducing
inequalities.

Heterogeneity in self-insurance schemes has been considered in a few previous works. When mor-
tality is deterministic, a GSA-type scheme can be designed to be actuarially fair (Donnelly et al. 2014),
even when its members are heterogeneous in terms of wealth and a-priori mortality rates. However, this
is in general not true when mortality is stochastic, unless one allows for different contributions or benefit
calculation rules for the different groups that are pooled together. In the context of tontines, Milevsky
and Salisbury (2016) introduced the notion of equitability to capture the idea that a self-annuitizing pool
of heterogeneous cohorts should be designed so that they would all be equally (un)-happy. Building on
this, Chen and Rach (2023) find that, by allowing the participation rate (i.e. the price for an individ-
ual to participate in the scheme) to differ among cohorts, the scheme can be both individually (to each
policyholder) and collectively (in aggregate, to the whole scheme) fair.

Inspired by the importance of goal 10.4 of UN’s 2030 Agenda, we contribute to this stream of liter-
ature as well, addressing the issue of reducing inequalities among different socio-economic classes in
a GSA scheme with stochastic mortality. We propose a GSA scheme with heterogeneous policyholders
whose mortalities are described by different stochastic processes in which, while contributions are equal
across individuals, benefits differ, as if they were set by a planner (as in Dhaene and Milevsky 2024).
We call this scheme a redistributive GSA scheme. We set the benefits’ path of each socio-economic class
by differentiating the initial benefit according to the optimal weights of an optimization problem that
has the objective of minimizing the squared distance between the actuarially fair expected value of the
benefits for the reference population (the amount paid by all individuals) and that of each individual in
the group (similar to Bernard et al. 2024). The main contribution of this paper consists in implementing
a redistributive mechanism in a GSA scheme in the presence of stochastic mortalities that are heteroge-
neous due to the members’ socio-economic status. Our work is close to Qiao and Sherris (2013), who
studied a GSA scheme with stochastic mortality. While they consider an open fund where new cohorts
enter, we consider a closed fund and tackle the issue of redistribution among different socio-economic
classes.

In detail, our analysis unfolds as follows. We start by considering a traditional GSA scheme where
(baseline) benefits are set equal among policyholders and are actuarially fair for a reference group.
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We assume that the scheme pools together groups of individuals with (stochastic) mortalities different
than that of the reference group, and that each group belongs to a different socio-economic class. Our
analysis is motivated by the presence of relevant mortality differentials across socio-economic classes.
These differentials are beyond the cohort-based ones considered by Milevsky and Salisbury (2016)
and Chen and Rach (2023) and may prevent the viability of self-insurance schemes. Since Antonovsky
(1967), many papers (Chetty et al. 2016; Wen et al. 2021; Cairns et al. 2022, among others), stress how
the socio-economic class heavily affects the mortality experience. Accordingly, there will be expected
gains/losses for different groups who enroll in the same scheme. We use a British dataset on histori-
cal mortality by socio-economic classes previously used in the actuarial literature (see Haberman et al.
2014; Wen et al. 2021; Cairns et al. 2022) and calibrate a stochastic mortality model for three differ-
ent socio-economic classes. Then, we adopt a simulative approach and analyze the distribution of the
expected present value (EPV) of the benefits obtained from the GSA scheme for the different groups of
individuals. Our results show that large differences appear across policyholders belonging to different
socio-economic groups when they are pooled together in the same traditional GSA scheme. Indeed, as
Donnelly (2015) points out, unfairness arises since those who on average die earlier (the poorest) subsi-
dize those who on average die later (the wealthiest). This is a socially undesirable outcome as pointed out
also by UN’s 2030 Agenda. We quantify such transfer to be in the order of 30%. This happens because
the actuarial fairness principle, which would imply differentials in pricing the GSA product to different
sub-groups, is violated. We then evaluate to what extent our proposed redistributive GSA scheme is able
to restore fairness, comparing the distribution of the EPV of the different sub-groups when the benefits
are optimally redistributed. The scheme achieves the objective of improving equity across sub-groups
because the simulated distributions of their EPVs become more similar. Finally, we study how our results
depend on three key factors: the size of the pool, which matters because idiosyncratic mortality can be
perfectly diversified only in large samples, the level of interest rates and mortality assumptions. While
the the size of the pool affects the dispersion of EPVs within each group, the level of interest rates is
inversely linked to inequity. Indeed, when interest rates are lower, longevity differences matter more
and thus inequity is more pronounced. Mortality heterogeneity is also inversely linked to inequity. More
heterogeneous pools show more distant EPV levels across sub-groups, while inequity decreases if the
selected cohorts are closer in mortality to the reference one. In any case, the redistributive GSA scheme
we propose is able to restore fairness across sub-groups.

The paper is organized as follows: Section 2 describes the decumulation products, Section 2.2 intro-
duces our proposed redistributive GSA scheme, Section 3 describes the mortality modelling approach,
Section 4 provides the empirical application, Section 5 discusses sensitivity of the results and finally
Section 6 concludes.

2. The decumulation products
2.1. GSA scheme
We assume that a community of lx workers aged x retire at time t = 0 and are free to decide the decu-
mulation strategy to follow. They evaluate the competing strategies according to their expected present
values at time t = 0. As a benchmark decumulation strategy, we consider an immediate annuity product
with annual benefit bA paid at the beginning of each year. In the following and in the remainder of the
paper, we will be assuming that there is a reference population whose survival probabilities are used by
the insurance company to price a lifetime annuity. Assuming that

{tp
r
x}t=0,...,ω−x−1, (2.1)

is the vector that collects all the survival probabilities for a head aged x over t years for the reference
population, and ignoring commission expenses and safety loadings, the single premium of the unitary
immediate lifetime annuity paid in advance sold to a policyholder aged x is
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äx =
ω−x−1∑

t=0

tp
r
xv

t,

where vt = (1 + i)−t is the t-years financial discount factor and ω denotes the limiting age (i.e. pω = 0).
Then, the expected present value at time t = 0 of the benefits paid by the annuity with periodic payment
bA for a policyholder aged x whose survival probabilities are {tpx}t=0,...,ω−x−1 is

EPVA(0) =
ω−x−1∑

t=0

tpxv
tbA.

The alternative we focus on in this paper is a collective self-insurance scheme, namely the group
self-annuitization scheme proposed by Piggott et al. (2005). The scheme works as follows. When it is
set up, the scheme pools together into a fund the resources collected by the lx policyholders. To make the
comparison with the annuity fair, we assume that each individual contributes bAäx to the fund. Hence,
the total fund at time t = 0 is

F(0) = lxbAäx.

At time 0, each individual receives a benefit bA, equal to the annuity benefit, therefore

bGSA(0) = bA. (2.2)

Assuming investment at the risk-free interest rate level i, at time t = 1 the fund is valued

F(1) = (F(0) − lxbA)(1 + i) = lxbA(äx − 1)(1 + i),

where the annuity price äx (as well as all the other annuity prices äx+t for all t ≥ 1) is computed using
the survival probabilities (2.1) of the reference population. Given the actual number of survivors at age
x + 1, l∗x+1, the benefit at time t = 1 received by each survivor in the scheme, bGSA(1), obtained sharing
among the survivors the annuitized value of the fund at time 1, is

bGSA(1) = 1

l∗x+1

(
F(1)

äx+1

)
= 1

l∗x+1

(
lxbA(äx − 1)(1 + i)

äx+1

)
.

Considering that (i) the recursive relationship for the annuity prices is

äx+1 = (äx − 1)(1 + i)/pr
x,

and that (ii) the number of survivors at time 1, l∗x+1, is given by lxp∗
x , p∗

x being the realized 1-year survival
probability at age x, bGSA(1) can be rewritten as

bGSA(1) = 1

l∗x+1

(
lxbA(äx − 1)(1 + i)

(äx − 1)(1 + i)/pr
x

)
= bA

(
pr

x

p∗
x

)
.

Observing that at a generic time t ≥ 1

l∗x+t = l∗x+t−1p
∗
x+t−1, (2.3)

the benefit of the GSA scheme at time t is

bGSA(t) = F(t)

l∗x+täx+t

= l∗x+t−1bGSA(t − 1) (äx+t−1 − 1) (1 + i)

l∗x+täx+t

=

= bGSA(t − 1)
l∗x+t−1

l∗x+t

(äx+t−1 − 1) (1 + i)

(äx+t−1 − 1) (1 + i) /pr
x+t−1

=

= bGSA(t − 1)

(
pr

x+t−1

p∗
x+t−1

)
.

Hence,

bGSA(t) = bGSA(t − 1) · MEAt, (2.4)

https://doi.org/10.1017/asb.2025.16 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2025.16


ASTIN Bulletin 5

where

MEAt = pr
x+t−1

p∗
x+t−1

. (2.5)

The factor MEAt, t = 1, 2, ..., ω − x − 1 is the mortality experience adjustment, that is the ratio of the
expected to the actual survival rates in year [t − 1, t]. Notice that in Piggott et al. (2005) the interest rate
risk is considered too, and the benefit at time t turns out to be equal to the benefit at time t − 1 times
the adjustment for the mortality risk (MEAt) and the adjustment for the interest rate risk (IRAt). In this
paper, we ignore interest rate risk by assuming a constant interest rate i over time.1

The realized survival probabilities p∗
x+t, t = 0, 1, ... are found via simulation of the number of deaths in

the pool, and therefore simulation of the realized number of survivors l∗x+t. Piggott et al. (2005) assume
the randomness in mortality to increase linearly with age. Differently from Piggott et al. (2005), we
model the number of survivors in each time period by simulating the evolution of the stochastic mortality
intensity process λ(t) and the time of death of each individual in the pool as the first jump time of a doubly
stochastic process with intensity λ (see Section 3).

The time-0 expected present value for an individual enrolled in the GSA scheme aged x and whose
survival probabilities are {tpx}t=0,...,ω−x−1 is

EPVGSA(0) =
ω−x−1∑

t=0

vt
tpxbGSA(t),

where the GSA benefits bGSA(t) are as in (2.4).

2.2. The redistributive GSA scheme
In the description of the GSA scheme, we have neglected the fact that the scheme can pool together
individuals belonging to different sub-populations, which can display different mortality patterns. A
simplified description of this situation is to consider three different categories of individuals: high-
risk (HR), medium-risk (MR) and low-risk (LR) individuals, with survival probabilities {tpHR

x }t=0,...,ω−x−1,
{tpMR

x }t=0,...,ω−x−1 and {tpLR
x }t=0,...,ω−x−1, respectively. In this context, by “high (low) risk individual” we refer

to an individual with lower (higher) survival probabilities with respect to the medium ones at every time
horizon:

tp
HR
x < tp

MR
x < tp

LR
x for all t = 0, . . . , ω − x − 1.

Remark 1. This classification of individuals is simplified because it assumes implicitly that each indi-
vidual will always remain in the same risk class. However, the risk profile of an individual can change
over time, due to, for example, the outbreak of new illnesses. Changes in the risk profiles of a number
of members can have a non-negligible impact on the scheme’s benefits and fairness. In fact, suppose
that a group of LR (MR) members at a certain point in time t0 > 0 moves to the MR (HR) class. After
time t0, the mortality experience of those individuals should be described by a different mortality pro-
cess. Ignoring this transition in the simulation of deaths produces a lower estimation of the number of
deaths, leading to lower estimated benefits to the survivors. And vice versa: ignoring a significant move
from HR (MR) to MR (LR) produces over-estimation of the benefits. In turn, the mis-estimation of the
benefits would produce mismatching in the redistributive mechanism. In this paper, we do not address
the challenging issue of changes in the risk classification over time.

1Notice that in the assumption of absence of interest rate risk the benefit provided by the GSA is identical to the benefit provided
by the natural tontine proposed by Milevsky and Salisbury (2015), in a framework of maximization of expected utility with a
logarithmic utility function. This coincidence no longer holds if the interest rate risk were to be considered.
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If we calculate the expected present values at t = 0 of the GSA benefits for the three categories,
EPVj

GSA(0), j = HR, MR, LR, using their own respective survival probabilities, we obtain that
ω−x−1∑

t=0

tp
HR
x vtbGSA(t) <

ω−x−1∑
t=0

tp
MR
x vtbGSA(t) <

ω−x−1∑
t=0

tp
LR
x vtbGSA(t),

that is

EPVHR
GSA(0) < EPVMR

GSA(0) < EPVLR
GSA(0). (2.6)

It is clear that, due to the different survival probabilities of each sub-population, distributing the same
benefit to each sub-group leads to a solidarity transfer across individuals, in particular from high-risk
to low-risk individuals. If, as usual, high-risk individuals belong to lower socio-economic classes, such
transfer exhacerbates inequality. It is thus interesting to study redistribution mechanisms within the
scheme to reduce those inequalities.

We consider a redistribution mechanism obtained with a simulative approach. In particular, we
simulate 10,000 scenarios of mortality patterns for each sub-population and implement an optimal redis-
tribution policy by minimizing for each simulation k (k = 1, . . . , 10, 000) the squared distance between
a re-scaling of EPVj,k

GSA(0) (j = HR, MR, LR) through the use of redistributive shares αj and the baseline
EPVGSA(0) level of the medium policyholder in the absence of other sub-populations in the scheme.

The redistributive scheme works as follows. We assume that each retiree pays bAäx = 1000 in the
pooled fund at time t = 0. The unique pool has value N0bAäx = 1000N0, where N0 is the total number of
retirees aged x given by the sum of the number Nj

0 of retirees in each sub-population j ∈ {HR, MR, LR}:

N0 = NHR
0 + NMR

0 + NLR
0 .

The optimal redistributive shares, αj
∗, are found via a simulative approach by solving the following

problem:

min{αj}j∈{LR,MR,HR}

{
1

10, 000

10,000∑
k=1

1

3

∑
j∈{LR,MR,HR}

(
1000 − αjEPVj,k

GSA(0)
)2

}
(2.7)

s.t.
∑

j∈{LR,MR,HR}
αj = 3. (2.8)

where EPVj,k
GSA(0) is the expected present value of GSA benefits for sub-population j in simulation k. At

time t = 0, the optimal redistributive share αj
∗ defines the benefits paid to sub-group j in the redistributive

scheme:

bj
RE(0) = αj

∗bj
GSA(0) = αj

∗bA. (2.9)

Due to the recursive mechanism (2.4), for each t > 0, it holds

bj
RE(t) = bj

RE(t − 1) · MEAt, (2.10)

with MEAt defined as in Equation (2.5).
The approach results to be financially sustainable since the constraint in (2.8) ensures that the funds

awarded to each individual are a fraction of the total funds available at each time t.
The effect of the redistribution can be measured evaluating the EPV of the benefits obtained by the

groups after the redistribution:

EPVj
RE(0) =

ω−x−1∑
t=0

tp
j
xv

tbj
RE(t) = αj

∗EPVj
GSA(0). (2.11)

The goal after the redistribution is to obtain a reduced gap among the EPVRE(0) of the different sub-
populations.
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3. Mortality modelling
3.1. The theoretical framework
We consider a complete filtered probability space (�, F , P) and a filtration {Gt:t ≥ 0} of sub-σ -algebras
of F . We introduce a nonexplosive counting process Mt with intensity λ(t) and another filtration {Ft:t ≥
0} such that Ft ⊂ Gt.

The process Mt is said to be doubly stochastic driven by {Ft:t ≥ 0}, if λ(t) is (Ft)-predictable and
for all t,s with t < s, conditional on the σ -algebra Gt ∨Fs generated by Gt ∪Fs, the process Ms − Mt is
Poisson distributed with parameter ∫ s

t

λ(u)du.

Conditional on the knowledge of a particular trajectory t → λ(t, ω̃) = λ̃(t) for fixed ω̃ ∈ �, the counting
process M becomes a Poisson process with (conditionally deterministic) time varying intensity λ̃(t).

A stopping time τ is said to be doubly stochastic with intensity λ if the underlying counting process
whose first jump time is τ is doubly stochastic with intensity λ. The specification of the sub-filtration
F= (Ft)t≥0 is meant to indicate that the first jump time of M is a stopping time with respect to (Gt)t≥0,
but outside the span of (Ft)t≥0, which carries sufficient information to reveal the intensity λ̃(t) (i.e. the
likelihood that the jump will happen) but not enough to predict the occurrence of the jump. Doubly
stochastic processes with a stopping time are typically exploited to model the survival process of indi-
viduals. In particular, the time of death is typically modelled as a doubly stochastic stopping time with
intensity given by the mortality intensity λ that is a stochastic force of mortality. The mortality inten-
sity is typically modelled as an affine process in order to exploit well-known analytical results for the
computation of the survival function (see Duffie et al. 2000). For the specification of the affine stochas-
tic mortality intensity, we consider non-mean reverting processes among those introduced by Luciano
and Vigna (2008). In particular, we model the mortality intensity λx(t) of an individual aged x + t of a
specific cohort with initial age x with a Feller process with dynamics given by

dλx(t) = aλx(t)dt + σ
√

λx(t)dWx(t), (3.1)

where a > 0 and σ ≥ 0 represent the drift and diffusions parameters associated to the processes, Wx(t)
being a Brownian motion. Following Duffie et al. (2000), given an affine mortality intensity λx(t), the
survival probability Sx(t) describing the probability of an individual aged x to survive t years is:

Sx(t) = tpx =E[e− ∫ t
0 λx(u)du|G0] = eα(t)+β(t)λx(0), (3.2)

where α( · ) and β( · ) solve appropriate ODEs and the initial observed intensity λx(0) is taken to be equal
to −ln(p̂x), where p̂x is the observed survival rate at age x.

In the case of the Feller process, we have{
α(t) = 0

β(t) = 1−ebt

c+debt

(3.3)

with b = −√
a2 + 2σ 2, c = b+a

2
, d = b−a

2
.

The inequality constraint

ebt
(
σ 2 + 2d2

)
> σ 2 − 2dc (3.4)

must hold in order for the survival process Sx(t) to be a decreasing function of t.

3.2. Methodology for the simulation of the number of deaths in one simulated scenario
Let τ be the time of death of the individual modelled as a doubly stochastic stopping time with intensity
λ. For the death time of each individual in the group self-annuitization pool it holds

P(τ > t) = P(Mt = 0) =E[e− ∫ t
0 λ̃(u)du|F0], (3.5)
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where the knowledge of the parameter
∫ t

0
λ̃(u)du is conditional to the filtrationFt, Mt being the nonexplo-

sive counting process with intensity λ(t) described in Section 3.1. It can also be proven that, conditional
on the particular trajectory of the intensity process λ̃(t), τ satisfies

τ = inf
t≥0

{
t:E1 ≤

∫ t

0

λ̃(u)du

}
, (3.6)

where E1 ∼ Exp(1).
In order to obtain the number of deaths in the GSA pool and the p∗

x+t−1 probabilities in one simu-
lated scenario, we first simulate for each sub-population j ∈ {HR, MR, LR} one trajectory of the intensity
process λ̃(t) for t ∈ [0, ω − x]; then, assuming the future remaining lifetime of pool members to be inde-
pendent, we simulate, for j ∈ {HR, MR, LR}, Nj

0 = 1000 independent realizations from an Exp(1) random
variable; finally, thanks to (3.6) every single extraction leads to the death time of the different Nj

0 = 1000
individuals. Thus, for a given j, the exponential random vector

{Ej
n} = {Ej

1, Ej
2, ...,Ej

1000},
for n = 1, ..., Nj

0 = 1000, leads through Equatrion (3.6) to the death time random vector for the simulated
scenario

{τ j
n} = {τ j

1, τ
j
2, ...,τ j

1000}.
It follows that the number of individuals of sub-population j dying between ages x + t − 1 and x + t in
the simulated scenario is given by

dj
x+t =E

⎡⎣ Nj
0∑

n=1

1{
t−1<τ

j
n≤t

}
⎤⎦ . (3.7)

This leads to the computation of the survivors l∗j
x+t at age x + t belonging to sub-population j in the GSA

pool as

l∗j
x+t = l∗j

x+t−1 − dj
x+t, (3.8)

and for each t the total number of survivors in the GSA pool is given by

l∗x+t =
∑

j∈{HR,MR,LR}
l∗j
x+t. (3.9)

From the sequence {l∗x+t} provided by Equation (3.9), one can compute the realized survival probabilities
{tp∗

x} as in (2.3) in the simulated scenario. Finally, using (2.4), it is possible to compute in the simulated
scenario the benefits {bGSA(t)}t=0,1,...,ω−x−1 for all survivors in the GSA scheme.

4. Numerical application and calibration
We intend to apply the redistributive GSA scheme using the methodology illustrated in Sections 2–3 to
a specific dataset of different socio-economic classes. Section 4.1 illustrates the dataset.

4.1. The dataset
Individuals belonging to distant socio-economic classes bear a different longevity risk. More disadvan-
taged social classes are more exposed to riskier environments, riskier habits and to access barriers to
healthcare. According to Ardito et al. (2019), the longevity gap is an increasing function of the degree
of deprivation, and it is more pronounced for male individuals than for females. In addition, the gap
shrinks with the policyholder’s age.
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To model the mortality differences in socio-economic classes, we use a dataset which groups the
English population in ten deciles, according to the English Indices of Deprivation (version of 2015).2 The
deciles are the result of the subdivision of the 32,844 lower-layer super output areas in ten equal-sized
groups such that the first decile corresponds to the most deprived areas and the tenth decile corresponds
to the least deprived ones. The ranking is based on income deprivation, employment deprivation, edu-
cation, skills and training deprivation, health deprivation and disability, crime, barriers to housing and
services, living environment deprivation.

The dataset has been used in other papers on mortality differentials by socio-economic classes such
as Cairns et al. (2022), Wen et al. (2021), Haberman et al. (2014). As stressed by Wen et al. (2021),
“the health deprivation and disability” factor does not perfectly suit the purposes of a research analysis
based on socio-economic mortality differentials. It concerns the quality of the health status rather than
a mere economic wealth based discriminant. Still, considering the correlation among the health status
and all the remaining factors, the English Indices of Deprivation dataset is a useful and proficient tool
to spot differences in mortality experience according to the wealth level.

The dataset provides figures for the number of deaths and risk exposures (mid-year estimates) in each
population decile area by gender and single year of age for calendar years 2001–2017. Therefore, our
calibration relies on seventeen observations for each sub-population. We select three sub-populations out
of the ten deciles of the dataset: we consider as low socio-economic status representatives the first decile
sub-population individuals, as middle class representatives the fifth decile sub-population individuals
and as high socio-economic status representatives the tenth decile sub-population individuals. Therefore,
given the differences in the survival probability levels, we consider three categories of policyholders
by assuming first decile retirees as high-risk individuals (j = HR), fifth decile retirees as medium-risk
individuals (j = MR) and tenth decile retirees as low risk individuals (j = LR). Notice that, as stressed
in Remark 1, in making this risk classification, we are ignoring the fact that the risk profile of each
individual can change over time. Considering the construction of this dataset, a change of risk class can
occur not only due to a sudden change in the health status, but also due to the members’ mobility or the
re-classification of the geographical districts used to construct the dataset.

Although policyholders contribute identically to the scheme funding, high socio-economic status
individuals (i.e. LR individuals) will receive on average benefits for a longer period with respect to
lower socio-economic groups retirees (i.e. HR individuals). Thus, lower socio-economic classes will
bear the longevity risk associated to the richest.

4.2. Calibration
For the calibration procedure, we focus on the cohort of male individuals born in 1936, entering the
scheme in 2001 at the age of x = 653 and, as mentioned in Section 4.1, we consider the three sub-
populations of HR, MR and LR individuals belonging to the first, fifth and tenth percentile, respectively.
The mortality intensity of each sub-population follows the Feller process in (3.1):

dλ
j
65(t) = ajλ

j
65(t)dt + σ j

√
λ

j
65(t)dWj

65(t) j = HR, MR, LR. (4.1)
We calibrate the processes (4.1) on seventeen observations, from 2001 to 2017, over the age span 65 to
81 and we obtain closed-form expressions for the remaining survival probabilities up to the limiting age
ω = 110.

In detail, we first derive from the dataset described in Section 4.1 three vectors of observed empirical
survival probabilities {tp̂

j
65} for j ∈ {HR, MR, LR} relative to males born in 1936 and observed yearly

from 2001 to 2017. Then, we calibrate the parameters of the processes {λHR
65 , λMR

65 , λLR
65 } by minimizing

2The dataset is available on the Office for National Statistics website: https://www.ons.gov.uk/peoplepopulationandcommunity/
birthsdeathsandmarriages/deaths/adhocs/009299numberofdeathsandpopulationsindeprivationdecileareasbysexandsingleyearofag
eenglandandwalesregisteredyears2001to2017.

3In the remainder of the paper, we will sometimes use x, sometimes use 65 as the initial age.
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Table 1. Feller model’s calibration.

aj σ j λ
j
65(0) Error ej

65

HR 0.074664 0.000254 0.024836 0.004898 15.0129
MR 0.073965 0.00025 0.015865 0.004491 19.0285
LR 0.073313 0.000478 0.011364 0.004024 22.3383

the mean squared error (MSE), that is the average squared difference between the model implied and
the observed survival probabilities:

min
aj ,σ j

17∑
t=1

1

17

(
tp̂

j
65 − tp

j
65

)2
, (4.2)

for j ∈ {HR, MR, LR}, where tp
j
65 is defined as in (3.2)–(3.3) and applied to the j-th sub-population. From

the calibration procedure we get the minimizing parameters aj, σ j that are reported in Table 1 together
with λ

j
65(0) = − log p̂j

65 and the calibration error. The observed mortality intensity at age 65, λ
j
65 (0),

ranges from 0.011 to 0.025. The value of the long term mean parameter aj ranges between 0.073 and
0.075 while the volatility σ j ranges from 0.00025 to 0.00048. The low volatility levels are associated
to a low calibration error ranging from 0.004 to 0.0049. The Supplementary Material reports for each
j ∈ {HR, MR, LR} the calibrated model implied survival function tp

j
65 vs. the observed survival curve and

shows that the two overlap quite well, their differences being below 1% in absolute value for all ages
and risk classes.

Table 1 reports also the fitted life expectancies at age 65, ej
65, which can be computed from the

model-implied survival curves. We see that eHR
65 = 15.0129 for the high-risk population, eMR

65 = 19.0285
for the medium-risk population, eLR

65 = 22.3383 for the low risk population. These figures are informative,
because they highlight a remarkable difference in life expectancy among the different sub-populations.

4.3. Simulation of the benefits under the GSA scheme
We have run 10,000 Monte Carlo simulations of the processes (4.1). In order to compute the GSA and
the annuity benefits, we need a reference population (see Section 2). We, therefore, set the reference
population r to be the fifth decile male policyholders, that is r = MR, that implies

{tp
r
x}t=0,...,ω−x−1 = {tp

MR
x }t=0,...,ω−x−1. (4.3)

Accordingly, given that the premium paid by the policyholders is 1000, the annuity level benefit is

bA = 1000

är
x

= 1000

äMR
x

. (4.4)

In the calculation of the annuity, we set the interest rate i = 2%. In the case of the GSA scheme, the
starting point for the GSA benefits as in Equation (2.2) is given by

bGSA(0) = 1000

äMR
x

= bA = 62.565.

Considering a cohort of three equally sized sub-populations of Nj
0 = 1000 males, j ∈ {HR, MR, LR} (so

that N0 = 3000) coming from the first, the fifth and the tenth deciles of the English population, the
simulation process is based on the following algorithm:

• For each simulated scenario, we simulate the trajectory of λ
j
65(t) for t = 1, . . . , 45 for each

sub-population j. We run 10,000 simulated scenarios.
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Figure 1. Cash flow streams: GSA versus annuity.
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Figure 2. Cash flow streams: GSA versus annuity. Detail, age 65–95.

• For each simulated scenario we use the procedure illustrated in Section 3.2 to simulate the
number of deaths and obtain the realized survivors {l∗x+t} and the realized survival probabilities
tp∗

x for that scenario.
• For each of the 10,000 scenarios we compute the benefits for the GSA scheme bGSA(t) for t =

1, . . . , 45 using the {tp∗
x}t=1,...,45 as illustrated in Section 2.

• Therefore, we get the distribution of the 10,000 paths for the GSA benefits bGSA(t) for t =
1, . . . , 45.

Figure 1 shows the level annuity benefit bA and the 10th, 30th, 50th, 70th and 90th percentiles of
the distribution of benefits bGSA(t) over ages 65–110 obtained from the 10,000 simulations. The GSA
and annuity benefits are unique across individuals; therefore, Figure 1 holds indiscriminately for each
sub-population j = {HR, MR, LR}.

Figure 2 reports the scheme benefits over ages 65–95, while Figure 3 reports the expectation and the
standard deviation of the GSA benefits for all ages 65–110.

At time t = 0, we clearly have bGSA(0) = bA. In most cases, the bGSA(t) distribution outperforms the
level annuity benefit until about the age x = 90, when it bends towards a minimum of approximately 20
(see Figure 1). In line with this behaviour, we see from Figure 3 that the expectation of the GSA benefit
E(bGSA(t)) in the first years slightly increases with age and is decreasing after age 90; the standard devi-
ation of the GSA benefit σ (bGSA(t)) is an increasing function of age. From Figures 1 and 2, we observe a
systematic rise and decline of GSA benefits before and after an approximate age of 90. In the comparison
with the annuity, which provides flat benefits, we see that the GSA benefit is larger than the annuity one
from age 65 to age 95 (the age when the GSA benefit equals the annuity one depends on the scenario,
with the median value being 95 years). This rise–decline pattern can be due to the coexistence of differ-
ent sub-populations with different mortality in the same pool. This creates a number of deaths larger in
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Figure 3. E(bGSA(t)), σ (bGSA(t)).

the first years and lower in later years with respect to the reference population, leading to an immediate
rise and a subsequent fall in the benefits. Sensitivity analyses (see the Supplementary Material) support
this intuition: by considering three sub-populations that are more similar to the reference one we obtain
a benefit behaviour that is more similar to that of the annuity.

Regardless of the causes, this pattern could be considered a negative feature for retirees. There is
indeed evidence that for elderly people liquidity needs increase with age, for persons older than 85 being
six times higher than for persons below 65 (see Weinert and Gründl 2021). Also, Weinert and Gründl
(2021) talk about a retirement smile: high consumption levels in the early retirement years followed by
a consumption decline as people become more and more home-bound, before a consumption peak at
very old ages due to costly nursing care.

However, many considerations are in order. First, most of the members of the GSA scheme would
never experience such decline in benefits because they die before age 95 (the probability of dying
between ages 65 and 95 from the dataset is 30qHR

65 = 0.9387 for HR, 30qMR
65 = 0.8277 for MR, 30qLR

65 =
0.7115 for LR). Thus, this problem would be suffered only by a minority of individuals, while most of
them would in any case enjoy the extra benefit of GSA in the first years after retirement.

Second, it is true that the annuity guarantees a level benefit that does not decrease with age. However,
the annuity benefits reported here do not consider commission expenses (that are higher for annuities
than for self-insurance schemes): if expenses were taken into account, the annuity benefit would be
reduced and the positive gap between GSA and annuity benefits in the first years would be larger.
Therefore, a possible way to address the decreasing GSA benefits in old age could be to invest in the first
decades the extra money exceeding the annuity benefits in financial instruments and use the accumu-
lated money after age 95. A natural way to do it and transfer longevity risk, would be to buy a deferred
lifetime annuity that starts to pay periodic benefits at age 95: given the low probability of reaching age
95, such deferred annuity would likely be affordable with the extra benefit from the GSA scheme.

Last but not least, the retirees actually surviving to age 95 and over would mainly belong to the less
deprived socio-economic class (LR), which would probably be less affected by the decline of benefits
in elderly age.

4.4. Calculation of EPV(0) for each socio-economic class
The benefit from the GSA scheme is the same for all individuals. However, different socio-economic
classes experience different lifetime durations. Therefore, the value of the benefit’s stream will be dif-
ferent. A natural way to measure such value is the expected present value at time t = 0 of the benefits
using the class-specific survival function.

Therefore, for each of the 10,000 simulated scenarios of bGSA(t) we calculate EPVj
GSA(0), where

EPVj
GSA(0) =

ω−x−1∑
t=0

vt
tp

j
xbGSA(t),
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Table 2. EPVj
A(0) and some percentiles of the distribution of EPVj

GSA(0), j ∈
{HR, MR, LR}.

EPVHR(0) EPVMR(0) EPVLR(0)
Annuity 831.1444 1000 1130.149
GSA 90th 852.5442 1026.2595 1157.8222
GSA 70th 846.7466 1018.3843 1147.8504
GSA 50th 842.7923 1012.941 1141.095
GSA 30th 838.8706 1007.7905 1134.8674
GSA 10th 833.5499 1000.481 1125.7446

where in tpj
x we plug the calibrated parameters aj, σ j (j ∈ {HR, MR, LR}) of Tab. 1. Thus, for each socio-

economic class j ∈ {HR, MR, LR}, we obtain a distribution of the 10,000 EPVj
GSA(0).

Similarly, we calculate the expected present value of the benefits for the annuity, EPVj
A(0), where

EPVj
A(0) =

ω−x−1∑
t=0

vt
tp

j
xbA.

Because of (4.3) and (4.4) when j = MR we have EPVMR
A (0) = 1000.

Table 2 collects EPVj
A(0) and some percentiles of the distribution of EPVj

GSA(0).
Table 2 shows the effect of ignoring mortality differentials across socio-economic classes: if the same

benefit is awarded to all individuals regardless of their heterogeneous contribution to the overall risk,
the expected present value of cash flow streams at time t = 0 is considerably different across sub-groups
when the actualization process is weighted by the specific mortality experience of each sub-population
individually. Without redistribution, the more deprived socio-economic individuals (HR) enjoy a value
about 15–17% lower than the reference individuals (MR) who, in turn, enjoy a value about 12–13%
lower than the one of the least deprived individuals (LR). More importantly, on average, the transfer
from HR to LR individuals is about 30% of the benefit enjoyed by the reference individuals. This strong
solidarity from the high-risk retiree to the low-risk retiree can be dealt with by means of the redistributive
scheme illustrated in Section 2.2.

4.5. Simulation of redistributive GSA benefits
We implement the redistributive mechanism as described in Section 2.2. In particular, using the simu-
lated EPVj,k

GSA(0) for every j and every k, obtained in Sections 4.3–4.4, we find numerically the optimal
shares αj

∗, j ∈ {HR, MR, LR} that minimize the performance criterion in (2.7) satisfying restriction (2.8),
using the library “Rsolnp” of the R software environment.

Table 3 reports the optimal redistributive shares αj
∗, j ∈ {HR, MR, LR}.

Table 3. αj
∗, bj

RE(0), bA for j ∈ {HR, MR, LR}.
HR MR LR

αj
∗ 1.1643 0.9717 0.864

bj
RE(0) 72.8451 60.7946 54.0554

bA 62.565 62.565 62.565

From Table 3, we see that the redistributive mechanism ensures that retirees enjoying a more
favourable mortality experience are penalized by a lower initial benefit:

bHR
RE (0) > bA > bMR

RE (0) > bLR
RE (0) . (4.5)
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Figure 4. Annuity benefits and relevant percentiles of the GSA scheme benefits distribution. Top panel:
HR individuals; Medium panel: MR individuals; Bottom panel: LR individuals.

Figure 4, top, medium and bottom panels report the benefits bRE(t) paid by the redistributive scheme to
HR, MR and LR members, respectively. Figures 5 and 6 report, respectively, the expectation and the stan-
dard deviation of bj

RE(t) for all j ∈ {HR, MR, LR} together with the expectation and standard deviation of
the GSA benefit. Table 4 reports the optimal shares and some percentiles of the distribution of EPVj

RE(0).
We observe the following:

• Remarkably and as expected, the effect of redistribution becomes evident in Table 4. Thanks
to the redistributive mechanism, the EPV(0) gaps across socio-economic groups have been
significantly shrunk. The EPVRE(0) of HR individuals is still lower than that of LR individuals,
but now the transfer from HR to LR individuals is on average less than 0.5–1%.

• For high-risk policyholders, redistribution triggers a wider dispersion of the bRE(t) distribution
at each time t with respect to the case with no redistribution, as it emerges by observing Figure 6.

• When analysed over time, the dispersion is an increasing function of the policyholder’s risk-
iness. We compute two types of ranges: the minimum and the maximum values reached by
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Figure 6. σ (bGSA(t)) and σ (bj
RE(t)), j ∈ {HR, MR, LR}.

bGSA(t) over time and over paths, [mintbGSA(t), maxtbGSA(t)], and the minimum value reached by
bGSA(t) over time over the 10th percentile and the maximum value reached by bGSA(t) over time
over the 90th percentile, [mintbGSA(t)10th, maxtbGSA(t)90th]. We conclude the following:

1. Before redistribution, [mintbGSA(t), maxtbGSA(t)] ranges in [16.96, 81.70]. After redistribu-
tion, for high-risk individuals bHR

RE (t) ranges in [19.74, 95.12], for medium-risk individuals it
ranges in [16.48, 79.39], finally for low-risk individuals it ranges in [14.65, 70.59].

2. Before redistribution [mintbGSA(t)10th, maxtbGSA(t)90th ] ranges in [24.29, 66.73], while
after redistribution for high-risk individuals bRE(t) ranges in [28.28, 77.70], for medium-
risk individuals it ranges in [23.60, 64.84], while for low-risk individuals it ranges in
[20.99, 57.66].

• For all the sub-populations j ∈ {HR, MR, LR} the expectation of the redistributive GSA benefit
E(bj

RE(t)) is slightly increasing for approximately 25 years and then it is decreasing with age,
while the standard deviation of the redistributive GSA benefit σ (bj

RE(t)) is an increasing function
of age (Figures 5 and 6).

5. Sensitivity analysis
This section explores sensitivity of the GSA and our proposed redistributive GSA scheme to the relevant
scheme features. We have performed three analyses. The first considers changes in the sample size, the
second in the risk-free interest rate and the third in mortality assumptions. In the following, we discuss
the main results and refer the reader to the Supplementary Material for a detailed analysis.

Size
When the sample size is small, idiosyncratic mortality risk is not well diversified and, fixing any

time horizon, the volatility in the distribution of benefits is larger. This happens in both the GSA and
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Table 4. EPVj
A(0) and some percentiles of the distribution of EPVj

RE(0), j ∈
{HR, MR, LR} for the redistributive GSA scheme.

EPVHR(0) EPVMR(0) EPVLR(0)
αj

∗ 1.1643 0.9717 0.864
Annuity 831.1444 1000 1130.149
GSA 90th 992.6261 997.219 1000.3433
GSA 70th 985.8759 989.5666 991.7278
GSA 50th 981.2719 984.2774 985.8912
GSA 30th 976.7058 979.2726 980.5106
GSA 10th 970.5108 972.1699 972.6287

the redistributive GSA scheme, because the mortality credits are in both cases shared among a small
number of survivors. Consequently, the expected present value of the benefits is more dispersed across
policyholders. Vice versa, a larger sample size leads to a less volatile benefit distribution and to more
certainty for the scheme members. As a consequence, the distribution of the expected present values
is more compressed. The pool size has a small effect on the redistributive share, with a slightly larger
redistribution when the sample size is small.

Interest rates
Interestingly, changing the interest rate produces different effects on the GSA scheme with or without

redistribution. In the traditional GSA scheme when the interest rate is lower the distribution of expected
present values shifts to the left for the HR members and to the right for the LR ones. In other words,
inequity among different socio-economic classes increases with low interest rates. This is in line with
intuition: with a low interest rate the future cash flows become more valuable to the benefit of those who
live longer (LR individuals) and to the detriment of those who live shorter (HR individuals). And vice
versa: when instead the interest rate is higher, the EPV distribution shifts to the right for HR members
and to the left for LR ones because the different life expectancy is less important, so the inequity among
socio-economic classes decreases. On the other hand, in the redistributive GSA scheme, with a lower
interest rate both distributions of EPVs of HR and LR individuals shift to the left and the redistributive
shares are more distant from one another. Vice versa, when the interest rate is higher both distributions of
EPVs are shifted to the right and the optimal redistributive shares are closer. Thanks to the redistributive
mechanism, in the presence of lower interest rates the penalization of HR members is spread among all
participants to the pool. This seems to suggest that the redistributive mechanism mitigates the inequity
among socio-economic classes, especially in times of low interest rates.

Mortality
We perform two different sensitivity analyses with respect to pool members’ mortality assumptions.
First, we consider different deciles of our dataset for the HR (3rd instead of 1st) and LR (7th instead of

10th) members. Indeed, we consider a pool of members whose mortality experiences are less different
among classes than in the basecase. The results align with expectations. Indeed, the benefits of the
GSA scheme depart less from those of the annuity. Interestingly, they do not decline at later ages for all
the quantiles of the distribution, but only for lower ones (below the 30th percentile) and at a later age
relative to the basecase. Consistently, the redistributive GSA scheme shows both redistributive shares
α∗

j and benefit distributions closer to one another across classes relative to our baseline case.
Second, we analyze the impact of considering different cohorts. We thus repeat our analysis for indi-

viduals who were 60 and 70, respectively, in 2001. The cash flow benefit distributions in the GSA scheme
are very little affected. The redistributive shares in the redistributive schemes are similar in the two cases
and slightly closer to one another relative to the basecase. This is due to the fact that the mortality dif-
ferences between the high-risk and low-risk individuals in these two cohorts are slightly smaller than
the baseline ones.
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6. Conclusions
In this paper, we propose a simple way of coping with heterogeneity in closed self-insurance pools.
Our redistributive GSA scheme optimally sets different benefits to each sub-group within the pool by
minimizing the distance of the expected present values of policyholders relative to a benchmark, which
is the expected present value of a policyholder belonging to the reference group. While heterogeneity
in self-insurance schemes has been analyzed by previous works, we contribute by taking a simulative
approach and measuring inequity by studying the distributions of EPVs across sub-groups. Up to our
knowledge, we are the first who address the problem of reducing inequality among socio-economic
classes in a GSA scheme in the presence of stochastic mortality. We study sensitivity of our results to
different pool sizes, risk-free interest rates and mortality assumptions, highlighting in particular that
a lower risk-free rate worsens inequity and that the redistributive mechanism mitigates this increased
inequity.

Further research is envisaged, with the aim of extending our framework to go beyond the assumption
of risk-neutrality and introduce in the valuation of the benefits different risk attitudes for different policy-
holders. Another interesting avenue of future research is the investigation of how the variabilities of the
stochastic mortality intensities affect the inequalities among policyholders of different socio-economic
classes. Finally, also the study of how the correlation structure among different mortality intensities
impacts the extent of inequalities would be worth exploring. Indeed, the doubly stochastic setup for the
mortality intensity makes this possible.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/asb.2025.16.
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