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Abstract. We consider the divisibility of the class numbers of imaginary quadratic
fields Q(/2% — ¢"), where ¢ is an odd prime number, k£ and n are positive integers.
Suppose that k =1 mod 2 or n = 3 mod 6. We show that the class numbers of
imaginary quadratic fields Q( /2% — ¢") # Q(+/—3) are divisible by n for ¢ = 3 mod 8.
This is a generalization of the result of Kishi for imaginary quadratic fields
Q(+/2% — 37y when k = 1 mod 2 or n # 3 mod 6. We also show that the class numbers
of imaginary quadratic fields Q(/22% — ¢") # Q(v/—1) are divisible by n for ¢ =
1 mod 4 and the class numbers of imaginary quadratic fields Q(y/2% — ¢") # Q(v/—=3)
are divisible by n for ¢ = 7 mod 8.

2010 Mathematics Subject Classification. 11R11, 11R29.

1. Introduction. In[7]and [1], it was proved that for any positive integer n, there
exist infinitely many imaginary quadratic fields whose class numbers are divisible by 7.
Their proofs were given by constructing such quadratic fields explicitly. We begin with
the result of Ankeny—Chowla.

THEOREM A (Ankeny—Chowla [1, Theorem 1]). Let n be a positive even integer and
d := x> — 3" < 0 be a square-free integer with 2 | x and 0 < x < (2- 3"’1)5. Then the
class numbers of imaginary quadratic fields Q(/d) are divisible by n.

Next, we state the following theorem related with Theorem A.

THEOREM B. For any positive integers k and n with 2°* < 3"and (n, k) # (3, 2), the
class numbers of imaginary quadratic fields Q(~/2% — 3") are divisible by n.

This theorem was proved by Kishi. (See [5, Theorem 1.2] and [6, Theorem].) In his
paper, it is written that the aim of [S, Theorem 1.2] is to remove the condition ‘square-
free’ in Theorem A for the case when x is a power of two. Our aim is to prove the same
type of his result for the divisibility of the class numbers of imaginary quadratic fields
Q(/2% — g"), where ¢ is any odd prime number. We obtain the following theorem that
is a generalization of Theorem B for imaginary quadratic fields @(+/2%¢ — 3) when
k=1mod 2 orn=3mod 6.

THEOREM 1. Let q be an odd prime number, n and k be positive integers with 2°% < ¢".

(1) For the case ¢ =3 mod 8, if n and k satisfy either (i) k = 1 mod 2 or (ii) n #
3mod 6, then the class numbers of imaginary quadratic fields Q(y/2% — g")
except Q(+/—3) are divisible by n.
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(2) For the case q=1mod 4, the class numbers of imaginary quadratic fields

Q2% — g") except Q(+/—1) are divisible by n.

(3) For the case q =17 mod 8, the class numbers of imaginary quadratic fields

Q2% — g") except Q(+/—3) are divisible by n.

From this theorem, we obtain two corollaries. When ¢ = 11, 23 mod 24, we can

show Q(/2% — ¢g") # Q(v/=3).

COROLLARY 1. Let g be an odd prime number such that ¢ = 11, 23 mod 24, n and k
be positive integers with 2°* < ¢". For ¢ = 11 mod 24, if k = 1 mod 2 or n % 3 mod 6,
then the class numbers of imaginary quadratic fields Q(\/2?% — g") are divisible by n.
For q = 23 mod 24, the class numbers of imaginary quadratic fields Q(,/2% — ¢") are
divisible by n.

When n is even, we can also obtain Q(,/2%* — g") # Q(+/—3) for any positive
integers k, where ¢ = 3 mod 4 is a prime number.

COROLLARY 2. Let g be an odd prime number such that ¢ = 3 mod 4 and n be a
positive even integer. For any positive integers k with 2° < ¢, the class numbers of
imaginary quadratic fields Q(/2% — ") are divisible by n.

To show Theorem 1, it is essential to construct an ideal of O o/ such that

the order of the ideal class is n and we approach this point as follows. Let

where ¢ is an odd prime integer, n > 1, and k > 1 are integers with 2% < ¢”. Since
o€ OQ(W , N() = ¢", (¢, 2% — ¢") = 1 and ¢ «, it follows that

(o) = "

for some ideal g of O@( gy where N denotes the norm. Then, the order of the ideal

class [p] divides n and we will show the order of [¢] is n. To prove it, it is important
to show that +« is not a pth power in O@( Wz for any prime p dividing » (see

Lemma 4).

This paper is organized as follows. In Section 2, we state a result of Bugeaud—
Shorey on positive integer solutions of some Diophantine equation. In Section 3, we
prepare some lemmas for the proof of Theorem 1. By using the result of Bugeaud-
Shorey, we show that the number of positive integer solutions (x, y) of the equation
D x? + 2% = ¢ is at most one except for (Dy, k, q) = (1,1, 5), where D, is an odd
positive integer (see Lemma 3). This is necessary to prove that e« is not a pth power
in OQ( JEoy In Section 4, we prove Theorem 1 and Corollaries 1, 2. In Section 5, we

state a remark on Theorem 1 (1) for the case when n = 3 mod 6 and k = 0 mod 2. We
obtain an example that the class number of the field Q(/2%* — ¢") is not divisible by n
when ¢ = 11 (see Example in Section 5).
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REMARK. Imaginary quadratic fields (whose class numbers are divisible by a
given positive integer) that are constructed in [3, 4] also do not have the ‘square-free’
condition.

2. A result of Bugeaud—Shorey. We state a result of Bugeaud-Shorey ([2, Theo-
rem 1)] which is necessary in Section 3.
We define the sets F, G, H; € N x N x N by

f:: {(Fk—Ze,Lk+57Fk)|k2278 € {:l:l}}v

G :={(1,4p" — 1, p)|pisan odd prime, r > 1},

there exist positive integersr, s, Dy, D;
and an odd prime p with ged (Dy, D,) = 1,
p 1 DDy such that Dys*> + Dy = A%p" ’
and 3D;s* — D, = +A2

Hy =3 (D1, D2, p)

where F, denotes the nth number in the Fibonacci sequence defined by Fy := 0, F} :=
1, Fyyp := Fuy1 + F,(n > 0) and L, denotes the nth number in the Lucas sequence
definedby Ly :=2,L; :=1, L, := Lyy1 + L, (n>0).

THEOREM C (Bugeaud-Shorey [2, Theorem 1]). For any given 1 € {1,+/2,2}, a
prime p and positive coprime integers D1 and D,, the number of positive integer solutions
(x, y) of the equation

D])C2 + D, = A‘Zpy
is at most one except for
(2,13,3,2),(v2,7,11,3),(1,2,1,3), (2,7, 1, 2),
(4, D1, Da,p) € € :=
(V2,1,1,9),(¥2,1,1,13),(2,1,3,7)

and

(D1, Dy, p) € FUGUH,.

3. Some lemmas for the proof of Theorem 1. Our aim of this section is to show
Lemma 4 which is essential for the proof of our theorem. We prepare some lemmas for
the proof of Lemma 4.

Let ¢ be an odd prime number.

LEMMA 1. The equation
2¥ =3¢ = —1

has no positive integer solutions (x, y) with x even.
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Proof. Suppose the equation has a positive integer solution (x, y). We obtain
=3¢ —1=-1=2mod 3.
If 2¥ = 2 mod 3, then the positive integer x is odd. O
LEMMA 2. The equation
2V -3¢ =1
has no positive integer solutions (x, y) except for (¢, x, y) = (5, 4, 1).

Proof. Suppose x = 1,2. The equations 2! =3¢" + 1, 22 =3¢’ + 1 have no
solution because ¢ is a prime number. Next, we consider the case when x > 3. If
the equation has a positive integer solution (x, y), we have

3¢ =2 —1=0mod 3.
Then, we obtain x = 0 mod 2. We write x = 2x’ with some x’ € Z. We have
3¢ =22 —1=02"+ 12" - 1).
Since 2 4 1 and 2% — 1 are coprime integers and y > 0, we obtain two cases: (i)

2 +1=¢", 2" —1=3or (i) 2¥ + 1 = 3¢", 2¥ — 1 = 1. Then, this equation has a
positive integer solution (x, y) only in the case when (¢, x, y) = (5,4, 1). O

LEMMA D ([2, Lemma 3]). For any integer k > 2, we have
4F; — Fr_2e = Liye,
where ¢ = £1.
We use Lemma 1, Lemma 2 and Lemma D to show the following lemma.

LEMMA 3. For any given positive integer k and positive odd integer Dy, the number
of positive integer solutions (x, y) of the equation

D1X2 + 22k — qy
is at most one except for (D1, k, q) = (1, 1, 5).

Proof. We will show (A, Dy, Dy, p)=(1,D1,2%*,¢q) &€& and (Dy,D,,p) =
(D1, 2%, q) € FUGUH, to use Theorem C with A = 1. Since k > 0 and 2%¥ is even,
we have

(17 Dlv 22k1 q) ¢ 57 (D17 22k7 (I) ¢ g
Suppose (Dy, 2%, g) € F. There exists h > 2 such that
Fioe =Dy, Ly =2, Fy=gq,

where ¢ = £1. Using Lemma D, we have

4q — D; = 2%,
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Since D, is odd, 4q — D is also odd. This contradicts that L., = 2% is even. Next
suppose (D1, 2%, g) € H,. Then both D;s*> + 2% = ¢" and 3D;s*> — 22¢ = 4 1 hold for
some positive integers r and s. Then, we have

22(k+l) _ 3ql = +1.

This is a contradiction with Lemma 1, Lemma 2 except for (g, 2(k + 1), r) = (5, 4, 1),
that is, (¢, k, r) = (5, 1, 1). From the equation D;s*> + 2%* = ¢’, we have D; = 1 when
(q,k,r):(S,l,l). U

We show the following Lemma 4 by using Lemma 3.

LEMMA 4. Let n be a positive integer, k be a positive integer with 22

o= 2k+\/22k —q" € @<\/22k —q”).

(1) For the case q =3 mod 8, if k = 1 mod 2 or n # 3 mod 6, -« is not a pth power
in O@( =) for any prime p dividing n.

< ¢" and

(2) For the case ¢ = 1 mod 4, L« is not a pth power in O@(x/m) for any prime p

dividing n except for the case when Q(y/2% — ¢") = Q(v/—1) with (¢, k) = (5, 1).
(3) F.0r. Z%te case ¢ = 7 mod 8, t« is not a pth power in O@ Wz for any prime p
dividing n.

n

Proof. Let p be a prime number and D denotes the square-free part of q".
Then, D < 0is an odd integer and we can write 2% — ¢" = m”D for some odd positive
integer m.

(I) We show that +« are not square numbers in Q(,/2% — ¢). The proof of this
case is obtained in a way similar to that in [5, Lemma 2.3].

(IT) We consider the case p > 3. It is sufficient to prove that « is not a pth

power in O@( ) Suppose that « is a pth power in 0@( JE oy that is, we can

write
(a—i—b«/D)p
o=|——-1,

22k _

2

where a, b € Z, a = b mod 2. We have

p=1

1 (p L
k 2%k — =2/ 1,2 J
25 +,/2 q" = » E <2j>a1 'b7 D + wv' D

j=0
for some w € Z. Comparing the real parts of this formula, we obtain

=1 p=l

7 =N
2k+p — V4 apfzijij — V4 ap72j71b2ij.
2 (21) 25
Jj=0 j=0
Then, we get

a2k,
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(II-1) Assume that a is odd. Then, a | 2K*? is possible only if
a==+l.
Since a = b mod 2, b is also odd. We have
D=1mod4

in this case because o € OQ( Nezmme
(IT-1-1) We can show a contradiction when k = 1 in a way similar to that in [5,

Lemma 2.3].
(IT-1-2) We consider the case when k > 2. Since D = 1 mod 4 and m is odd, we
have
—¢"=2%—¢"=m’D =1mod 4.
This contradicts —¢” = —1 mod 4 for ¢ = 1 mod 4. Next, we consider the case when

¢ = 3 mod 8. Only if n is odd, we can obtain —¢" = 1 mod 4 because ¢ = 3 mod 4. If
n is odd, we have

D=m*D=2%_—¢"=—¢"=—-3"=—-3=5mod 8.

For any integer s > 0, we can obtain
b/D\
<%) € ZIVD] & 3|s

if D =5mod 8. Then, p must be 3 and we get k is odd from the assumption of
Lemma 4 and

)

—1

k3 — g ( 23 ) AW D = @® 4 3ab’D = +£1 4 36°D.
—\2
Jj=0

N‘

Since D < 0, @ must be —1. Then, we have
23 = _1-3p’D=—1=2mod 3.

This contradicts 2473 = 1 mod 3 because k is odd. Finally, we consider the case when
¢ =7 mod 8. Since —¢" = 1 mod 4, nis odd and we have

D=m’D=2%_—¢'"=—¢"=—-7"=—-7=1mod 8.

We show that, for any integer s > 0,

(@) # ZIVD

if D = 1 mod 8. To show the above, it is enough to show that
1 b/D\ —bJD\
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for any integer s > 0. Since D = 1 mod 8, we can consider /D € Z5 . Then, to show
(1) is equivalent to show that

1 [{a+bvD\ a—byD\
(532) (=) o=

Since v/D = 1 mod 27, and b is odd, we have
bv/D = 1,3 mod 47,.

By checking four cases (i) (a, bv/D) = (1,1), (i) (a, bv/D) = (1, 3), (iii) (a. bv/D) =
(3, 1), (iv) (a, b/D) = (3, 3), where a = j denotes a = j mod 47Z,, we obtain

a+b«/5$a—b«/5

27,.
) ) mod 2
Then, we have

<a+§\/5) + (a—éu/ﬁ) = 1 mod 27,,

that is,

N N
1 a+byD a—byD
L[ (atovD\, (a=bDYY
2 2 2
(I1-2) We consider the case when a is even. In this case, b is also even and we can
write a = 2u, b = 2v (u, v € Z). Since

a=2K4+ /2% — gt = (u+ vV/DY,

we have

—1

-1
=N =N
u <p)up2j1vszf =u’ +u E <§,)u”2jlvszf =1’ = umod p.
° ; -/
Jj=0 j=1

[

2k

2j
By taking the norm of «, we have
(@ = v*DY = N((u+vVDY) = N@) = ¢".
Then, > — v>D is odd. Hence, we get
u % v mod 2.

(I1-2-1) Suppose u is odd and v is even. We can show a contradiction in a way
similar to that in [5, Lemma 2.3].
(I1-2-2) Suppose u is even and v is odd. We can obtain

Q‘% — 22k _ UZD
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in a way similar to that in [5, Lemma 2.3]. This implies that both

n
() = ) and 5,9 = (1012
are positive integer solutions of the equation
—Dx* + 2% = ¢.
Since D is odd and
n
n# —,
p
this contradicts Lemma 3 except for (D, k,q) =(—1,1,5). The case (D, k, q) =
(=1, 1, 5) is not contained in the assumption of this lemma. O
4. Proof of Theorem 1. In this section, we show Theorem 1 and Corollaries 1, 2
by using Lemma 4.
Proof of Theorem 1. Since N(a) = ¢", (¢, D) = 1 and ¢ { &, we can write
() = p",

where p is a prime factor of (¢) which splits completely in Q(+/D)/Q. Let s be the
order of the ideal class [p]. We can write

n=sn

/ ; S :
for some n’ € Z. Since * ~ (1), there exists some element 8 € O@ Wz such that

(@ =" =) =(B) =(B")

We show that Q(y/2% — ¢")is different from Q(+/—1) (resp. Q(+/—3)) when g = 3 mod
4 (resp. ¢ = 1 mod 4). First, we consider the case when ¢ = 3 mod 4. Suppose that

Q(/2% — gy = Q(+/—1), thatis, there exists > 0 € Zsuch that 22 — " = —¢>. Then,
we have

2% = —£ mod ¢

by n # 0. Since ¢ 1 t, the existence of x such that —#> = x> mod ¢ is equivalent to the
condition that —#* € (F;)z. We know that —#% € ([F(j)2 is equivalent to (‘7’2) = 1. By
¢ = 3 mod 4, we have

()= =(3)=-
q q)\q q '
This contradicts (’T’z) = 1. Secondly, we consider the case when ¢ = 1 mod 4. Suppose

that Q(,/2% — g") = Q(+/—3), that is, there exists r > 0 € Z such that 2% — ¢" = —37>.
Since ¢ is odd, we have

—¢"=2% - ¢"= -3 = -3 mod 4.
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This contradicts —¢" = —1 mod 4. Since Q(y/2% — ¢") £ Q(v/—1), Q(~/-3), we

obtain
o = {£1},
a/m —
that is,
+a =p".

From Lemma 4, we get n’ = 1 and then we have

n=s.
The proof of Theorem 1 is completed. |

Proof of Corollary 1. We can prove Q(,/2% — g") # Q(+/—3)forg = 11, 23 mod 24
in a way similar to the proof of Q(y/22% — ¢") # Q(+/—1) for ¢ = 3 mod 8 (see the proof
of Theorem 1). Suppose that there exists # > 0 € Z such that 2°* — ¢" = —32. Then,
we have

2% = 32 mod ¢

by n # 0. Since

)-GEE -G)0--C)

and
3
—)=1<p=1 or IllmodI12
D
and
g=11mod 12,
we have

(2)--

Then, we get a contradiction. Using this and Theorem 1 (1), (3), the proof of Corollary
1 is completed. O

Proof of Corollary 2. Suppose Q(/2% — ¢") = Q(+v/—3). Then, we have ¢" =
3 mod 4. This contradicts ¢" = 1 mod 4 since n is even. Using this and Theorem 1
(1), (3), the proof of Corollary 2 is completed. |

5. Additional Remarks. We conclude this paper with remarks on Theorem 1 (1).

ExamMPLE. We give an example for Theorem 1 (1) that the class number is not
divisible by n when n = 3 mod 6 and k& = 0 mod 2. For (¢, n, k) = (11, 3, 4), we have
2%k —g" =28 — 113 = —1075 = 5% x (—43). The class number of the field Q(+/—43) is
1 and is not divisible by 3.
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For Theorem B, the class number of the field Q(+/22¢ — 3) is not divisible by 7 only
in the case when (n, k) = (3, 2), that is, the class number of the field Q(+/22%2 — 33) =
Q(+/—11) is I and not divisible by 3. But we do not know how many quadratic fields
Q(/2% — g exist, whose class numbers are not divisible by n when ¢ = 3 mod 8,
n=3mod 6 and k=0 mod 2. As for this point, we give the following remark
(cf. Lemma 4). We can prove that Lemma 4 also holds except for Case (II-1-2) when
g = 3 mod 8, kis even and p = 3. For the proof of Case (II-1-2) of Lemma 4, we have
to consider whether we can show a contradiction with

2k+3 — 1 —3p°D )

when £k is even. By taking the norm of both sides of the equation

3

@ — D\’
o

4q5 = a* — b*D.

we have

Then, we obtain

From the above equation and (2), we have
241 =345,

Then, this consideration is related to the determination of positive integer solutions
(g, x, y) of the equation 2¥ — 3¢” = —1, where x, y are odd and ¢ = 3 mod 8§ are prime
numbers (see Lemma 1). We can obtain that, if (n, k) does not satisfy 251 — 345 = —1,
the class numbers of imaginary quadratic fields @(y/2% — ¢") except Q(+/—3) are also
divisible by n when ¢ = 3 mod 8, n = 3 mod 6 and k = 0 mod 2. For the case when
¢ = 3, the result on positive integer solutions of the equation 2¥ — 3 = —1 is written
in [5, Lemma 2.1].
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