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^-SEPARATING SETS 

R. E. GOMORY, T. C. HU, AND J. M. YOHE 

This study of r-separating sets was originally motivated by the maximum-
flow-minimum-cut theorem of finite networks [1 ; 2]. In working toward a 
continuous version of the maximum-flow-minimum-cut theorem from the 
usual discrete version, one is led directly to the notion of r-connectedness of a 
set as defined below. This notion of r-connectedness also has a very simple 
intuitive interpretation. Intuitively speaking, a set of points in the plane is 
/--connected if a person starting at any one point of the set is able to reach any 
other point of the set by jumping from point to point within the set, but never 
jumping a distance exceeding r in any one jump. 

The notion of connectedness by jumps or steps is sometimes taken as a 
characterization of ordinary connectedness when the step size is allowed to 
become arbitrarily small; see Newman [3, p. 81]. 

More precisely, two points a and b in a set 5 are said to be r-connected if there 
is a finite sequence of points a = po, pi, . . . , pn = b with pi £ S and the 
distance p(pu pi+i) = r, i = 0, . . . , n — 1. In this paper we will develop 
properties related to r-connectedness. We will deal mainly with the notion of 
r-separation (two points in a set 5 are r-separated if they are not r-connected) 
and with planar r-separating sets, which are, roughly, sets C whose removal 
from the plane Ri r-separates two points in R2 — C. The prototype of such sets 
might be an annulus which separates a from b. However, much more compli­
cated r-separating sets are also possible (Figure 1). The study of r-separating 
sets also has interesting connections with the minimal surface problem; see, 
for example, [2, Chapter 12]. 

Of course, r-separating sets, as described, can have few interesting properties 
since almost any sufficiently large set will do. However, the set shown in 
Figure 1 has an additional property: it is irreducible; i.e., it contains no proper 
r-separating subset. It is the irreducible r-separating sets, which have a very 
detailed structure, that will be described below. 

In Section 2 we will develop the general properties of irreducible r-separating 
sets. Among other things, we will prove that their boundaries are always well 
behaved. With this established we will be able, in Section 3, to exhibit a much 
more detailed structure. We will show, roughly, that all irreducible r-separating 
sets consist of simple tube-like sections of width r (such as the Tt in Figure 1) 
hooked together by polyhedra each having an even number of sides of length r 
(such as the Pt in Figure 1). 
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FIGURE 1 

2. General properties of irreducible r-separating sets. We now turn 
to more exact definitions. Using p(p, q) for the Euclidean distance between 
two points in the plane R^ we will say that the sequence of points p0, pu . . . , pn 

forms an r-chain from p0 to pn if p(ptl pt+i) ^ r. We will say that a and b are 
r-connected in a set S if there is an r-chain with the properties 

(i) po = a,pn = b, and 
(ii) pi e S for all i. 

If p, q are two points of R2, then by pq we will mean the line segment from 
p to q. If po, . . . , pn is an r-chain, we will also use r-chain to denote the path 
consisting of 

n - l 

U ptpi+i' 
i=Q 

The context should resolve any ambiguities. We will say that a set C C ^2 
r-separates a and b if 
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(i) C is closed and bounded, 
(ii) a and b are not r-connected in R2 — C. 
We will be able to see in retrospect that condition (i) of this definition does 

not meaningfully affect the structure of the separating sets, but it does facili­
tate the analysis. 

The r-component of a point a in a metric space 5 is the set of all points which 
can be r-chained to a in S. If C /--separates a and b in R2y we will use A and B 
to designate the r-components of a and b, respectively, in R2 — C. 

An irreducible r-separating set C is defined as one that contains no r-
separating set as a proper subset. I t is the structure of these irreducible sets 
that will be analyzed. 

THEOREM 1. Every r-separating set contains an irreducible r-separating set. 

Theorem 1 follows by routine arguments from the following easily established 
lemma: 

LEMMA 1. If *I£ is any collection of nested r-separating sets, i.e., for any C, 
C £ ^ we have either C C C or C C C , then 

C* = O C 

is an r-separating set. 

A further useful property of C is given by Theorem 2, which we state with­
out proof: 

THEOREM 2. If p belongs to the irreducible r-separating set C, then p(p, A) ^ r 
and p(p, B) ^ r. 

Theorem 3 is somewhat analogous to the Jordan curve theorem in that it 
asserts that the removal of an irreducible r-separating set separates the plane 
into two r-connected open sets. 

THEOREM 3. If C is an irreducible r-separating set which r-separates a and b, 
then R2 - C = A KJ B. 

Proof. Suppose U is a component of R2 — C which does not intersect A U B, 
and let D b e a circular disk such that Int D C U and F(D) contains a point p 
of F(U). By Theorem 2, there is a point a' G Â such that p(V, p) = r; then 
Nr(a

f) contains no point of Int D, so Nr(a') and D are externally tangent at p. 
Similarly, there is a point b' £ B such that Nr(b') is externally tangent to D 
at p. This implies that Nr(a') = Nr(b') and hence a' = b', a contradiction. 

We now know that an irreducible C splits R2 into two r-connected sets, A and 
B, with nothing left over. We next approach the problems of obtaining more 
detailed properties of C. This is done by a detour. We will establish that F {A) 
and F{B) are well behaved; this will then give information on F(C). Then 
with F(C) established as well behaved it will become possible to establish more 
detailed properties of C. 
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LEMMA 2. Let pu p2 and qly q2 be two intersecting closed line segments, both of 
length < r. Then for some one of the four end points, say pi, either 

(1) pi is an intersection point and it coincides with either qi or q2, or 
(2) the distances p(pi, qi) and p{pi, q2) are both < r. 

In either case, the distances p(pi, qi) and p(pi, q2) are ^ r so that pi is within 
distance r of all the end points. 

Proof. Assume (by relabeling, if necessary) that pi is an end point nearest 
the point intersection. The conclusion follows easily from elementary geometri­
cal considerations. 

The purpose of the next lemma is to enable us to deal with r-chains that do 
not cross themselves. An r-chain p0, pi, . . . ,pn is said to cross itself if the path 
consisting of the union of segments pipi+i, i = 0, . . . , n — 1 is not an arc. 

LEMMA 3. / / there is an r-chain p = po, pi, . . . , pn — q from a point p to a 
point q, then there is a second r-chain from p to q, whose vertices are a subset of 
the original pu which does not cross itself. 

The proof of this lemma is elementary, and we omit it. 
An important property of the sets A and B which prevents them from be­

coming too unruly is given in Theorem 4. 

THEOREM 4. Let pi and p2 be points of one component of A with p{pi, pi) ^ r. 
With radius r draw two circular arcs ai and a2 through both points. Each arc 
should be ^ irr/S in length. Then there is a path P* from pi to p2 that lies entirely 
in the closed sector bounded by ai and a2 and consists only of points of A (Figure 2). 

FIGURE 2 

Proof. Since pi and p2 belong to the same component of the open set A, there 
is some simple path P from pi to p2 in A (Figure 3). This path can and will be 
taken to consist of straight line segments of length ^ r. 

We will proceed to analyze a special case from which the general theorem 
can be deduced. 

We consider the case in which P does not touch the sector bounded by «i 
and a2 except at pi and p2. We can assume, without loss of generality, that b 
lies in the outer domain Z)0 of the Jordan curve J formed from P and the 
segment pip2. 

Either oti or a2 must lie inside / . Let us assume that the arc lying inside is a2 

as in Figure 3. Since all of a2 lies within r of pi, a2 can consist only of points of 
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FIGURE 3 

A or of C. If there are no C points on a2, then the theorem holds; so let us 
suppose there is a point pz 6 C H a 2 . Since p% € C, there is a segment of length 
< r connecting pz to a point q of B or of F(B). Thus there is an r-chain £3 = 
g0, <Zi, • • • , qn = 6. This r-chain must cross J. If a segment of this chain crossed 
a segment of / other than pip2, we would have a point of yl (namely, the inter­
section point) at a distance < r from B. Thus £3<Z must cross pip2 as shown 
in Figure 4. 

FIGURE 4 

Let c be the center of the circle of which a2 is an arc. q cannot lie in or on the 
isoscles triangle picp2, for then its distance from pi and p2 would be r or less, 
but pi and p2, as interior points of A, have distance > r from B \J F(B). So q 
lies outside picp2 and the edge pzq intersects either the edge pic or the edge 
jnc Let us assume it is pc2. Then, applying Lemma 2 to the edges of p%q and 
p2c, we find that neither q nor p% can coincide with c or p2. Moreover, p%c has 
length exactly r and g^2 must have length ^ r, so none of the four vertices c, 
q, p2 or p% can be within distance < r of the two vertices of the opposite edge. 
Thus the existence of such a q contradicts Lemma 2 and we conclude that 
pz £ C. 

https://doi.org/10.4153/CJM-1974-136-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-136-9


.^-SEPARATING SETS 1423 

Since we have shown that a2 C A, it forms the P* of our theorem in the 
special case we have been considering. 

We next turn to the general case in which P intersects «i or a2 (Figure 5). 

FIGURE 5 

In this case P* is formed by using the segmented path P up to the point xi 
where it first leaves the sector. All P is in A so in particular in and the point 
of next return to the sector 7r2 are in A. By connecting TT\ and x2 by arcs of 
radius r we create the situation of the special case with TTI and 7r2 playing the 
role of pi and pi. Consequently, one of these new arcs a! is in A and carries 
P* up to 7T2. If P does not go out of the sector again, then P* is completed with 
the remainder of P; otherwise, the process is repeated. Since P consists of a 
finite number of straight line segments, there will only be a finite number of 
intersections with a\ and a2. Therefore, after a finite number of repetitions pi 
will be reached and the path P* fully constructed. This establishes the theorem. 

We are now in a position to say something about F (A) and F(B) and hence 
about F(C). 

THEOREM 5. The boundary of each component of A or B is a simple closed 
curve. 

Proof. The proof is based on a converse to the Jordan curve theorem. A 
version by Newman [3, p. 166] asserts that if a domain in Z2 (the two dimen­
sional projective plane) is simply connected and uniformly locally connected, 
then its frontier is a simple closed curve, a point, or null. We will proceed to 
show that the components of A and B meet the conditions of this theorem. 
Theorem 4 shows that the components of A and B are uniformly locally con­
nected, so it remains only to show simple connectedness. Consider a component 
of Ao of A. If we draw any simple closed curve / i n AQ, all of B KJ C must be 
either in its outer domain R0 or its inner domain RIt since any attempt to split 
B between R0 and Rj leads to the usual difficulties with some connecting chain 
crossing J which is in A, and if even one point of C were to lie in the other 
domain, it would require a point of B within distance r. Without loss of 
generality, suppose (B U C) is in R0; then J can be contracted in i?7; so A0 

is simply connected. 
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Thus, the theorem applies and each component of A (or B) has as its frontier 
a simple closed curve or a point or the null set. Possibilities other than the 
curve are easily ruled out; this establishes the theorem. 

3. Structure of irreducible r-separating sets. With something now 
established about the regularity of A, B and C and their boundaries, we turn 
to a more complete analysis of the structure of C. 

Let us define a connector to be a closed segment of length r connecting 
F (A) and F(B). Then it is easy to prove 

THEOREM 6. For every point p on F (A) (or F(B)) there exists at least one 
connector with p as one of its ends and the other end a point of F(B) (or F (A)). 
Furthermore, all points on the connector other than the endpoints belong to C — 
F(C). 

Note that this theorem does not imply that every point of C must be on a 
connector. 

LEMMA 4. Two connectors p2q2 and piqi with distinct end points can have no 
points in common. 

Proof. If two connectors have a point of intersection other than an end point, 
then it follows from Lemma 2 that there exists a point pi 6 F (A ) with p(pi, pi) 
< r and p(pi, q2) < r. This contradicts the assumption that A and B are 
r-separated. 

Let Ci C C be the set of all points of C which lie on a connector, and let 
C2

 = C — C\. 

LEMMA 5. C\ is closed and C2 is open. 

The proof of Lemma 5 is elementary, and we omit it. 

LEMMA 6. If p^ is a connector, and Xo Ç Int p0qo is an interior point of Ci, 
then all interior points of p^ are interior points of C\. 

Proof. (See Figure 6.) Since x0 is interior to d , there exists an e > 0 such 
that Ne(x0) C C\. Suppose y (E Int p0qo is not an interior point of C\. Then 
there exists a sequence {3̂ } —> y with yt £ C\\ we may suppose that all of 
these points lie in one of the two half-planes determined by the line containing 
ptffo, say H0. 

Pick Xi G Ne(xo) (^ H0. Then x$xi C Ne(xo); we parameterize xQxi by a, 
0 ^ a ^ 1. For each xa we have a connector paqa such that paqa C\ x0Xi = xa. 

Now there exists a 3 such that 

N*(y) r\ ({po, go} V N,(x) U p^i = &. 

Moreover, we want 5 so small that every connector which intersects N&(y) 
must run through Ne(xo). 

This choice of ô guarantees that no point of Ns(y) may belong to A or B, 
since this would contradict r-separation. Hence all yt £ N^(y) are C2-points. 
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Pick any such yh and from it draw a perpendicular line to p0qo. Let the 
first connector this line hits be pa01 qao; similarly determine £a iga i (these 
connectors must be paqa's, since in the contrary case we will contradict r-
separation). 

Now pai^ai and pa0qao may not cross; moreover, no connectors are sand­
wiched between these two. But then the gap between these connectors near yt 

cannot be closed by the time we reach x0Xi. The contradiction proves the 
lemma. 

LEMMA 7. Let C be a component of C2. Then each point of F(C) lies on a 
connector which lies on F(C). 

Proof. We first show that if a connector has an interior point on F(C) then 
the entire connector lies on F(C). By Lemma 6, we know that such a con­
nector lies on F(C2)- If a connector were to lie partially, but not completely, 
on F(C), then, since F(C) C F{C2) C Ci, we would have two connectors 
which cross, contradicting Lemma 4. 

Now suppose there is an x £ F(C) which does not belong to any connector 
which lies on F(C). Then x is the endpoint of a connector; moreover, there is 
a neighborhood Nx of x such that any connector which intersects Nx contains 
no boundary point of C on its interior. For, supposing that no such neighbor­
hoods exists, we can find a sequence of points converging to x such that each 
belongs to a connector containing a boundary point of C on its interior, and 
therefore lying on F(C). These connectors converge to a connector containing 
x\ this connector also lies on F(C). 

We may suppose without loss of generality that F(C) P\ Nx is an arc. Thus 
we can find a neighborhood Nx of x such that Nx is divided in two pieces by 
an arc on 77(C2), where one of these pieces is in, say, A and the other is in C; 
moreover, each point p of (Ci — F(C)) C\ Nx is an interior point of C — C. 
Since components of C2 are open, we can conclude that each point of 
(C - C - F(Q) r\NxC F(C). Then we must have F(C) H Nx = F(C) H 
Nx. But this is impossible, since this implies x does not belong to a connector. 

LEMMA 8. If p £ ^(^4) belongs to two connectors Kx and K2, and there exists 
an e > 0 such that Ne(p) P\ C contains a sector S bounded by both Ki P\ C and 
K<L C\ C2, then the angle at the vertex of S is ^ 7r. 

The proof of Lemma 8 is an elementary exercise in geometry. 

LEMMA 9. Each component of C2 is convex. 

Proof. Suppose x, y belong to the same component C of C2, but xy (£_ C. 
Let x', y' G xy be such that x'yf C\ C = 0. There is a path a on F(C) which 
connects xf and y' such that the interior of the simple closed curve x'y' VJ a 
lies outside of C. The path a consists of connectors (and portions of connectors) 
by Lemma 7; it follows that there must be a pair of adjacent connectors Ku 

Ki+i, an e > 0, and a sector S of Nt(p) H C such that the angle at the vertex 
of 5 is greater than w. This contradicts Lemma 8. (See Figure 7.) 
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FIGURE 7 

LEMMA 10. The closure of each component of C2 is a convex polyhedron with an 
even number of sides each of length r. 

Proof. Since C is compact, the closure of a component C of C2 is closed and 
bounded. By Lemma 7, the boundary of C consists of connectors, each of which 
is of length r. By Lemma 9, C is convex and hence so is its closure. Hence C 
can have only finitely many sides. Since vertices of F(C) are alternately in A 
and B, it follows that there must be an even number of sides. 

Definition. A nondegenerate tube of width r is the closure of a differentiate 
embedding h of [0, 1] X ( - r / 2 , r/2) or Sl X ( - r / 2 , r/2) into R2 which is 

(a) an isometry on the second factor, 
(b) such that for each a Ç [0, 1], {a} X ( — r/2, r/2) is normal to 

*([0, 1] X {0}),and 
(c) each point of 

A([0,1] X (-r/2, r/2)) - *([0, 1] X ( - r / 2 , r/2)) 

is a boundary point of R2 - h([0, 1] X ( - r / 2 , r /2)) . 
A tube of width r is either a nondegenerate tube of width r or a connector. 

THEOREM 7. If C is an irreducible r-separating set, then C = Ci U C2, where 
(a) the closure of each component of C\ — F(C) is a tube of width r which has 

one boundary component on A and the other on B, 
(b) each component of C2 is the interior of a convex polyhedron with an even 

number of sides, each of length r, which intersects F(C) only in its vertices. 

Proof. Each point of C\ lies on a connector by the definition of C\. If C\ is 
a component of G — F(C), then C\ consists either of the interior of a single 
connector, in which case there is nothing to prove, or, since no two connectors 
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may intersect except in a point of F(C), an interval (or circle) of connectors. 
Certainly since each connector has length r, we may parameterize the interior 
of each connector via an isometry of ( — r/2, r/2) —» R2. By deciding in advance 
to map the positive side of this interval toward A, say, we may assure the 
possibility of a cohesive array of intervals. That these mappings may actually 
be extended to a differentiable embedding of [0, 1] (or S) X ( — r,r) follows 
from the smoothness of the center line (the radius of curvature of the center 
line must be ^ r/2 at each point) and the fact that the isometries match up 
there. 

The normality condition follows from the fact that p(a, B) = r for all 
aZBdA. 

The properties of components of C2 then follow from Lemma 10, Lemma 7 
and the fact that interior points of connectors are also interior points of C. 
The theorem is proved. 

We note that we may actually have an infinite number of C2-components 
(Figure 8) and that these components may get arbitrarily near one another; 
note also that a connector which is on F(C2) need not be on the boundary of 

FIGURE 8 
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FIGURE 9 

any component of C2. We also observe that isolated connectors are indeed 
possible (Figure 9). 
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