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ON HEARING THE SHAPE OF AN ARBITRARY
DOUBLY-CONNECTED REGION IN R2
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Abstract

The basic problem in this paper is that of determining the geometry of an arbi-
trary doubly-connected region in R2 together with an impedance condition on its
inner boundary and another impedance condition on its outer boundary, from the
complete knowledge of the eigenvalues {<*/};£[ for the two-dimensional Laplacian
using the asymptotic expansion of the spectral function 0(t) = £ ~ i exp(—fAy) for
small positive /.

1. Introduction

The underlying problem is to deduce the precise shape of a membrane from
the complete knowledge of the eigenvalues A, for the Laplace operator A =
E*=l{d/dx')2 in the x'x2-plane.

Let SIC R2 be a simply connected bounded domain with a smooth bound-
ary d£2. Consider the impedance problem

(A + A)u = 0 mil, (d/dn + y)u = 0 on dil, (1.1)

where d/dn denotes differentiation along the inward pointing normal to d£l,
y is a positive constant and u e C2(il) n C(£2).

Denote its eigenvalues, counted according to multiplicity, by

0 < Ai < X2 < h< ••• <*j < >oo asj'-KX). (1.2)

The problem of determining the geometry of £2 and the impedance y has
been discussed recently in [4] from the asymptotic behaviour of the spectral
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[2] Hearing the Shape of an Arbitrary Region 473

function

f-rt;), as f- 0. (1.3)

Problem (1.1) has been investigated in [2], [3], [5] in the following special
cases:

Case 1. y = 0 (Neumann problem)

asf —0. (1.4)

Case 2. y —>oo (Dirichlet problem)

as / —0. (1.5)

In these formulae, \Q\ is the area of Q, |d£2| is the total length of its bound-
ary, a is the arc length of the counterclockwise oriented boundary 9Q and
k(o) is the curvature of 5Q. The constant term a$ has geometric significance,
e.g., if Cl is smooth and convex, then OQ = 1/6 and if Q is permitted to have
a finite number uHn of smooth convex holes, then OQ — (1 - # ) /6 .

Furthermore, it has been shown by Gottlieb [1] that if LN is the length of
a part of the boundary dQ with Neumann boundary condition and if LD is
the length of the remaining part of dQ, with Dirichlet boundary condition,
then

The object of this paper is to discuss the following inverse problem: Let
Q, be an arbitrary doubly-connected region in R2 surrounding internally by a
simply connected bounded domain £2t with a smooth boundary dQ\ and ex-
ternally by a simply connected bounded domain Q2 with a smooth boundary
dQ.1. Suppose that the eigenvalues (1.2) are given for the impedance problem

= 0 in fl, (1.7)
+yt)u = 0 ondQu (1.8)

and

y2)u = 0 on dQ2, (1-9)

where d/dn\ and d/dni denote differentiations along the inward pointing
normals to the boundaries dQ\ and dQ,2 respectively, while y\ and y2 are pos-
itive constants. Determine the geometry of the arbitrary doubly-connected
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region ft as well as the impedances y\ and y2 from the asymptotic behaviour
of 0(0 for small positive t.

Note that problem (1.7)—(1.9) has been investigated recently by Zayed [6]
in the special case where

ft = {(r,0): a<r<b, 0 < 6 < In)

is a circular annulus.

2. Statement of results

Suppose that the inner boundary 5fti of the region ft is given locally by
the equations x' = y'{a\), i = 1,2 in which <j\ is the arc length of the coun-
terclockwise oriented inner boundary 9fti and yl{o\) e C°°(9fti). Suppose
also that the outer boundary d£l2 of ft is given by the equations x' = y'(a2),
i = 1,2 in which a2 is the arc length of the counterclockwise oriented outer
boundary 9ft2 and y'(a2) € C°°(dft2). Let Lx and L2 be the lengths of dfti
and dili respectively. Let k\(a{) and ^2(02) be the curvatures of 9ft 1 and
dft2 respectively, where fdili k\{ai)do\ = fda ki{oi)do2 = 2n. Thus, the
results of our main problem (1.7)—(1.9) which will be constructed in Section
7 can be summarized in the following cases:

Case 1. ( 0< yi < 1, y2 » 1)

»
asr -^O. (2.1)

Case 2. {y{ > 1, 0 < y2 < 1)
In this case the asymptotic expansion of 6{t) as t —> 0 follows from (2.1)

with the interchanges L\ *-> L2 and y\ <-* y2.

Case 3. ( y i , y 2 » 1)

as t — 0. (2.2)

4. ( 0< y i , ?2< 1)
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With reference to formulae (1.4)—(1.6) the asymptotic expansions (2.1)-
(2.3) may be interpreted as follows:

(i) £2 is an arbitrary doubly-connected region in R2 and we have the
impedance boundary conditions (1.8), (1.9) with small/large impedances y\,
y2 as indicated in the specifications of the four respective cases.

(ii) For the first three terms, €l is an arbitrary doubly-connected region
in/?2 of area |Q|.

In case 1, it has H = (1 + (3y\L\)/n) holes, a part of the boundary of
length L\ with Neumann boundary condition and the other part of length
(L2 + 2ny^x) with Dirichlet boundary condition, provided H is an integer.

In case 3, it has only one hole (H = 1), a boundary of length {(Li +
2wyj~1) + (L2 + 271^')} together with Dirichlet boundary conditions on dQi
and dil2.

In case 4, it has H = 1 + 3{y2L2 - y\ L\ )/n holes, a boundary of length L\ +
Li together with Neumann boundary conditions on dCli and dSl2, provided
H is an integer.

3. Formulation of the mathematical problem

With reference to [2] and using the same arguments of Section 1 in [4] and
Section 2 in [6], we deduce that the spectral function 6{t) associated with our
main problem (1.7)—(1.8) can be written in the form:

d(t) = \a\/(47tt) + K{t), (3.1)

and

*(')= ff X(x,x;t)dx, (3.2)
JJa

where \£l\ is the area of the region Q, while x(x\>*2',t) is a regular part of

the Green's function G{x\,xi;t) for the heat equation AM = du/dt. In what
follows, we shall use Laplace transforms with respect to t, and use s2 as the
Laplace transform parameter; thus

G(Xl,x2;s
2) = exp-^G(xux2;t)dt. (3.3)

~ Jo ~ ~

Consequently, we deduce that G(x\,xi;s2) satisfies the membrance equation

(A-s2)G(xi,x2;s
2) = -S(xl,-x2) in Q, (3.4)

together with the impedence conditions (1.8), (1.9), where S(x{ - x2) is the

Dirac delta function located at the source point x\ = x2.
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The asymptotic expansion of K(t) as t -* 0 may then be deduced directly
from the asymptotic expansion of K(s2) as s —• oo, where

K(s2)= ffxx,x;s2)dx. (3.5)
JJa

4. Construction of Green's functions

It is well known [6] that the membrane equation (3.4) has the fundamental
solution Go(xi,X2'yS2) = Ko(srXlXl)/2n, where rXlX2 = \x\ - * 2 | is the distance

between the points Xi = (x\,x2), * 2 = {x\,x2) of the region Q and KQ is the

modified Bessel function of the second kind and of zero order. The existence
of this solution enables us to construct integral equations for G(xi,x2;s

2)

satisfying the impedance boundary conditions (1.8), (1.9) for small/large
impedances yx, y2. Therefore, Green's theorem gives:
Case 1. (0 < yi -c 1, y2 » 1)

G(X!,x2;52) = K0(srXlX2)/2n

+ - f G(Xi,y,s2){d/dniyKo(sryX2) + y\KQ(sryXl)}dy
71 Jen, ~ ~ ~ ~~

+ - / dldn2yG{xx,y;s2){{K0{sryXl) + y-xdldn2yKo{sryXl)}dy.
"• Jaa2 ~ ~~ ~

(4.1)
Case 2. {yx » 1, 0 < y2 < 1)

In this case G{x\,X2',s2) has the same form (4.1) with the interchange

dCli <-» dSi.2, y\ <-* yi and n\ <-> «2-

Case 3. ( y i , y 2 » 1)
In this case G(x\,X2\s2) has the same form (4.1) except its second term

which is different from the second term of (4.1). In case 3, the second term
of G(x\, X2\s2) is equal to the negative of the third term of (4.1) with the

interchanges d£l\ *-* dQ.2, y\ <-» 72 and «i <-» «2.

Case A. ( 0 < y i , y 2 « : 1)
In this case G(x\,X2\s2) has the same form (4.1) except its third term

which is different from the third term of (4.1). In case 4, the third term
of G(xi,X2',s2) is equal to the negative of the second term of (4.1) with the

interchanges dili <-> dft2, y\ <-» y2, and nx <-> «2.
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On applying the iteration method (see [4]) to the integral equation (4.1),
we obtain the Green's function ~G(xuX2',s2) which has the regular part:

X(xi,x2;s
2) =~~2 I K0{srXiy) I ^-—K0(sryX2) + yiK0(sryX2) \ dyln Jan, ~ ~ I an\y ~~ ~~ I ~

where

2* J9ni Jdni ~ ~

x \ ^-—K0(sry,X2) + yiK0(srylX2) \ dydy'
I or\\y< ~ ~ ~ ~ I ~ ~

If
\Ja

x \ K0(sry,X2) + y2lw—K0(sry>X2) > dydy'
i ~ ~ only- ~ ~ I ~ ~

x •! p-—K0(sry,X2) + y\K0{sry.X2) \ dy'
\on\y- ~~ ~ ~ i ~

f if Ko(srXiy)MA(y,y')dy\
dn2 (Jail! ~ ~ ~J

x J K0(sryJX2) + y^JL-Ko(sr,.#) \ dy', (4.2)

i/=0

Ki(y',y) = - I a Ko(sryy,) + yiK0(sryy>) \ , (4.4)i \ -^-Koisryy) + yxKQ{sryy.) \ ,

• <4-5)
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• } • (4.6)

and

\ ( 4 - 7 )

Similarly, we can find ~x{x\, X2',s2) for the other three cases.

On the basis of (4.2) the function ~x{x\,X2',s2) will be estimated for large
values of s together with small y\ and large yi. The case when X\ and X2 lie
in the neighbourhood of the inner boundary dCli or in the neighbourhood of
the outer boundary d&2 is particularly interesting. To this end we shall use
coordinates similar to those obtained in [4] as follows:

5. Differential geometry of the boundaries dQ\ and d£l2

Let «i, «2 be the minimum distances from a point x = {xl,x2) of the
region Q to the boundaries d£l\, dQ.2 respectively. Letters n\{o\), £2(^2) de-
note the inward drawn unit normals to dili, dQ.2 respectively. We note that
the coordinates in the neighbourhood of dQ.2 and its diagrams (see Figure
l(a), Figure 2) are in the same form as in Section 3 of [4] with the inter-
changes a <-• (72, n +-* «2. h <-» A2, / <-+ h, C{I) <-+ C(/2), S +-* 82. Thus, we
have the same formula (3.1)-(3.4) of Section 3 in [4] with the interchanges
c(a) «-• k2{(J2), n *-> ri2 and n{a) «-» 22(^2). Similarly, the coordinates in

the neighbourhood of dili and its diagrams (see Figure l(b), Figure 2) are
similar to those obtained in Section 3 of [4] with the interchanges a «-• o\,
n *-* «i, h <-» h\, I +-* I\, C{I) <-» C{1\), 5 <-» 8\. The only remark here is that
the two unit normal vectors on d£l\ and 9Q2 are in the opposite direction.

Therefore, we have the same formulas (3.1)—(3.4) of Section 3 in [4] with
the following interchanges: c(o) «-+ k\{o\), n <-> n\, n(a) <-> ni(ci), the plus
sign of the second term of (3.1) by the minus sign, the minus sign of the
second term in the third equation of (3.2) by the plus sign, the constant
-1 /12 in (3.3) by +7/12 and finally the minus sign in the second term of
(3.4) by the plus sign.
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6. Some local expansions

It now follows that the local expansions of the functions

_&_„ , , d
dri\y

(6.1)
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when the distance between x and y is small, are very similar to those obtained

in Sections 4, 5 or [4]. Consequently, for small y( and large y2 the local
behaviour of the following kernels:

y), W,y), (6.2)

y), K3(y',y), (6.3)

when the distance between y and y' is small, follows directly from the knowl-
edge of the local expansions of the functions (6.1). This follows from the
definition of ^-functions (see [3], [4]) in small domains C{I\) and C(/2).
Thus, using methods similar to those obtained in Sections 6-10 of [4], we
can show that the functions (6.1) are ex-functions with degrees k = 0, - 1 , - 1
respectively. Consequently, for small impedance y\ the functions (6.2) are ex-
functions with degrees X = 0, - 1 while for large impedence y2 the functions
(6.3) are eA-functions with degrees A = 0,1 respectively.

DEFINITION. If xx, xi are points in a large domain il + dili or £2 +

then we define

hi = mjn(r£lj, + r^y) if y

or

Rl2 = min(r£l, + ri2y) if ye dCl2.

An ^(xi,JC2;^)-function is defined and infinitely differentiable with re-

spect to xx and X2 when these points belong to a large domain Q + dili or

SI + d£l2 except when x\ = Xi 6 d£l\ or dQli. Thus the /^-function has a

similar local expansion of the e*-function (see [3], [4]).
By the help of Sections 8, 9 in [4] it is easily seen that formula (4.2) is an

E0(x\,x?,s)-f\mc\ior\ and consequently

G(xux2;s
2) = O{[1 + \logsrl2\]e-Asf"} + O{[\ + llog^nl]*?-*^}, (6.4)

which is valid for s —> oo and for small y\ and large y2, where A and B are
positive constants. Formula (6.4) shows that G(xi,X2',s2) is exponentially

small for s —> oo. Similar statements are true in the other three cases.
With reference to Section 10 in [4], if the ^-expansions of the func-

tions (6.1)—(6.3) are introduced into (4.2) and if we use formulae similar
to (6.4), (6.9) of Section 6 in [4], we obtain the following local behaviour of
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X(xi,x2;s
2) when f\2 or Ri2 is small which is valid for 5 —• 00 and for small

yx and large y2:

J(xi,x2;s
2) = Xi(xux2;s

2) + x2(x\,x2;s
2), (6.5)

where if x\, x2 belong to a sufficiently small domain C{I\), then

e-A°fi»), (6.6)

while, if Xi, x2 belong to a sufficiently small domain C(I2), then

X2(xux2;s
2) = - ^ 11 - y2-' ( ^ ) } K0(spi2) + O{s-le-B»»). (6.7)

When t\2 > S\ > 0 or /?i2 > ^2 > 0 the function x~(x\,x2;s
2) is of order

O(e~Ns), s —> 00, Af > 0. Thus, since Iimfi2/pl2 = 1 or liraR\2/p\2 = 1
when f\2 or i?i2 tends to zero, then we have the asymptotic formulae (6.6)
and (6.7) with p\2 in the small domains cases being replaced by rl2 or i?i2 in
the large domain Q + dQ\ or Q + d£l2 respectively. Similar formulae for the
other three cases can be found.

7. Construction of our results

Since for f2 > hi > 0 or <j;2 > h2 > 0 the function ~X\{x,x;s2) is of

O(exp-(2Ashi)) while the function J2(x,x;s2) is of O(e\p(-2Bsh2)), the

integral over the region Q of the function ~x(x, x;s2) can be approximated in

the following way (see (3.5)):

K(s2)=

+ O(exp(-2Ashi)) + O(exp(-2Bsh2)) as 5 -> 00 (7.1)

If the ^-expansions of Xi(x, x;s2) and ~x~2(x,x;s2) are introduced into (7.1),

one obtains an asymptotic series of the form:

n=l

https://doi.org/10.1017/S0334270000006792 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006792


482 E. M. E. Zayed [11]

where the coefficients an for all four cases are calculated from the ^-expan-
sions by the help of formula (11.3) of Section 11 in [4].

Finally, on inverting Laplace transforms and using (3.1) we arrive at our
results (2. l)-(2.3).

8. Discussions and conclusions

In this paper we note that the definitions and the local expansions of ex-
functions and Ex-functions in the small domain C{h) and the large domain
ft + dil2 respectively are exactly the same as in Pleijel [3] and Sleeman and
Zayed [4]. But the definitions and the local expansions of these functions
in the small domain C(I\) and the large domain Q + dCli may be different
from those obtained in [3], [4] in the inclusion of the terms (d/d£1)1 and
(d/d£2)m and because the two unit normal vectors on dil\ and dCl2 are in
the opposite direction.

Pleijel has introduced these functions to estimate ~x(x\,X2',s2) as s —> oo

for Neumann or Dirichlet problem when x\, X2 lie in the neighbourhood of
a smooth boundary of a general simply connected bounded domain, while in
the present paper the author has used these functions to estimate J(xi, x^s1)
as 5 -• oo for the impedance problem (1.7)-( 1.9) with small/large impedances
y\,yi, when X\,X2 lie in the neighbourhood of the inner and outer boundaries

of a general doubly-connected domain in R2. From these discussions we
conclude that the reference [3] plays an important role in the present paper.
Because of that, I am deeply grateful to the Swedish mathematician Professor

A. Pleijel.
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