AUTOPARALLEL DEVIATION
IN THE GEOMETRY OF LYRA
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1. Introduction. One of the fruitful tools for examining
the properties of a Riemannian manifold is the study of
""geodesic deviation''. The manner in which a vector, repre-
senting the displacement between points on two neighbouring
geodesics, behaves gives an indication of the difference between
the manifold and an Euclidean space. The study is essentially
a geometrical approach to the second variation of the length-
integral in the calculus of variations [1]. Similar considera-
tions apply in the geometry of Lyra [2] but as we shall see,
appropriate analytical modifications must be made. The approach
given here is modelled after that of Rund [3] which was originally
designed to deal with a Finsler manifold but which applies equally
well to the present case.

We shall use the notation of Scheibe [4] as far as possible
except that our curvature tensor K !}, is the negative of his.
This convention conforms more closely with the classical usage.

2. Fundamental definitions. In the geometry of Lyra
the autoparallels are the curves xi(t) whose tangent vectors
g i = x0%i(t) satisfy the differential equations

(1) d€isdat+ Fjik g gk,
where
~ i i i i i
(2) roo= I, -1 , [ = .
ik ik T2 %5 %k jk K j

The significance of the functions involved here is fully explained
in Lyra, or in the preceding paper of Sen in this journal.

Corresponding to the connection (2) we may define a
covariant derivative

(3) xt =0 lxt 4+ Floxr;xt o =xind,
3J 2 ) r J ) J
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where X! is an arbitrary vector (in the sense of Lyra). By

demanding that the product rule remain valid, this derivative
can be defined for arbxtrary tensors In particular, if ¢ is a
scalar, we have ¢, = (x9)1¢ k- Furthermore if a sym-

metric metric tensor, 8ij is defined on the space, so that we
interpret
() Fx,X) = (g55(0% ¥ )}

as the length of a vector X', we have

_ o _1 ~ T o r
(5) gk = X7 g5 8y M- 8ir [y i
and the condition that the space be metric is
(5‘) gij;k =0,

This condition, together with (2), yields [2]

i= oy-1 {1 1,64 i o i
(6) Fo e e v 8 e g,

We use gij and its inverse gij = [det(gij)] -1 (cofactor gij)
to raise and lower tensor indices.

The commutation formulae corresponding to (3) are

i i - _xi yr T i
bk ™ Xign = X e et X R e

(7)
- r r
Xihk = Xijksh = ~Xipr H bk - XK bk
where
(8)

$y = (x°)'l [1n(x°)2] X

Ko e (072 [0 Py - x° NN

(9) b (O F S o [P ©OF S o i
*'rn s T TP )

The formulae (7) may be extended to tensors of higher order,
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In particular,

r

- T b
8ij;h;k ~ 8ij;k;h =~ Bij;rH hk " BrjKi hk ~ 8ir¥j ke

In view of (5'), then, it follows that
- (10) Kijhk + Kjjnk = 0

and hence Kjjhk is skew-symmetric in its first two and last
two indices.

The identity, where xk = Xk(x),
(11) (x°)"! F(x,X) 3 - ? F(x,X)/ 2 XT F‘j'k xi=o0

will also be useful in the sequel. This is obtained by differen-
tiating (4) convariantly with respect to xX. Since F(x, X) is a
scalar, the left side yields (x°)~! [F , +(» F/? XT)XT, ]
and, in view of (5'), the right side ‘givés (F)-1 gij xixj;l’(.
Using (3) and noting that 9 F/? XJ = (F)‘lgij}(i , we obtain
(11). It is noteworthy that the partial derivatives of XKk do not
occur in (11). ’

3. The general problem. We consider a two-dimensional
subspace L which may be represented parametrically by
x! = x! (u,v). The tangent vectors (in the sense of Lyra) to the
coordinate curves on this surface are

(12) £i=x02xl/ 3u=x°xiu; ‘qi=x°3xi/3v=x°xiv

and we assume that these are linearly independent throughout
the region under consideration. Note that

(129 gi}-'\r’iu=%(8§1$m-83n Jn);n,’m’
by virtue of the definition (8) of 3 m*

Covariant differentiation along the coordinate curves is
defined by

(13) §xi/8u=xt  §7; Sxi/8v=Xi;m"lm-
In particular,

88l 8v = [(xo)-lgi.m+ ng'rim] xoxmv.‘—. giﬁ- Frim §F 4™,

265

https://doi.org/10.4153/CMB-1960-033-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1960-033-8

Carrying out a similar calculation for 8-qi/ §u and taking the
difference, we find, by (12'), (2) and (8), that

(14) | seifsv . 8misSu =Hinmg“~7m.

The mixed derivatives 82X/ Svéu and 82X1/§uSv
are easily calculated from (13). It follows that

§2xi/ v ou- §2xi/ Su v
(15) . . .
= (Xinjm = Xjmpn) §7 1T+ X5 (857 By - 8175

yn,m

T i n.m

=X Kinm £§5m ’
where the second equality is obtained from (7) and (14). In
particular

(15Y) 82§i/ $vou- Szgi/ EH"SV’_'Krinm %rgnqm'

We are now in a position to examine the deviation of
neighbouring curves v = constant. lL.et ¢ be an arbitrary
finite constant and let ¢ be a small constant., Consider the
curves C: v=cand C¥%: v=c +& . Since the curves u = constant
intersect both C and C%*, a natural correspondence is estab-
lished between points of these two curves. We shall find it
convenient to consider a more general correspondence.
Assuming that a function f(u) is given, which has a continuous
second derivative and which is of the same order of magnitude
as &, we let the point A(xi) = A(u) on C correspond to the
point B(u%*) on C%*, where u* = u + f(u). The vector zi
associated with the displacement from A to B is

(16) Zi:xodxi=f(u) €i+ E'qi,

neglecting quantities of the order of e,

The problem, then, is to ascertain the behaviour of 2t
as A(x) moves along C. This is accomplished by formulating
a set of differential equations which characterize the components
of z!. In order that this system be independent of the reference
system, it must be tensorial and hence the covariant derivatives
defined above, instead of ordinary derivatives, are used.

If we differentiate (16) covariantly with respect to u,
taking (14), (16) and the skew-symmetry of H! _ into account,
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we obtain
(17)  8zi/bu= S(f€i/Su+ e85l 8v-Hl g ™

A second differentiation will give rise to a term

e §2¢ l/84 §vinthe right-hand side. This may be replaced
by &82g1y 8v3u-K1nm$ g0z in view of (15'), (16)
and the skew-symmetry of K.} in n and m. Rearranging
terms we therefore have

r nm

Szzi/8u2+(Hinm§n)Szm/8u
(18) +[K A, ET e+ sl ED)/ Su] 2™
= 582{1/ Svou+ Sz(fﬁi)/guz.

This is the most general deviation equation. Both f(u)
and the coordinate curves are of a general nature.

4. Autoparallel deviation. The most interesting case of
equation (18) occurs when the curves v = constant are auto-
parallels and the parameter u is takento be s, the arc-length
of these curves. The latter assumption means that § 1 is a
unit vector field, since

ds2

]

[gi. (xodxi)(xodxj)] 3
i. e. J

(19) F(x, €)= (g §1 £ )7 = 1.

In view of (1) (with t=s) and (13) (with X! = £ 1, u=s), the.

former assumption is equivalent to

"

sgl/ 8s=0.

Since this condition is independent of the value of v, we also
have ( § £1/ & s), = 0 and since

n

25l 8vss= (5658 + L (567/88)0™,

it follows that §2 £ i/§vss=0. After these simplifications
equation (18) becomes

5271/ 882+ (i _ £7) 82™/ S
(20) . N
+ [Ki'pm ETER+ 8(H, £7)/ 8s]z™
=f(s) €1,

267

https://doi.org/10.4153/CMB-1960-033-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1960-033-8

which is the equation of autoparallel deviation.

This equation is more complicated than the corresponding
Riemannian analogue [1] where the function f is usually taken
to be zero and, more essentially, the tensor H1 gn does
not occur so that the first derivatives of z! do not appear.

As Sen has pointed out, elsewhere in this journal, the
necessary and sufficient condition that the class of geodesics
of the space (i.e. the solutions of the problem &/ds =0 in
the calculus of variations) coincides with the class of auto-
parallels, is ¢y = $k' This condition implies that HTy,;
vanishes, by (8). Conversely if HTpk vanishes then so does
Hrrk = %(n-l)( 51'3 k- d)k) and hence the condition of Sen is
fulfilled. Such spaces are therefore characterized by HTp =0
and in this case (20) becomes

(201) § 20 /8s2 4K € TEDM = gn(s)EL,

5. A first integral. The geometrical structure of the
situation described above is such that equation (20) admits an
easily derived first integral. We put £ ; = gj; £J and note that,

(21) E;E'=1; 8§5,/8s=0,

by virtue of (19) and (5'). Thus, by (10), inner multiplication
of (20) with € ; yields

(22) S[6(5;2)/ 8s+H §;6%2™-£'(s)]/8s=0

The constant inside the square brackets here may be shown to
be zero in the case under consideration. More generally, we
prove the

LEMMA. If a two-dimensional subspace L), together
with £ * and q! are defined as in § 3 and if u is chosen to be
the arc-length of the arbitrary curves v=constant, then

(23)  (RF/2g Y sgi/su)=0;(2F/28& H)( 85/ 5v)=

Proof. Since £ lisan unit field, equanon (19) holds
throughout L,. Hence F i dsd + (3 F/B-{ ha g 1, where
dxl = (x9)-1 (& idu+ 7 ldv) and d § 1= (2¢1/du)du +(2¢i/2v)dv

and (du, dv) is an arbitrary displacement, vanishes. Egquating
the coefficients of du and dv separately to zero and sub-
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stituting for F ; from equations (11), we obtain the relations
(23). This result does not involve the assumption that the curves
v=constant are autoparallels.

If we now assume that u=s in (17) and use (23), it follows
that

(24) £,(8zl/ §s)=f'-mH  §,80:m,

since ?3F/ 3¢ 1. €; when F(x, § ) = 1. Thus (24) represents
a first integral of (18) if u=s. In particular, when we are
dealing with autoparallel deviation so that the second equation
of (21) holds, we obtain the result stated above, namely that

(25) [5(8;2Y)/8s] + B £,8%2™=1'(s)

is a first integral of (20). In the case when geodesics coincide
with autoparallels this reduces further to d( § izi - f)/ds=0

(the derivative &/ §s applied to a scalar is equivalent to d/ds).
and hence f may be interpreted to within an additive constant
as the component of zi along C. If, as well, we assume

that f=0, it follows that this component is constant along C.

In general we say that the deviation is normal if this component
is zero (i.e. & jz! = 0) and equation (25) must then be taken as
the definition of f.

6. The two-dimensional case. We assume that the space
under consideration is two-dimensional and we define Z1 to
be the unit vector in the direction of zi, which we assume to
be a normal deviation, Thus

(26) Cgjzizi=zyzi=1; g zi=0,
It follows that
27 z; (821 §s)=0; §(82i/ $s)=0,

by (21). Since zi may not be co-directional with §; and
since the space is two-dimensional, we conclude from (27), that

(28) $zi/ §s=0.
There exists a scalar z such that zi = zZi, If this is substi-

tuted in (20) and an inner multiplication with Z; carried out,
the result is
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(29) z"+ xz' + (K+«')z=0,

where
(30) o« =Higy, z; 2 2™, K=K/, §7z;§%z™,

and where (26) and (28) have been taken into account.

This is a scalar equation of deviation with the same significance
as (20) since the vector zl only becomes null when z = 0.

The first derivative may be eliminated by the substitution

z= Cexp (-1 [*a(c ) do ). The result is

(31) en + [K+ia- Lx?]C =0,

The zeros of § are the zeros of z. Successive zeros of § are
points where neighbouring geodesics coincide. In the language
of the calculus of variations, they are conjugate points. Equa-
tion (31) has the same form as the analogue for Riemannian
spaces except that the scalar of curvature is modified by the
addition of $« ' -t 2, The analysis of the space proceeds

in the same manner.

In conclusion we remark that a similar reduction of
equations (20) to a single scalar equation is possible in a space
of any number of dimensions. The coefficients are somewhat
more complicated because the relation (28) will not, in general,
hold.” However, an equation of the type (31) will arise in the
same manner as above,

Estimates of the separation of zeros of § may be deduced
from bounds on the coefficient K + +a' -4« % after a theorem of
Sturm proved in Blaschke [1] . In fact Sturm proved that if
the coefficient in equations of the type (31) is increased in
magnitude, successive zeros of the solution of the new equation
will be separated by successive zeros of the solution of the
original equation. In particular, then, if K + %o(' - i; & 2 >A-2,
where A is a positive constant, we may consider

n" 4+ A=2m =0,
whose solution has successive zeros a distance s = T A

apart. It follows from the theorem of Sturm that
successive zeros of § are no more than T A apart.
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