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Abstract

A formal framework is constructed for the comparison of different stabilization tech-
niques, such as Wiener filtering, regularization, Courant’s method and Landweber-
Strand iterations, for the solution of first kind integral equations. It is shown that, when
they are applied to convolution equations, all these methods can be reinterpreted as
Wiener filters. This equivalence is then used to derive some specific results about
regularization, Courant’s method and Landweber—Strand iteration.

1. Introduction

For a comparison of the different methods proposed for some computational
problem (such as the numerical solution of first kind integral equations),
numerical experimentation with a representative set of test problems has proved
quite useful in yielding qualitative results and conclusions about their perfor-
mance. In part, such an approach was used by Graves and Prenter [10] in their
study of the Landweber—Strand iteration for the solution of first kind Fredholm
integral equations. Quantitatively, such assessment and classification is not
possible without a formal framework for comparison. The aim of the present
paper is to construct such a framework, and to use it to compare the Land-
weber-Strand iteration, Courant’s method, regularization and Wiener filtering
for the numerical solution of first kind integral equations.
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{2] Numerical solution of first kind equations 489

Although the applicability of each of these methods is restricted to some
subclass of first kind integral equations, they can all be applied to first kind
convolution kernels. It is this fact which will be used to construct a formal
framework of comparison. Initially, it will be necessary to define and develop
relevant results for each of the methods to be examined. This will be done in
Section 2. The formal framework of comparison will be constructed in Section 3
and used to define conditions under which the different methods are equivalent.
In particular, conditions are identified under which the Landweber-Strand
iteration can be interpreted as a Wiener filtering procedure.

2. Notation and Preliminaries

2.1 The problem

Formally, we are interested in the numerical solution of first kind convolution
integral equations
o0
Au =[ At = Du(r) dr = s(1), -0 <1,t< o0. 2.1)
[>-]

In fact, we examine (2.1) under the following regularity assumptions:

(i) The kernel A(+ — 7) is known explicitly and is such that A defines a linear
filter which satisfies the following conditions:

(a) A exp(iwt) = a(w)exp(iot), with a(w), the transfer function of A, indepen-
dent of ¢;

(b) a(w) # 0, w > 0.

The existence of the inverse filter A™' = L, say, defined by A™'A exp(iwt) =
exp(iwt) is guaranteed by these conditions. Clearly,

A~ exp(iwt) = L exp(iwt) = l(w)exp(iwt)
with transfer function /(w) = 1/ a(w).

In addition, the adjoint of A* of A will have transfer function a*(w), where
a*(w) denotes the complex conjugate of a(w); while rational function operators
will have corresponding rational function transfer functions.

(ii) The signal s(¢) denotes a realization of a continuous mean-zero stationary
stochastic process, and is only available as discrete observational data; namely

{dk}= {dk=s(tk)+Ek’k=0’1’2,-"’N— l’tk=a+kA,A=b;’a}’
22)

where the errors (noise) {g,} denote realizations of a discrete mean-zero sta-
tionary stochastic process, and {a, b] defines the interval on which the discrete
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data is collected. If the spectral density function associated with the signal s(r)
and the noise {¢, } are denoted by g (w) and g,(w), respectively, then the spectral
density function associated with the data {4, } will be defined by
84(w) = g(w) + g.(w). (23)

With respect to the given data {d, }, only estimates of g,(w») can be constructed
numerically (for example via the smoothing of periodogram estimates—see
Bloomfield {7}). If, however, appropriate assumptions can be made about ihe
smoothness of s(¢) relative to {¢;}, the estimates of g,(w) can be used to infer
qualitatively the nature of the decomposition defined by (2.3).

Thus, the problem becomes: with respect to given observational data {d,},
construct numerically an approximation to the unknown solution u(t) of (2.1).

Other types of convolution integral equations could have been used instead of
(2.1). For example,

) k(e — Du(r) dr = s(1), -0 <11 < o0, (2.42)
0
with
o0
k(t—1)= X acos(t —1), a#0j=12,..., (2.4b)
j=1
since

27 in j in j
[ o255 g )
0 cos jr cos jt

However, their use would not change the form of the results derived below. In
addition, they can be viewed as special cases of (2.1).

2.2 Wiener filtering

The strategy developed by Anderssen and Bloomfield [2], [3] for the construc-
tion of Wiener filters for the numerical differentiation of given observational
data {d;} extends naturally to the construction of Wiener filters for the solution
of the first kind convolution integral equation (2.1) satisfying conditions (i) and
(i) of Section 2.1 (see Anderssen and de Hoog [4], Section 3). Formally, this
reduces to the construction of Wiener filters for the application of L = A™' to
the given observational data {4 }. In particular, it can be shown that the implicit
spectral differentiation formula (5.13) drived in Anderssen and Bloomfield [3]
becomes

u(t; Ww)) = > W(wexplivk)lw)d, k=01...,N—1,

—T<w <7
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where

N
w =2m/N, d= % > d,exp(-ike), j=0,1,...,N—1,(26)
k

1
=0
denote the discrete frequencies and transforms, respectively, /(w) = 1/a(w)
denotes the transfer function of the inverse filter A~ corresponding to (2.1) (for
example, /(w) = iw when (2.1) corresponds to the differentiation formulation
(2.1) of Anderssen and Bloomfield [3]), and W{(w) denotes the window function
chosen to approximate the optimal Wiener window function

W(w) = g(w)/ { &(w) + g(w)}- @7

From the point of view of the subsequent discussion, the implicit formula
characterizes the extension of Wiener filtering to the numerical solution of first
kind convolution integral equations, since:

(i) When s(1,) = u(t,) with A = I, the identity operator with transfer function
a(w) = 1, (2.5) yields the standard Wiener formulas for filtering the signal s(¢)
from given data {d,}.

(i) The term W(w) identifies the smoothing applied by the Wiener filtering,
since the terms

expliwk)l(w)d,

characterize the application of L = A™' to the frequency domain data
{exp(iw;k)d;}.

2.3 Regularization

For the operator equation (2.1), regularization can be defined formally as

min {||Au — s|i3 + a|Tul3}, (2.8)

where ¥ denotes some admissible class of solutions, T denotes a linear differen-
tial operator with constant coefficients, a denotes the regularization parameter,
and || - ||, denotes the norm in L,[a, b]-the Hilbert space of square integrable
functions defined on the interval [a, b]. We assume that T is such that ||Tu||,
defines a norm. The more general situation where ||Tul||3 only defines a semi-
norm is not examined.

The Euler—Lagrange equations corresponding to (2.8) are given by

(A*A + aT*T)u, = A*s, (2.9)

where u, is used to denote the regularization approximation’s dependence on a.
Under the assumption that A is densely invertible, (2.9) yields

u, = (A*A + aT*T) 'A*A(A™Ys). (2.10)
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In addition, T is a linear filter which can be characterized as
T exp(iwt) = H(w)exp(iwt), Hw)#0,w > 0.
With respect to this form of regularization, an interpretation is possible which
is similar to that given for Wiener filtering above. In fact, if we write

s(D= 3 d exp(it), 2.11)

-7 <w; KT

than
e

1 . <
u,(t; T) = _ﬂ<2wj<" [T+ ar*(e) i) (@) @) exp(iwt)(w)d, (2.12)
where *(w) and /*(w) denote the complex conjugates of #(w) and /(w), yields a
regularization counterpart of the implicit Wiener filtering formula (2.5).

This shows that the whole process of regularizing a convolution integral
equation can be performed in the Fourier domain. As an immediate conse-
quence, it follows that, for even gridded data, the number of operations required
to evaluate the regularized solution u (4, T), k=0,1,2,..., N —1 is
O(N log N).

2.4 Courant’s method

(See Courant and Hilbert [8], page 792.)
For the operator equation (2.1), one can formally define the point evaluation
of its solution u at x by

u(x) = [ :soc — Y)ATs(y) dy. @.13)

Under suitable regularity, the order of 8(x — y) and A™! can be reversed to yield
(see Allison [1], page 22)

u(x) = [ :[(A")‘B(z)]s(x - 2)dz,

where A* denotes the adjoint of A; but this form will not be examined here.

The essence of Courant’s method is the replacement of the 8-function in (2.13)
by some well behaved parametrically defined §-shaped representation
8(x —y; a, B, ..., y) with parameters a, 8, ..., y. The approximate solution
of (2.1) is thereby reduced to the evaluation of

[= ]
u(lx;a,B8,...,7) =f S(x—y;a,B,...,7)A%S(y) dy. (2.14)
-0
An interpretation is possible which is similar to that given for Wiener filtering
above, but it is necessary to observe that convolution with

d(x—y;a,B,...,7)

https://doi.org/10.1017/50334270000002824 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000002824

(6] Numerical solution of first kind equations 493

is equivalent to linear filtering with transfer function (see Koopmans [11], page
89)

Ww, a, B8, ...,7) = fwa(x; & B, ..., )expl=iax) dx.  (2.15)
-0
Thus, on introducing the substitution (2.11) for s(¢) into (2.14), we obtain
u(x;a, B, ..., 7)= > Wwab, ..., vexpliwx)l(w)d, (2.16)

—-mT<w 7

which yields the implicit Wiener filtering counterpart for Courant’s method.

2.5 Landweber—Strand iteration

(See Strand [15] and Graves and Prenter [10].)
The essence of this method is a generalization of Richardson’s [14] iterative
method for the solution of the matrix equation Au = s (namely,
u" ) = u — o (Au” - ), n=012,...,

where u‘® denotes the chosen starting solution, and the a,, a5, . . ., are iteration
parameters with a, = a,_p (k > P) (P = period of the iteration)) to the opera-
tor equation framework of (2.1) with period P = 1:

Ut = 4™ — DA*(Au™ — ), n=0,12,..., (2.17)

where @ denotes the chosen starting solution and D = F(A*A) with F(¢)
chosen so that tF(¢) yields either a polynomial or rational function approxima-
tion to the Heaviside Unit Step function

1, a<t<1
H’= 3 b
() {0, 0<1<a.

In essence, then, the Landweber—Strand iteration is optimized by choosing
tF(1) = H (). We therefore examine the consequences of this choice.
It follows from Graves and Prenter [10] that, with ¥® = 0,

U+ = (1 - (I - DA*A)"* A s, (2.18)
Thus, on introducing the substituion (2.11) for s(¢) into (2.18), we obtain
u"*t (¢ F)

= 3 [l—{l—a‘(%)a(wj)F(a"‘(wj)a(wj))}"+l]exp(iwjt)l(a&)tij

-T<w, <7

= 3 [1={1 = F1/@)w))/ 1))} |explic ) (w)d,

—T<w, <7

(2.19)

which yields the implicit Wiener filtering counterpart of Landweber—Strand
iteration. For the interpretation and comparison of the smoothing term in (2.19),

https://doi.org/10.1017/50334270000002824 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000002824

494 R. S. Anderssen and P. M. Prenter [7]

namely
1 - {1 - a*(wa(w)F(a*(@)a(w))}"*’
=1- {1 - F(1/I*w)iw))/*(@)(w)}""", (220)

with W(w) of (2.5), the fact must be used that a(w) corresponds to the eigenval-
ues of A while /(w) corresponds to the eigenvalues of 4. Thus, if A~! corre-
sponds to nth order differentiation, then |/(w)| is an increasing function of <«
while |a(w)| is a decreasing function. Since 1F(¢) = H () implies that

F(1/7)/7=HXt)=1—-H, (1), 7t=1/1

it follows that, for this optimal choice,

1 - {1 - a*(w)a(w)Fla*(w)a(w))}"*"' = H (a*(w)a(w))
and (2.21)
1—{1- F(l/l"‘(o))l(w))/l"‘(w)l(o.))}'I+l = H(I*(w)l(w)).

It is clear that the complicated nature of the filtering associated with Land-
weber—Strand iteration is a direct consequence of its iterative nature; and that a
suboptimal choice for ¢tF(¢) is one for which (2.21) is true asymptotically.

3. Formal framework of comparison

Using the results derived above, the following formal comparisons between
Landweber—Strand iteration, Courant’s method, regularization and Wiener
filtering can be made. As is clear from the form of the results derived, the aim is
to compare Landweber—Strand iteration, Courant’s and regularization with
Wiener filtering.

3.1 Regularization and Wiener filtering

The following result generalizes the equivalences derived by Anderssen and
Bloomfield ([3]; Equations (6.16) and (9.6) and the second last quation on page
180).

THEOREM 3.1. For the convolution integral equation (2.1) and data {d,}, which
satisfy the conditions of Section 2.1, the formal equivalence of regularization and
Wiener filtering defined by

u(ty; W(w)) = u(t; T), k=0,1,2,...,N—1, 3.1
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holds when the smoothing W(w) which characterizes Wiener filtering is taken to be

A(w; t(w)) =1/ {1 + ar*(w)t(w)*(w)l(w)}. (3.2)

ProoOF. An immediate consequence of (2.5) and (2.12).

The importance of such an equivalence is the insight it gives about the nature
of both Wiener filtering and regularization:

(i) The “stability” which regularization is known to exhibit numerically (see
de Hoog [9] and Lukas [12]), because of the diagonal dominance it tends to
impose on the matrix formulation resulting from the direct solution of (2.1), is
transferred to Wiener filtering.

(ii) The potential that Wiener filtering has for achieving a realistic separation
of signal from noise, because of the statistical interpretation resulting from its
stationary stochastic formulation, is transferred to regularization. It indicates
that, unlike many methods of numerical analysis based on an abstract for-
malism, regularization does have the capacity to cope with the difficulties of
non-exact data.

As well as the above trade-off in properties, this equivalence has two major
consequences of direct practical utility. The first is the O(N log N) complexity
result, which has been mentioned at the end of Section 2.3, while the second
yields a strategy for determining a maximum-likelihood estimate for the regulari-
zation parameter a.

The latter depends on utilizing the equivalence of Theorem 3.1 defined by
W(w) = A (w; t(w)) to construct a parametric representation for the spectral
density function of the data g,(w). In fact,.if we assume that the spectrum of the
errors, g,(w), was known up to a constant, namely

& (w) = bh(w) (3.3)

with h(w) known (for example, for truly uncorrelated errors h(w) = 1), and the
spectrum for the signal, g.(w), can be modelled as (see (2.7))

g,(w) = bh(w)/ {at*(w)t(w)l*(w)l(w)}, (3.4)
then W(w) = A, (w; (w)) and
84(w) = bh(w)[ 1 + 1/ {at*(w) t(w)/*(w)l(w)} ] (3.5)

yields a parametric representation for g w) consistent with the equivalence.

Thus, as defined by (3.5), the spectrum of the observed process {d,} depends
on the parameter of interest, a, and an overall scale parameter, b. But, since the
distribution of a process is determined by its spectrum, at least for Gaussian
models, it follows that a may be estimated from the statistical properties of the
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observations {d;}. In fact, we have

THEOREM 3.2. The maximum likelihood estimate of a is determined as that value
of a which minimizes the following approximation for the likelihood of «

N 2“ log( > 1(«»,)/[1+1/{at*(w,)t(w,-)l*(w,)l(oa)}])

AR 4

v S lg[l41/ (@ @)@} 69
where

1

N
(@) = SN k§0 d, exp(ikw;)

= N|d[/2n (3.7

denotes the periodogram of the data; and, in the second sum, the infinite term at
w, = 0 is replaced by an arbitrary quantity, which is usually taken to be zero.

Proor. It follows that given by Anderssen and Bloomfield {2].

When implementing an algorithm based on this equivalence, it is not only
necessary to find the « which minimizes (3.6), but also necessary to choose T
(and thus #w)), since the definition of (3.6) involves #(w) as well as /(w). The
procedure developed by Anderssen and Bloomfield [2], [3] reduces to choosing
the T from some appropriate and previously specified class so that, with respect
to the associated value of a which minimizes (3.6), the resulting model of g (w)
defined by (3.5) yields a reasonable fit to the periodogram /(w;) of the data . d,}
as defined by (3.7). Alternative methods for choosing T and a« have been
proposed and examined in some detail by Wahba [16], [17). These methods are
based on the use of generalized cross validation. Most of the discussion of
regularization in the literature centers on finding a assuming that T has been
given in advance. Lukas [13], however, has shown that, if best results are to be
obtained, it is necessary to examine optimality criteria for approximations as a
function of both T and «. In addition, he has found that the choice of T is the
more crucial step and has developed a procedure for determining T before a.

3.2 Wiener filtering, regularization and Landweber—Strand iteration
As an automatic consequence of (2.12) and (2.20), we have

THEOREM 3.3. For convolution integral equations (2.1) and data {d,}, which
satisfies the conditions of Section 2.1, the formal equivalence of regularization and
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Landweber—Strand iteration defined by
u(t; T)=u"t; F), k=012,...,N—1, (3.8)

holds when the linear filter T of regularization and the function F of Landweber—
Strand iteration are related by

1/ {1 + ar*(0)t(@)* (@)} = 1 —[1 = F(1/I*(w)l(w))/I*(@)l()]". (3.9)

On invoking the equivalence of regularization and Wiener filtering of Theo-
rem 3.1, it follows that the role played by the right-hand side of (3.9) is
equivalent to that of the smoothing of the Wiener filter defined by W(w). But, it
follows from (2.21) that, in the limit, the Landweber—Strand iteration only yields
a form for the right-hand side of (3.9) which corresponds to the low pass filtering
of all frequencies such that

F1/1% ) 1()) /1) (e5) < =~ (3.10)

However, from a Wiener filtering point of view, low pass filtering is not optimal.
In addition, since, with respect to a given n, the optimal a — 0 as n — oo, this
shows that all frequencies are passed in the limit. This interpretation of Land-
weber—Strand iteration also yields an explanation of why the methods investi-
gated by Graves and Prenter [10], when tF(f) is taken to be a polynomial
approximation to H,(f), tend to yield rather slow convergence. Namely, the
range of a polynomial approximation to H,(¢) can extend below zero and above
1, thereby resulting in the negative enhancement at certain of the higher
frequencies, and overenhancement at certain of the lower.

It also follows from (3.9) that both n and F determine the smoothing
properties of Landweber—Strand iteration. The various forms that the right-hand
side of (3.9) can take represent a trade-off between n and F. If it is assumed that
n is specified in advance (there are various ways in which this can be done; see
Wahba [17]), then (3.9) can be used to define an appropriate form for F;
namely,

F(1/ (@) (@) *(@)l(w) = 1 =[1 = A, (w; 1(w))]""™ (3.11)

Thus, with respect to a chosen form for A (w; #(w)) derived from a Wiener
filtering-regularization context, the right-hand side of (2.12) defines the form
F(1/7)/7 should take if after n steps of the Landweber—Strand iteration, the
filtering is to correspond to that defined by A (w; #(w)). Further, since the
right-hand side of (3.11) has the same basic shape as A (w; #(w)) itself, it follows
that if an approximation to the right-hand side of (3.11) is sought, then it should
take the form of a truncated continued fraction. Independently, Bierbaum [6]
has shown that, when compared with those of Graves and Prenter {10], better
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results are obtained from the Landweber—Strand iteration when tF(¢) is con-
structed to be a truncated continued fraction approximation to H,(?).

3.3 Courant’s method, regularization and Wiener filtering

As indicated in Section 2.4, Courant’s method can be interpreted as an
implicit Wiener filter and thereby vields a natural framework for its generaliza-
tion to non-convolution equations. A number of authors have rediscovered and
applied Courant’s method in various forms (see Backus and Gilbert [S]), but
these will not be pursued here.

When Courant’s method is modelled in the form (2.13), its obvious equiva-
lence with Wiener filtering leads naturally via Theorem 3.1 to its equivalence
with regularization which reduces to choosing

Ww; a, B, ..., 7) =1/ {1 + ar*(w)t(w)/*(w)l(w)). (3.12)

Allison [1] has asserted without a rigorous proof that on replacing the
d-function in (2.13) by some well behaved parametrically defined §-shaped
representation 8(x — y; a, B, . .., v), Courant’s method reduces to the form

u(x) = Aj's (3.13)
where A' takes the form
S,A™ (3.14)

with S, corresponding to some smoothing operator (often called a regularizator
of A); and then argued that one thereby obtains an identification with regulari-
zation on writing

S, = A*(AA* + al)'A.

But, this does not yield an explicit characterization of the equivalence of these
two methods.

The framework of Sections 2.1-2.5 can be used to establish a sense in which
such operators S, exist, and to define the explicit nature of the equivalence
between Courant’s method, Wiener filtering and regularization for convolution
operators. Now, from (2.16), it follows that

u(t;a, B,...,a)= W(wj; a, B, ..., v)exp(iwt)l(w)d,. (3.15)

—r<w; K7
Thus, it follows from the Wiener filter interpretation of W(w) in Section 2.2, (ii),
that the transfer function W(w; a, B,...,7v), defined by (2.15), defines a
smoothing operator (linear filter) applied to A™'. In fact, it follows from
Theorem 3.1 that if §(x — y; a, B, . . ., v) is chosen so that the transfer function
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it generates via (2.15) satisfies
W(w; a, B, ..., v) = A(w; ((w)), (3.16)

then the smoothing operator S, corresponds to the regularization operator of
(2.10)

(A*A + aT*T) 'A*A.

In this way, we have established

THEOREM 3.4. For convolution integral equation (2.1) and data {d.}, which
satisfy the conditions of Section 2.1, the formal equivalence of Courant’s method
with Wiener filtering and regularization defined by

u(t; a, B, ..., y) = u(ty; Ww)) = u(4:T), k=0,1,2,...,N—1,
(3.17)

holds when 8(x — y; a, B,...,Y) is chosen so that the transfer function it
generates via (2.15) satisfies (3.16).
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