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A note on rational approximation

C.S. Davis

It is shown that the inequality

le-(p/q) | < %((108 1og q)/(4° 1og q))

holds for an infinity of integers p, g and that here the

factor % may not be replaced by a smaller number.

Corresponding best possible inequalities are given for the

2/t . A .
numbers e , where t 1is a positive integer.

In a recent paper (Davis [2]), the author gave the following result on

+
approximation by rationals to numbers of the form e_?/t , where t 1is a
positive integer. '
THEOREM. If a = 2/t , wherd t €N, and
1/t s t even,
¢ =

1/(kt) , t odd,
then, for any € > 0, the inequality
(1) le?~(p/q)| < (c+e) ((1o0g log q)/(q2 log q))
has an infinity of solutions in integers p, q . Further, there exists a

number q' , depending only on € and t , such that

2
lea—(p/q)| > (c-€) ((10g log q)/(q° Llog q))
for all integers p, q with q = q'
The second statement of the theorem shows that the constant ¢ in the
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inequality (1) is 'best possible' in the sense that it can not be replaced
by any smaller number. Nonetheless, the inequality (1) may be improved, in
that ¢ + € may be replaced by ¢ , and it is the purpose of this note to

establish this result, thus giving the
THEOREM. If a = 2/t , where t €N , and

1/t , t even,

1/(kt) , t odd,

then the inequality

le®~(p/q) | < e((1og 10g ¢)/(q° 108 q))

has an infinity of solutioms in integers p, q . If ¢ be replaced by any
smaller number, the inequality has only a finite nwmber of integer

solutions.

In the paper cited, details of the proof were given for the case
a =1 (in vhich case ¢ = % ). The inequality (1) was established by

explicitly constructing integers Pn’ Qn , for each n € N , such that
le-(P /@ )| = | |/@°
n' n n'"n

where lJnI ~ 1/2n and Q,~ V(2/e)(n/e)* as n > o . The result (1) of
the theorem follows, on taking p = Pn , g = Qn , and observing that

n o~ (log Qn)/(log log Qn] . However, in the course of proving the second
statement of the theorem it is shown that Pn/Qn is that convergent of the

simple (or regular) continued fraction

(2, I, 20, 10
e = 3 3 7ln=1

which arises by terminating that fraction immediately before the partial

quotient 22 . Hence

le-(p/q)| < 1/2nq% .
Now
(2) log ¢ = »n logn + 0(n)

n log n{1+0(1/(10g n))} ,
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SO

]

log log g = log n + log log n + 0[1/(log n)]
(log q)/n + log log n + 0(1) ,

n

and hence
(3) 1/n < (log log q)/(1log q)

for all sufficiently large »n . Thus

le-(p/q)] < %{(10g 10g q)/(q2 log q))
for an infinity of p, g , as asserted.
We observe here, for later use, that (3) may be replaced by
(4) 1/(n-m} < (log log q)/(log q) ,
for any bounded m , since, by (2},
log g = (n-m) log n + O(n)

In order to complete the proof to cover other values of a , we quote

relevant results from Davis [7]. We denote by an, pn/qn (n =0, 1, ...)

respectively the partial quotients and convergents of the continued

fractions in question. Further, we observe that our Qn is the Bn " of

3

the paper just cited and that hence
9, ~ (4n/ae)V(22™%)

Thus if we take gq = ¢

» (or %Qn , if appropriate), the inequality (L)

still holds.

For a = 2/t with t even, say ¢t =2k , and k > 1 , we have

ay, o = (2n-1)k - 1 and take gq = Qn . HNoting that

3n = 93,-3

a = 2nk - (k+1) > 2nk - 2k = t(n-1) ,
3n-2

we have

l®-(p/q)| < 1/(t(n-1)¢7)
and the result follows, on using (k).

The case a = 2/t with £ odd is a little more complicated in detail
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and, for simplicity, we write 3n +1 =N . Then

(i) if =1, as, = 6(2n+1)

= = ;’ = -
q=dg, 1 =%, Xy s

by + 2,

(ii) if ¢ >1 , = 6t{2n+1) = WbtV + 2t ,

a5n+2
= = % =
9 = dgyyy 2Q3n+l EQN .
The result in this case follows as before.

Finally, the case of e—a with a > 0 1is essentially the same, since

here we simply take gq = Px_1 instead of Ty (the notation referring to

the continued fraction for the corresponding 4 ).
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