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CLOSED DERIVATIONS ON THE UNIT SQUARE

MAW-DING JEAN

In this paper we extend Kurose's structure theorem to characterize

a closed derivation in the algebra of continuous functions on the

unit square, under the conditions that the range is the whole

algebra and the kernel is the set of all functions depend only

on the second variable, as a partial derivative with respect to

signed measures on the unit square.

1. Introduction.

The theory of closed derivations on the unit interval has been

studied recently by many authors [7][3][4], Kurose [4] characterizes a

closed derivation in C(I) as a standard abstraction of the usual

differentiation. Namely, a closed derivation 6 on C(I) satisfying

the conditions that the range of 6 is C(I) , and the kernel of 6

is the set of constant functions, can be identified with the different-

iation with respect to a non-atomic signed measure on J . In this paper

we will discuss the structure of closed derivations in C(IxI) and

extend Kurose's result to the two dimensional case.

The algebra of all continuous real-valued functions on a compact

Received 1 October 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86
$A2.00 + 0.00,

93

https://doi.org/10.1017/S0004972700004548 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004548


94 Maw-Ding Jean

space ft is denoted by C(U) . Any derivation on C(U) will be assumed

to have a dense subalgebra V(S) of C(Q) as domain, and to have range

in C(£l) , and we may always assume that all constant function? belong

to V(6) .

2. Derivations on the Unit Square.

The following lemmas will be used on several occasions.

LEMMA 2.1. 16, Theorem 3.8.]. Let 6 be a closed derivation in

C(tt) and let f be a continuously differentidb le real function on the

real line. Then for a e. V(S), f(a) e V(&) and S(f(a)) = f'(a)S(a).

LEMMA 2.2. Let 6 be a closed derivation in C(Q) . If f e V(S)

is constant on an open subset U of ft , then 6(f) = 0 on U.

For the proof of Lemma 2.2, the reader is referred to [3, Lemma

1.1.5]; this is based on the fact that V(S) is a Silov subalgebra of

C(Q) [6, Proposition 1.4].

If K is a closed subset of ft , the map 6v(f\K) = &(f)\K for

f e V(S) need not be well-defined. For suitable K , there is an induced

derivation 5^ in C(K)

PROPOSITION 2.3. Let S be a closed derivation in C(I*I) , whose

kernel is the set of all functions which depend only on the second

variable. Let K be a closed subset of I * J of the form I *[r,sl ,

where 0 s r < s £ 1 . Then the map &„ for f e V(&) is well-defined

and is a closed derivation in C(K) with domain V(6V) = {f\K :f e V(S)}.

Proof. Suppose / and g belong to V(5) and f = g on K ,

then f - g = 0 on the open set I x (r,s) . By Lemma 2.2. 6(f - g) = 0

on K and hence 6 is well-defined.
K

Let {/ } be a sequence in V(6) such that f converges to /

and 6(f ) converges to F in C(K) . Choose a function g e C(I)

with support^ = I - (r,s). Then the function h defined by

h(x,y) = g(y) for (x,y) e J x J belongs to ker (S). For each n , by

[7, Lemma 4.3] there exists a function h e C(R) with 0 < h < 1 and

h (0) = 1 such that

https://doi.org/10.1017/S0004972700004548 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004548


Closed Derivations on the Unit Square 95

\ \ ( h n ( h ) ) ( \ f n \ + \ * < f n ) \ ) \ \ = \ \ ( \ f n \ + \ * ( f n ) \ ) \ \ K

* \ \ f n \ \ K + \ \ * < f n > W K '

The sequences of functions {(h (h))f } and {(h (h))S(f )} are then

Cauchy sequences in C(I x j) , and hence they converge to some E and

G in C(I x I) respectively. Let {p }°° , be a sequence of poly-

nomials such that p converges to h uniformly on the compact set

h(K) . Then p (h) converges to h (h) in C(I * I) . By Lemma 2.1,

p (h) e V(S) and S(p (h)) = p '(h)S(h) = 0 . The closedness of S
nrri nrn nrn

implies that h (h) e V(&) and 6 (h (h)) = 0 . Therefore (h (h))f e

V(s) and

S((h (h))f ) = (h (h))6(f ) + f S(h (h)) = (h (h))S(f ) .
n Jn n n n n n Jn

By closedness of S , H e V(6) and 6(H) = G . Since h (h) = 1 on K,

it follows (h (h))f \K = f \K and S((h (h))f )\K = (h (h))&(f )\K =

S(f )\K . Hence f = E on K and F = G on K . Thus / e V(S ) and

&K(f) = SK(E\K) = 6(H)\K = G\K = F .

This proves 6 is closed.
K

Remark. In fact, the condition we need to prove the closedness of

Sv is that K is the zero set of a function in ker (S) .

The following proposition gives a partial converse of Lemma 2.2

that is analogous to Kurose's result [4, Lemma 2.4] in the two dimensional

case.

PROPOSITION 2.4. Under the assumption of Proposition 2.3., if

f e V(6) and S(f) vanishes on K then f depends only on the second

variable on K .

Proof. Let t and u be any two fixed numbers such that

r < t < u < s . Choose a function g e V(S) such that 0 < g < 1 and

0 on J x [t,u] ,

9 = i
Z on J x Is, 11 u J x [_0,rl .

https://doi.org/10.1017/S0004972700004548 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004548


96 Maw-Ding Jean

Consider the function h = f + 3\\f\\g . We have h e V(S) and

S(f) = 8(h) on K , and h > 2\ \f\ | on J x J - K . Let p(z/j be a

u -function on R such tha t

p(y> =
r y
•J
<• 0

i f

i f

y

y

* l l / l l >
>- 211 /11 •

Then by Lemma 2 . 1 , pfW e V(S) and " <5 Cp r?i>> ^ = p'(h)6(h) . The definit ion

of p implies that p ' ("W = 0 on I * I - K . Together with the fact

tha t S(h) = S(f) = 0 on K , we have S(p(h)) = 0 on J x J , and so

p(h) depends solely on the second variable on J x J . Since f = h on

I x CtjW], i t follows tha t f = p(f) = p(h) on J x [ t j W ] . Therefore f

depends solely on the second variable on I x [t ,w] for arbi t rary t and u

with r < t < u < S j thus f depends only on the second variable on K .

We shall l a t e r show tha t the resul t of Proposition 2.4. i s valid

for the degenerate subset K = I x { y } , y e I .

3. Derivations Induced by Signed Measures.

Let y be a non-atomic signed measure on J . For a function f

in C(I x I) , consider the function

f (x,y) = \(y) + fX f(t,y) dv(t) ,

where k(y) e C(I) . The following theorem shows that a non-atomic

measure gives rise to a closed derivation in C(I x I) .

THEOREM 3.1. Let u be a non-atomic signed measure with support

(v) = I . Then the map 6 (f .J = / is a closed derivation in C(I x I)

with domain V(6 ) = {f : A e C(I) , f e C(I x I) } . (The derivation

6 is denoted by — ) .
v 3y

Note that this result has already been treated in [7, p. 72].

Proof. Since the total variation function of n is continuous, it

follows that J f(t,y) d\i(t) is a continuous function on I x J . The

proof of the well-definedness of the map 6 is the same as in one-

dimensional case 14, Theorem 2.2]. The following identity
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Closed Derivations on the Unit Square 97

fX f(t,y) dv(t) fX g(t,y) dy.it) =
0 0

f (f(s,y) / g(r-,y) dvM + g(s,y) /* f(r,y)

for every / and g in C(I x I) , shows that V(6 ) is a subalgebra of

C(I x I) and

Furthermore, V(6 ) separates points of J x J and contains the identity.

By the Stone-Weierstrass theorem V(S ) is dense in C(I x I) . It is
P

immediate from the definition that 6 is closed.
V

Note that the closed derivation 6 induced by a non-atomic measure

y has the properties: the range of 6 is C(I x I) and the kernel of

6 is the set of functions depending only on the second variable. We

shall prove next that every closed derivation 6 in C(I x I) ,

whose range and kernel have the above properties, induces signed measures

and 6 can be identified with the partial derivative with respect to the

signed measures. If a closed derivation 6 on C(I x Q) is so-called

well-behaved, and has kernel containing all functions depending only on

the second variable, then Batty [7] introduces the self-determining

subspace and characterizes the derivation 6 as a partial derivative

of standard limit form.

THEOREM 3.2. Let & be a closed derivation in CCI x I) such

that range (6) = C(I x I) and ker(&) is the set of all functions depend-

ing solely on the second variable. Then for each (x,y) e J x J there

exists a unique signed measure p on I*{y} such that V(6) =
xsy

{F(w,z) = \(z) + f1 f(t,z) dv (t): \ e C(I), f e C(I * I)} and
0 Wj3

6(F)(x,y) = f(x,y).

Proof. Let VQ be the set of all functions / e V(S) such that

f(0,y) = 0 for all y e I . Suppose g e C(I X I) , and there exists a

function f e V(S) such that Sff) = g . Define h(x,y) = f(O,y) for

(x,y) e I x J , then h e V(S) , f-h e VQ and S(f-h) = S(f) = g .
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98 Maw-Ding Jean

The map 6 = ^ I ̂ n i s h e n c e a closed one-to-one map from pQ onto

0(1*1) . By the closed graph theorem the inverse 6 is a continuous

map of C(lx-I) onto VQ . Take a fixed point (x,y) e X*X . If

f,g e C(I*I) and / = # on I*lO,yl , then 6C6~1C/" - g)) = f - g = 0

on -TxCOjt/j . By Proposition 2.4, 6Q f/ - g,) is constant in the first

variable on I*ZO,yl . Hence 6~ (f - g)(x,y) = ^(f - g)(0,y) = 0.

Thus 6 (f)(x,y) = 6. (g)(x}y). It follows that the functional

f e C(I*l.0,yV > ^l(J)(x,y) s

where f is a continuous extension of / to JXJ , is well-defined and

continuous. Thus by the Riesz Representation theorem there exists a

unique signed measure u on I*\.0,y] such that 6Q (f)(x,y) =

f-rm -,f(s)d\i (s) for every function f e C(IxI) . Hence we have
1*10,yy x,y

= {F(w,z) - Uz) + fIxL0 zlf(s) dvw z(s): \ e

f e C(I*I)} and S(P)(x,y) = f(x,y) .

Suppose f e C(I*I) and f = 0 on I*{y} . Let / be a function

in C(I*I) such that f and / coincide on 1*10,yl and / is

constant on IxLy,H . Then by Proposition 2.4. & (f) is constant in

the first variable on Jx[yj2] , and so &~^(f)(x,y) = fT^(f)(O,y) = 0 .

Hence 6 (f)(x,y) = 0 . This shows that supportfy ) is contained in
o x,y

Ix{y] , and therefore

S~l(f)(x,y) = f1 f(t,y) dV (t) .
u Q x,y

COROLLARY. Let & be a closed derivation in C(I * I) such that

range(S) = C(I * I) and ker(S) is the set of all functions depending

solely on the second variable. If K = I x {y} for some y e I 3 then

for a fvnction f e V(6) , if &(f) vanishes on K then f is constant

on K .
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Remark. The converse of this Corollary is false, that i s , the

degenerate subset K is not self-determining. See Kurose [5 Example 2.2].

The author has learned from Professor H. Kurose that there exists a

closed derivation 6 in C(JxJ) such that Range(6) = C(JxJ) and Ker(6)

= {XJ} as follows:

V(&) is the set of a l l / e C(JxJ) , such that / has part ial

derivative -£- for the f i rs t variable at every point in Jxj and partial

derivative -*- for the second variable at every point {0} xj and, for

every y , f£«9,J/) = f^((?'J/) • and 6</> = | £ f o r /
i t follows that / e C(JxJ) belongs to P(6) if and only if there exist

X e R and F e C(JxJ) such that

f(x,y) = X + fy
Q F(0,t) dt + f% F(u,y) du .

A characterization of such closed derivations with scalar kernels

is analogous to Theorem 3.2.

THEOREM 3.3. Let & be a closed derivation in C(IxI) , whose

kernel is the set of scalar functions. Let K = [tfjJlxOjS] be a subset

of Jxj . Then for every f e V{&) s if 6 (/) vanishes on K , then

f is constant on K .

The proof of Proposition 2.4 can be applied to prove this Theorem.

THEOREM 3.4. Let 6 be a closed derivation in C(JxX) such that

Range(6) = C(Jxj) and Ker(S) = {XJ} . Then for each (x3y) e Jxj there

exists a unique signed measure y on I*{y} such that V(6) =

{F(W}3) = X + fl f(t,z) d\i (t), X € R, f e C(JxJ) } ; and S(F) U,y) =

Let VQ = {/ e t>(6) , f(0,0) = 0} . Together with Theorem 3.3.,

one may proceed as in the proof of Theorem 3.2. to construct signed

measures u , and the assertion follows easily.

x,y

A point u of n is said to be well-behaved for a derivation 6

in C(fi) if 6(/)(io) = 0 for all / in 17(6) such that /(io) = | | / | | ;

the set of all well-behaved points for 6 is denoted by tf. , 6 is said

to be well-behaved if W = fi , and quasi well-behaved if the interior
IntWr) of W. is dense in fio 6
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100 Maw-Ding Jean

THEOREM 3.5. Let § be a well-behaved closed derivation in
0(1*1) , such that range(S) = C(M) and Ker(&) is the set of all
functions depending solely on the second variable. Then

(1) for each y e I 3 the map 6T , •, is well-defined and closed,

(2) for each y e I there exists a unique non-atomic signed
measure \i on I*{y} such that

y

V(5) = {F(w,z) = \(z) + I f(t,z) d y (t): A e C(I) ,
U Z

fe CfJxJj} and S(F)(x,y) = f(x,y) .

Proof. Let y e I be fixed. Let ̂  be a function in C(I) such

that g(z) = 0 only at z = y . Then the function f(w,z) = g(z) for

(w,z) e. 1*1 belongs to kerf^ , and J x {y} is the set where f

vanishes. Since J x {y} n W is dense in I x {y} , it follows by [J,

Corollary 4.5] that 6r , , is well-defined and closed.

Let V = {f (x) = f (x,y) : f e V(S)} and set

*y(fy)te) = 6(f)(x,y) .

Then we have the following properties:

1. V is dense in C(I x {y}) ,

2. The map 6 is well-defined and closed by part (1) ,

3. It is clear that range(6 ) = C(I x {y}) ,

4. By the Corollary in this section Kerf6 ) is the set of all
<3

constant functions.

Hence the characterization theorem [4, Theorem 2.3] for the closed

derivation 6 induces a non-atomic measure signed measure u on
y y

I x {y} such that V(6 ) = {F(w,y) = \(y) + f f(t,y) d\i (t):

fe C(I x {y}) and 6 (F)(x,y) = f(x,y) .

Let 6 be a closed derivation in C(I*I) extending the partial
<\

derivative 3 = -— . Goodman [3 ] has determined the structure of such a
aX

derivation by its kernetl, and the kernel always has the form $ (C(X)),

where $ : JxJ > x is a generalized Cantor function (abbreviated
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Closed Derivations on the Unit Square 101

gcf). In the following theorem, we shall examine such a derivation in

terms of signed measures.

THEOREM 3.6. Let 6 be a closed derivation in C(Ix-I) extending

3 . Then for every x e X , there exists a unique non-atomic signed

—1 3 —1
measure \i on $ (x) such that 6 = T — on $ (x), where $ is a

X d|i
X

gcf induced by 6 .

Proof. By the definition of a gcf as given in [3, p.321] , we have

for every x e X , $ (x) is a closed subinterval of I x {w} for some

W e I , and $°(C(X)) = {f e C(I*I) , f is constant on 9~1(t) for each

t e X}.

If f e V(6) and f = 0 on $~ (x) then there exists g e VCd)

such that S(f) = 3(g) . Hence f-g e Ker(6; . By [3, Theorem 2.1.3],

Kerf6j = <S>°(C(X)) , it follows that f-g is constant on $" (x) , and so

g is constant on $ fxj . Therefore %(g) = (7 on $ Ca;j , thus

&(f) = 0 on ^ f o ) . Hence the map S (f) = 6Cf J | <f2 (x) for
<t>~J (x)

f e Pi's; is well-defined. Choose a function f e C(X) such that

/ (0) = {x} . Then /* takes the constant value f(t) on each

fibre <f2(t) and (f<t>)~1(0) = <f2(x) . It follows that /* £ Kerf6)

and $ ("xJ is the only set where /$ vanishes. Hence 6-

is closed by the remark of Proposition 2.3.

If / £ V(S) and f>(f)\<T1(x) = 0 , then there is a function

g £ V(6) such that S(f) = % (g) , /-£ is then in Kerf5J and f-g is

constant on $~ fx^. It follows that (g)\$ (x) = 0 , and g is

constant on $ ("xj . Thus f is constant on $ fxj .

If g £ Cf* fx,U then extend g continuously to I x {u} , and

then extend this function continuously to 2XT by making it constant on

every vertical line. Denoted this function by g . Since Range(S) =
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102 Maw-Ding Jean

Range (d) = C(I*I) , there exists f e V(S) such that 6 (f) = g . Then

6 (f\<f1(x)) = &(f)\<f1(x) = g\$~1(x) = g ,
<J> Ux)

which shows that Ranged ) = C(<t~ (x)) .
<f (x)

Finally if / e C("$ (x)) , applying the same extension to JxJ"

we get a function / e C(I*I) extending f . The domain V(&) is dense

in C(Ix-I) , there is a sequence / e V(S) such that f converges to f

in 0(1*1) , and hence / | $ (x) converges to /|$ (x) = f in

C($~1(x)) , (6\$~1(x)) is dense.

From Kurose's structure theorem [4, Theorem 2.3] applying the

closed derivation 6 _7 in CY$ Cx̂ U , we obtain a non-atomic signed
$ 1(x)

1
measure u on $ (x) such that if f e V(S) , 6(f)(t,u) =

x

for a l l (t,u) e $~

4. Differentiations.

Derivations 6 on, C(Sl^) and 6 on C(tl ) will be said to be

equivalent if there is an algebra isomorphism a of C(Q.) onto

C(Q2) such that 62 = aS^""
2 .

Batty [7] has proved that any quasi-well-behaved closed derivation

in C(I) is equivalent to an extension of A -3— for some \ e C(I) .

Indeed, Batty [7][2, p.336] and Sakai [6] obtain the following equivalent

conditions for a closed derivation 6 in C(I) •

(1) 6 is quasi-well-behaved

(2) There is a function X in C(I) such that 6 is equivalent

to an extension of X -5— .
ax

(3) V(&) contains a strictly monotone function.

Let (i be a compact Hausdorff space. In this section, we obtain

the following results which are analogous to the above equivalent

conditions for a closed derivation in
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THEOREM 4.1. Let 6 be a closed derivation in C(Q) . Then 6 is

equivalent to a closed extension of X -r- , X e C(I) , if and only if

contains an injective function.

Proof. If V(S) contains an injective function h , apply the

proof of [6, Proposition 1.16], let k = (\\h\\1 + h)/\| | |ft| |2 + 7i| | ,

k(tQ) = i n f k(t) and n = (k - k(tQ))/\\k - k(to)l\\ , then

n e V($) and n i s a homeomorphism of fi onto J . By the Banach-Stone

theorem, n. induces a *-isomorphism a of C(I) onto C(Q) by

a(f) = fr\ . If f e C(I) then by U , Theorem 3.8] fr\ e V(S) and

6(fn) = f ' (n)6(n) . The following equa l i t i es

a 6a(f) = a 6afa f(x\)) = a S(f(r\))

= a~1(f'(r\)S(r\)) = a'1 (f'(n)icT1 ($(r\)) = f X

show that a~16a(f) = X f for all / e CTTJ, where X = cT^CSCn)) ,

and hence 6 is equivalent to an extension of X -3— .

Conversely, if 6 is equivalent to a closed extension of X -j—

then there is a *-isomorphism a of C(U) onto C(I) such that

aSa~1(f) = X f' for all / 6 C'(I)

and a C'(I) <= Q(6) . Let 8 be a homeomorphism of J onto Q

induced by a where a(f) = fd . Choose g e C(Q) such that

g(Q(x)) = x for all x e I , then g = a (gQ) e a (C'(D) , and hence

£ e W6J . If i/i/ in 2 then Q~1(x) J 6~ (y) and g^xj =

g,(B(Q~1(x))) = e'^fx; / e"3^-* = g(e(e~2(y))) = g(y) . Hence g is

injective.

THEOREM 4 . 2 . L e t 6 fee a closed derivation in C(n). If 6 is

equivalent to an extension of X -7- then 6 is quasi well-behaved, where

X e C(I) .

Proof. Let 6 be a closed derivation in C(U) which is equivalent

to an extension of X -3— . Then there exists a *-isomorphism E. of
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C(Q) onto C(I) such that KSf1 (f) = * f for all f e C'(I) . The

morphism 5 induces a homeomorphism 9 of J onto fl such that

£(f) = /9 • Since £6£ is a closed extension of A -s— , it follows by

[/, Theorem 3.2] that £6? is quasi well-behaved. Let W be the set

of well behaved points for £6? . Then closure (interior(W )) = I .

Let u) e Q(W ) and f e V(&) be such that \\f\\ = f(u) . Let t e W

be such that 6 (t) = co . Since the *-isomorpf ism £ of the two C*-

algebras C(Sl) and C(I) is isometric, it follows that

Il/H = f(u) , and Z(f)(t) = f(Q(t)) = fCu; . We have

E,(f)(t) . Hence (tff1 (Kf))) (t) =0 . Then

8(f)(u) = S(f)(6(t)J = (Z(&(f)))(t) = (%&C2(Uf)))(t) = 0 .

Thus every u e &(W ) is well-behaved for 6 y and closure (interior

(6(W ))= 6 (closure(interior(W )) = 6(1) = Q . Hence 6 is quasi-well-

behaved .

Batty [7] shows that quasi-well-behaved derivation in C(I) and

extension of X -j— are equivalent. We have obtained in Theorem 4.2.

one direction of this result in C(U) case. Unfortunately, the other

way the quasi-well-behavedness of 6 in C(il) does not imply that 6

is equivalent to an extension of X -j— . Example: Let 6 be the partial

differentiation operator — on C(I*I) . Then 6 is quasi well-behaved

by Rolle's theorem, but S is not equivalent to an extension of X -j-

If it does, then by Theorem 4.1. V(S) contains an injective function,

and hence JxJ is homeomorphic to a compact interval, a contradiction.
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